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AQTA ARITHMETICA
XXXI (1976)

On a theorem of G. Halasz and P. Turan
by

T. Frysga (Poznan)

1. Denote by ¥ (a, T the number of roots of the Riemann zeta fune-
tion £(s) = {(o+it) for (<) a<og]l, O<tT. G‘r Haldsz and
P. Turén [2] proved the following theorem:

For a sufficienily small positive constant A, for all a-values such that
1—A<e<] and for T > ¢, the inequalily

—a)ogd
(1.1) N(a,T) < T 0 1=
holds (). _

Denote by L{s, %, q)‘ a Dirichlet’s I-function belonging to the charac-
ter ymodyg, g <<k and by N (e, T, ¢, g) the number of roots of L(s; v, q)
In the region

B<)egegl, O0<tgT.

The purpose of this note is to prove the following
TeeorEM. For T > ¢, ¢ — numerical constant, and for

(1.2) 1-0.2846 " <a1

the ineguality '
D 7 w0, 2,7, 0) < exp[ 203008, 7)1 - Ptog T
gk xmodg

holds, where .

(1.4) M, (k, T) = max(log*’%, log T)

and the inner sum in '(1.3) 18 taken over all the primitive characiers.

(1) The somewhat stronger mequahty
) N(a, Ty < 1ﬂ67(1—u)3f110g1711

wag found later by H. L. Montgomery. See his Topice i% Mulliplicative Number The-
ory, Lecture Nates in Math. 227, p. 102.
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The coefficient 26 in the exponent on the right-hand side of (1.3)
can easily be replaced by the number 1 but in this case the interval (1.2)
has to be a bit shorter. This theorem extends obviously the method of
G. Haldsz and P. Turin to Dedekind zeta-functions belonging to the
eyclotomic fields with explicit bounds for the constants of the field, and

to the quadratic fields as well (see [1], pp. 372-390).

2. In the proof of the theorem (1.2)—(1.4) we shall need the following

Iemmas:

Leyma 1 (Turdn’s second main theorem, see [8] and [10]). For
arbitrary positive m, integer n< N* and complez numbers oy, ..., v, there
8 an integer », satisfying the condition ‘

{2.1) mL < m+N*
that
. a o -
2.2 _ ] N P S— ”
(2.2) ‘Z @' (.86(m+1\7*)) Lol

F=1

where o, stands for any of the w,'s.

Denote by {(s, @) the well known Hurwitz-function. H.-B. Richert
proved the following inequality (see [7]): ’

Levma 2. For $<<o<1,125%, 0 < w<1 we have

(2.3) £(s, ) = @™ 4 O (F00~Flog3y),

L. Schoenfeld could replace the constant 100 in the exponent by 39
{see [2], p. 132). '
Tmyma 3. Denoting

(2.4) M (%, T) = max[logk, (logT)**(loglog T)"*]
we have L(s, x, q) # 0 in the region _
(2.5) : e>1— —2 4<t<¢

; : = M, T)’ SR

where B is a positive numerical constant and g< k.
Proof. Using (2.3) we get for '

' (loglogt)®? :

T gyt 20

the estimate

_ loglogt\*? ' '
£2.6) Lis, 2, q) = O(exp {( Olgo;f ) 10g2+39%10g10gt]-).
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From this it follows
B
Mg, 1)

(see [6], p. 207 and [97). But Mg, )<< (%, T) and our lemma follows.
LamwmA 4. Dencting by N,(T) the number of roots of L{s, 1, q) in the

L(s,2,9) =0 for o¢x1—

region BT, 0<o<1, T>2, we have

2.1) N(T) = O(TloggT),
(2.8) N(T41)— N(T) = 0(logaT),

where the constants implied by the O-notalion are independeni of g (see [6],
1P. 200-221). '

LievmA 5 (see [2], p. 130, and [5]). Let G(2) be regular for 2| < B,
G(0) # 0 and Tet the inequality

@{z)
G0)

holds. Then if 0 < r < B and the zeros of Q(2) in the discie] < v are 24, 25, -..
then for oll non-negative integers u we hove

(2.9) <U

1
Al

2(M+1)10gU( o1 )

<
o prHl log(R/r)

) lzjl=r
The proof of the theorem (1.2)~(1.4) is based essentially on ideas
contained in both papers of G. Halész and P. Turén ([2] and [3]).

