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Compacta weak shape equivalent to ANR’s
b

David A. Edwards and Ross Geoghegan (Binghamton, N. Y.)

Abstract. We give necessary and sufficient conditions for a compactum to be
weak shape equivalent to an ANR and for atower of CW complexes to be weakly
equivalent to a CW complex in pro-homotopy.

1, Introduction. There is a remarkable similarity between the theory
of shape and the theory of etale homotopy as developed by Artin and
Mazur in [1]. We will exploit this connection to obtain new information
about shape. We feel that our methods are of importance in shape theory
quite apart from the use we make of them. Therefore, when the paper
is not self-contained, we try to introduce the reader to the supporting
material. Shape only appears in § 6 but the reader who knows shape may
be surprised to find that much of the earlier sections is familiar.

In our main theorem, Theorem 2 of Section 6, we give necessary and
sufficient conditions for a movable compact metric space (movable com-
pactum) to be weak shape equivalent to a metric absolute neighborhood
retract (ANR). Since the ANR’s need not be compact, our theorem is
given in terms of Fox’s theory of shape for metric spaces. The terms
“movable” and “weak shape equivalent” will be defined in Section 6.
The class of movable compacta, introduced by Borsuk in [3], is a large
and interesting class of compacta. Weak shape equivalence is defined
by analogy with weak homotopy equivalence. There is a related notion
which we call “very weak shape equivalence.” A very weak shape equiva-
lence is a shape morphism which induces isomorphisms on the (inverse
limit) shape groups. Theorem 2 states that every connected movable
compactum is very weak shape equivalent to an ANR, and that the word
“very” may be dropped if and only if the shape groups, when topologized
with the inverse limit topology, turn out to be discrete. The latter criterion
is useful as it can usually be checked. We give examples in Section 7.

We give an alternative version of our theorem (Theorem 1 of Sec-
tion 5) in the language of etale homotopy. The notion of movability is

1 — Fundamenta Mathematicae XC


Artur


116 D. A. Edwards and R. Geoghegan

useful there too. As a corollary to Theorem 1 we are able to give a partial
answer to a question posed by Sullivan.

That there is a connection between shape and etale homotopy has

been noticed independently by T. Porter [17] and S. Marde$ié [13]. We are
grateful for helpful conversations with Louis Mahony, Prabir Roy, Dennis
Sullivan and John Walsh, and for correspondence with Tim, Porter.

Notation. Throughout the paper, N denotes the natural numbers.

2. Pro-categories. The concept of pro-category was first introduced
by Grothendieck in [7]. We will give the definition and then. explain its
connection with shape theory.

If ¢ is any category one can form a new category pro(() whose
objects are inverse systems {X,},., of objects of ¢ indexed by directed
sets 4. But the morphisms are not ordinary morphisms of inverse systems.
In formal language the set of morphisms from {X,}.., to {Xpkse 18

limlim C(X,, ¥j)

- —

8 «
where 0(X,, ¥;) is the set of morphisms in ¢ from X, to Y,. Since this
definition gives no insight we will give another. To define a morphism
from {X },.4 to {Yp}s.5 One prescribes a function §: B— A4 (which need
not be order preserving) and morphisms f: Xoygy— ¥ of ¢ for each f < B,
subject to the condition that if f < f’ in B then for some a ¢ 4 such thab
az 6(8) and o > 0(8') the diagram

s
Koy ——> T

|

7
Lo Xy —— T

commutes (the unmarked maps are the structural or bonding maps of
the inverse systems). But one identifies the morphisms (05 f;) and (0'; fy)
if for each § there is an « € A such that a > 6(B), o = 0'(8) and the diagram

Logy AN
Is
/ N
X, Yy
7
// b/
Xy
commutes. It is not hard to check (i) that the identification of morphisms

in the above definition is an equivalence relation which respects composi-
tion; (ii) that € naturally embeds in pro(0), an object of ¢ being regarded
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a§ an inverse system over a one-element directed set; and (iii) that a (co-
variant) functor T: C,— ¢, induces a functor, also denoted by T, from
pro(C,) to pro(C,).

An account of pro-categories can be found in the Appendix to the
Artin-Mazur notes [1]. They allow 4 to be a “filtering category” (more
general than a directed set) but we will never need the greater generality.
The definition of pro(C) given here is taken from [21.

We shall wish to pass from an inverse system to a cofinal subsystem.
‘We therefore observe:

ProPoSITION 1. Let A be a directed set and B o cofinal directed subset.
If {X }eca 18 an object of pro(0), it is equivalent in pro(C) to the object
{Xa}aeB‘

A proof is given on page 150 of [1]: it is routine.

For the reader familiar with shape, here is an example. Let C be
the category of compact ANR’s and homotopy classes of maps. If one
takes an “ANR system” in the sense of [13], and Teplaces each bonding
map by its homotopy class, there results an object of pro(0). A “homotopy
clags of maps between ANR-systems” as defined in [11] is then precisely
a morphism of pro(0).

The discussion in § 2 of [6] is also closely related.

3. Movability and the Mittag-Leffier condition. Let {X,},., be an object
of pro(C), C being any category. This object is said to be movable it for
each ae 4, there exists f a in A such that for every y = a there is
a morphism 7,,: X;— X, making p,, o ¥, = pg, where the p’s aré bonding
morphisms. If ¢ is the category of groups it is clear that a movable pro-
group satisfies the Mittag-Leffler condition:

(ML)  for each o, there exists f# > « such that for all y > § the bonding

homomorphisms p,,: X,— X, have the same image.

In [2], Atiyah and Segal observe that a pro-group satisfying (ML)
may be identified with its topologized inverse limit in the following sense.

Let @: (pro-groups) — (topological groups) be the functor which
agsociates with each pro-group {X,},., its inverse limit lim X, topologized
as a subgroup of the product IIX, where each X, is given the discrete
topology. Let P: (topological groups) — (pro-groups) be the functor
which agsociates with each topological group X the pro-group {X/I.}
where {I,} is the family of all open subgroups of X. Then one has (see 27

PROPOSITION 2. Let & be a group, {G.}, .5 & pro-group satisfying (ML)
and f: G—{Gu} a morphism of pro-groups. Then there is am equivalence
T {Gn}—PQ ({Gr}) of pro-groups such that b o f = PQ(f), where & is identi-
fied with PQ(@).

1*
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Proof (sketch). Let Ip= {(2:)e im{Gs}| o = 0, 1<i<k}) The
collection {Iz};,.y is a basic system of open subgroups of the topological
group Lm{@.}. The naturally defined inverse system Um{ G} L}y 18
cofinal in PQ({G}). But the group lim{G,}/I1 is clearly isomorphic to
the eventual image in Gy of the Mittag-Teffler system {G4}. Thus the
required equivalence i can be constructed easily.

For more information about the functors P and @, see § 2 of [2].

The following properties of movability are obvious and will he used
without comment in what follows. (i) Let 4 be a directed set and B
a cofinal directed subset; {X,},., is a movable object of pro(0) it and
only if {X},.p i8. (i) If 7% ¢,—C, is a covariant functor, then 7 maps
movable objects of pro(C,) to movable objects of pro(Cy). (iii) If in (if)
C, is the category of groups, then T maps movable objects of pro(C,)
to pro-groups satisfying