3. Proof of the theorem. Lot 6 be such that

B

3.4 — >1—0> —
(3-1) exp(—14) 2 1-02> e W, )

where M(k, T) is determined by (2.1) and the constant B is taken from
(2.5}, With such a § we introduce the abbreviations

(3.2) T o =1+0(1—8),
' 1
.8 . — {1 — §)3%1ped ——
(8.3) _ 4 =10 log’ - —,
(3.4) 8y = 20,—1-+it,, 7, =20—1—0, 1 =>3,
‘ o it ' 1 | ' E
(3.5) 8] =25,—1, 1 =(1_—-;)29(1—B): B=6.
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As in [2] we get the estimates(®)

4! g 1-6 p5is ( q, t)taa(l—a)m
(r5)"

3(u+1)!

(g5 —1y7

where z, denotes the principal character, and using in the disc |s —sy'| < #
the estimate

(3.6)

IL(JJ}(S;H nal<e

(3.7) LE¥ (55, 70, )] <<

—s 1
f(s,0) = +_8~1 +0(1),

valid for o> §, [f| <11, where the constant implied by the O-notation
is independent of w and & {see [6], p. 115), we get for y +# y, owing to (3.1),
WMk, TYE 0
C———5 -
(ra)*

1
It is easy to notice that the function m”zlog

(3.8) _ iL‘“)(sa’, % O <

is monotonically
inereasing in the interval (0, e~**). Hence, owing to (3.1) and (3.3), we have
A 1 kT '
8)%log? - B} ylogM,(k, T)

(3.9) S 1 )
Tog 1 _Ml(k,’l’)

1—46

where M,(%,T) is determined by (1 4} and y i a suﬁlclently large nu-
merical econstant, if only 7' > ¢

4. Let us consider on the segment
(4.1) I! o=a, IT<t<T

with a fixed natural » the set H = H(», k) (consisting of finitely many
closed intervals) on which the inequality '

— 2B (k, T)

L’
(4.2) [‘f(sz Z*? Q)(ﬂ) = &

P
=0y
holds, for some L-function belonging to primitive character y*modg, .

g <k (not necessary the same one in all points of H). Then denoting the
meagure of the set H by [H| we asgert the following

Levma. For A determined by (3.3) and 0 defermined by (3.1) and for
AM (K, T 20 205
(%, T) )<v+lglM1(k,T) 0.54

{4.3) Lo (14
log(}+0) log 1 10g(%+6)_

14

log—~——l —7

{(*) Here and Iater ¢ means unspecified positive numerical constant not necess-
arily the same in different occurrences,
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the inequality

(4.4) ) < Mk, Thexp{(2 +1075) 101, (%, T)}

" holds, if only T is sufficiently large.

Proof {(compare [2], pp. 126-128). Let +, be the smallest -value in H
and 1, ..., %; being defined, let 1., be the smallest i-value in H satis-
fying ) '

Tye1 2 T+ 6

(if there is any). If 71, ..., 75 are all these points then

M
H = U I[n, 7+6]
=1

and hence _
(4.5) o CH| < 6M
Denote
& =e+ity, j=1,..,H4 .
and

i

L
F(s, ¢, %) =T(3; X q)(v)'

Hence, owing to (4.2), we have

My!

’ A
g ¢ Y IR s )l

=1

(4.6)

where xj is one of these primitive characters modg;, ¢; < &k, for Whmh

the inequality {4.2) in the point s; holds. Putting
7y = exp (—iarg Fs;, 17, 4))
we have ;] = 1 and |F{(s;, z, ¢} = P85, % ¢;)m;- Bub

. Q%A(%)xf(%)log'ﬂ '
-1 2..' »noi

=2

Flsy, 45 8) =
and from (4.6) it foiloWs

oM 21 - logtEa
- 1(7‘7-1’) ~.<~_ -
(£7) (1— 0y ¢ T wlogn w0

M 1
2 g (%)’-
F=1 .
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Applying Cauchy’s inequality we get

oa

M v K )
log¥™ 4 qxf (n) o} ()
o~ PHET) < o S 1 4 i () X3,
i~

2co—l+{(rj1—rj3) nh n.’fz

Myl
(1 — 8)21'

(4.8)

=2 fifa=1

=g

Moo 2 g (ni ()

2 N3y Ty E Bag—1H(r ~7,)

jpde=1 =2 (L _

1 u

sel 2 2 pEo=1 T 22 20p=1+(5, )
gidp n=2 W

j=1 n==2
i1d9=1

(m,g5)=1
Eey G.M'(Zitiﬂfk |L(2'+4)(250”‘1: Xoa g)i +
T '
+M max | Z(a0,—14ild ~1), 2, a)))-
P e : :
AF 2

|

Using the estimates (3.6) and (3.7) we have
Ia

My
4.9 —~2A34,(%,T)
W9 Ggwe
6(2r+5)! | M (2 )R- OWE (G, 1) 7O
T (2e,—2P7F T (20,—1— B)"F '

_Applying (4.3) and then (3.9) we get

19.b6
(£.30)  (3--6)" = BM(k, Thexp |2AM, (&, T) (1+ __1)]
1
. Og _B
Since
20—1-—0 "*2(1 9)(%+9)
- .and for firom (8.1) and T sufficiently large _
2(1— )logh-+30(1— olog T~ 3942 F T) o
log 1%

‘then by the use of the Stirling formula, the second term in (4.9) is less than
1 Myl 2D
| 2 Q-6”
‘Hence for T sufficiently large _ _
(291 B) 14 ¥0kT)

®4 PP L — gy g

®

CM<e

iom

NCEY
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20.54 1—-6 )
1 Hlog(évi—ﬁ)]

Owing to (4.3) and (3.1)

(412)  §rg explzlﬂ[l(k, ) (1+
1
%1 g

< exp{107°AM, (k, T)}.

Therefore from (4.11) by the uge of the Stirling formula for T sufficiently
large we have

M <MYk, T)exp{(2+1075)AM, (k, )

which ends the proof of the lemma.
What we, shall use of this lemms is a simple coroilary. Let us con-
sider on I the set H* of s-values for which the inequality

r

L , y g~ RT)
—5(8; P Qf)() <

(4.18) =

holds for all »values permitted by (4.3) and for all L(s, z*, g)-functions,
g <k Tts complementary set H® with tespect to [3T, T] is certainly
covered by the union of the above H = H{», k) sets

B < UH(», k).

Hence, owing to (4.3), we have from (4.4) the _

- COROLLARY. Dropping from I a suitable set H* (consisting of finitely
many closed intervals) of measure
(4.14) < MOk, T)exp{(2+107)AM, (k, T)}

in the remaining poinis of I the inequality (4.13) holds simultaneously for
all v-values permitted by (4.3) and for oll L(s, x*, @)-fundions, ¢<Fk

~if only T > e

5. Let us consider the horizontal strips I; defined by

T j T
T d <t
7 BET) 7

-

.ﬂ'.}m_ﬂ
B, 1)
j= o, [T MY (R, T)].

We call & strip l; a “good” one if its intersection with I contains at least
one point of the set H*, otherwise we call it a “bad” one. The number
of “bad” strips is, owing to (4 14},

A

13 10-9AM, (k, T
<TEEGD - M (k Texp{(2+107°)AM,(k, T)}.

5.2)
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Let us fix any “bad” strip I’ and let 2 = o,-+4t" be a fixed point

in it. Let us count the number of these L(s, x*, ¢)-functions, ¢ < k, for
which the inequality . '

1

L " .y
"”f(zj ’ x*: Q)“

p! g—lMI(k.T)

(5.3) —

=

for a fixed » from (4.3) holds {compare [3], pp- 408-410). Let

yfmodg, <k, j=1,2,...,N

Dbe all primitive characters, for which the inequality (5.3) holds. Anal-
ogously to (4.8) we get ' ‘

Nv !2 6—22114'1(!:,.’[‘)

5.4
(') ) (1___ 6)2»
< o{max [Z®+)(2a, — 1, 79, ¢)| + N max |[L¥9(20, -1, 1, @)
1<g<k 2 <kd
XF=%g

Applying (3.8) and (3,9) for the first and the second term respectively
we get ' '

g rheen ( (2v4-5)! (2ﬁ+4)!w(k,f)k2(1~ﬂ>)-

g7 =\ 25—z (Ba—1— 6"+

By the same reasoming as in lemma (4.3)-(4.4), we get the following
statement : : :

The number of “bad” L(s, ¥*, ¢)-functions for which the inequality
(5.3) holds, for some p-values from (4.3) in a fixed ;" point belonging to
2 “bad” strip I; cannot exceed

(5.6) Mk, T)exp{(2+1075)AM, (k, T}

if only T is sufficiently large and 6 satisfy (3.1). Owing to Lemma 4 each
“had” strip contains at most

cloggt < eM, (%, T)

zeros of L{s, %, ¢). Hence from (5.2) and (5.6) the number of roots of -

“bad® L(s, 5, g)-functions in all “bad” strips of the rectangle

exp( —14) = 13— B

(5-0) = 0.284 M (%, T)’

TR<t<T, T>e¢

cannot exceed

(5.8) M(k, Thexp {2(2+10-5)AM, (k, T)}.

icm
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Let
2 =gyttt

be a point of H*%in any fixed “good” strip or a point 2’ in any fixed “bad”

strip ;. Hence for all v-values from the interval (4.3) we have

f (5*: Z*: Q)M ‘ <

g~ M(BT)

(5.9) =

where L(s, 1 ¢) 15 any L-fupction in the first case and a “good” one
in the second case. We shall apply Lemma § taking

G(e) = Lig+2% 35 q), B =32(1—0), r=32¢%1-9),

This gives

o=

1
(25— o)t

70(r+1)log U
17t ?

=

1 r
(8.10) F_j—(z*’ x*: Q)(”)_

le*—plsr

where .

Lz "rz*7 x*a q)
L 2% )

U = max
lBI<R

Owing to (3.2) and (3.1) we have

1 .
S — = O0(M(k,T)).
L(2", Z*: q) (0’0_1) ( ( )) .

Using Richert’s estimate (2.3) we get in the dise [s—2"| < B

L(S, %*: q) =0 (M-(k, T) k(s.z—ﬂ)(l—B)Taf)(a.g—e)m(l—8)31210g;-l3T) .

Therefore we can put

(5.11) T = M3 (k, T) kO30 poa-o0—aiP,

Owing to (5.9) we can write the formula (5.10) in the form

O [1—6yt T0{v - 1}log U
21 & —p <

T 11(3.2¢ 7y
Je* —pissr '

From (4.3), (3.9) and (5.11) it is easily seen that for T'>e¢ and for all .
v-values permitted by (4.3) we have '

>

|*—of<r

+ (1= 6)e™ e,

1, .
(5.13) <§e-mﬂ’=”f).
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6. In order to estimate the sum of (5.13) from below we shall apply
Lemma 1. We choose

(6.1) Y (1+ 201 )
: 1

log(}+6)

I— 8

In order to estimate the number of terms in the sum ( 5.13) we shall apply
Jensen’s inequality which gives for the number of zeros of the regular
function f(s) in the disc |s—s| < # < B the bound

: fis)
log(£fr) 13?:3213 log Fls) |

Owing to (5.11), by the use of (3.9), for sufficiently large T we have

24
A< ¥y(k, T) . 9610511}11(75,;)1(;?%—}— 6)
log(3-+ )log vioe Tt 4
1—¢ S
87loghlog(3+6) ~  936(3.2—0)*2]
| gHog(i 0, 936(32-0""loglh 1) |
Vi— HMl(k, T)logf* 11M,(k, T)log"‘

It is easily to notice that the tirst two terms on the right-hand side a,re,

owing to (3.1), arbitrary small if only 7' is sufficiently large. The third
term in the brackets is < 0.537. Hence we can choose

(6. e 034AM(R,T)

tog 4+ 6)log —

Moreover in any strip I; we have, owing to '(4.3),

2—f—g,\"H ¢ g
Zll+ -
= ) -+ 5l >3
if only T is sufficiently large. Hence from Lemma 1 it follows that there
exist such & w», satisfying (4.3) for which

(6.3)

> =T
*
Jigiar 1 ° @

>Eexp{ 0698111{1(14: T)——(vo+l)log2 - eh}“

Where o* = un.-s—zte. denotes the zero which has in our strip the grea.test
real part o,
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Using the right-hand side of {4.3) and comparing (6. 3} with (5 J3)
we get for 0 satisfying (3.1)

1—0.
6.4 bl i
(6.4) > 0284
This proves, that the ¢ = o,+it, zeros of any L(s, y*, g)-function in
“good” strips or of “good” one in “bad” strips satisfy the inequality

0, <1—0.284(1—6).
Owing te (5.7), (5.8) we have then for

B
. B . —
(6.5) WG Ty S Lme s 028exp(—14)

the estimate

6.6) > 3T (Nia, T, 7, 9)—F(a, Tj2, 1, )

g<k ymodg
< Mk, T)RH0 P ED),

Amnalogonsly as in proof of (5.6) one can show

60 3 X" N, 0,0 = Oftog®kexp((2-+10-%) Hlog": K
a<k xmodgq
where ¢ is & constant and o belongs to the interval (1.2). Replacing in
(6.6) T by
z T
5 -;@r? c= pre=y

we.get after summation and application of (6.7)

(6.8) 3 37 N(a,T,y, q) < Pk, T)exp{2(2 +10"%) AMy (k, 1)}
o<k xmodyg

Applying now (3.9) we get our theorem.

References

[1] 3. . Bopesuw, U, P. Madapenny, Teopus wucea, Mockra 1972.

[2] G. Halasz and P. Turdn, On the distribution of roofs of Riemann Zeta and
altied functions, I, Journ. Number Theory 1 (1969}, pp. 121-137. '

[8] — — On the distribution of rools of Biemann Zela and allied fumetions, II,
Acta Math. Acad. Sci. Hungar. 31 (3-4) (1970), pp. 403—419.

[4] G. Haldsz, Uber dis Mittelwerie multiplikativer Zahlentheoretischer Funkiionen,.

' - Acta Math. Acad. Sci. Hungar. 19 (3-4) (1968), pp. 365440,

[6] E. Landau, Uber die I-Funktion und die L-Funktionen, Math. Zeitschr. 20

(1924), pp. 105-120.°



354 ~ T. Fryska

[6] E. Prachar, Primeahlvertsilung, Berlin 1957.
[7]1 H.-E. Richert, Zur Abschdateung der Riemanschen Zelafunltion in der Ndhe
. der Vertikalen o = 1, Math. Ann. 169 (1967), pp. 97-101.

[8] Vera T. 86= and P. Turdn, On some new theorems in the theory of diophantine
approvimation, Acta Math. Acad. 8ei. Hungar. 6 (1953), pp. 241257,

(8] T. Tatuzawa, On the number of primes in an arithmetic progression, Japan
J. Math. 21 (1951), pp. 93-111.

[10} P. Turin, Bine neue Methode in der Analysis und deren Anwendungen, Buda.
pest 1953.

UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU
ADAM MICETEWICZ UNIVERSITY IN POZNAN

Received on ¥, 5. 1074 .
and in revised form on 17, 2, 1975 ’ ) {679)

icm

ACTA ARITHMETICA
XXXI (1876)

On the problem of divisors
by

AKIB Fumr (Tokyve)

1. hotroduetion. Let % be an integer greater than 2. Let ,{n) be
the number of the solufions of the equation n == mym, ... m,; in integers

- m; 2z 1. We are concerned with fthe estimate of the number

Do) = 2%(”)
NET
Let M, () be the residue of {*(s)a®/s at s = 1, where £(s) is the Riemann
zeta-function. It is well known that D, (#) ~ M () and i we put A.{m)
= Dy(a) — M, (@),

Ay (2) <€ B (logml?  for b =2,3,4, ...

(Cf. 12.1.4 of [5].) Tt was shown by Hardy and Littlewood that

k—1

k- R :
A, (3) < a**? for each % > 4.

(Of. 12.3 of [5]) .
Generally if we put {(3+1%) < [t|*, then their method gives

2431

{1) o A () < i for each k> 4.

Tt is well known that we can take 1 = 173/1067 which is due to Kolesnik [3].
In 1971 Karatsuba [1] showed

A ) < O for each k> 2,

where € i some positive ahsolute constant. In this paper we shall improve
these results for & in 10 < k < &y, where %, is some positive constant which
depends on ¢ above. Qur proof depends on only the well known proper-
ties of £(s). To state our result we shall infroduce some notations. Let b
be an integer greater than 3. Let j(b) be determined by -

(j—1)272 41 < b < jO1 41,
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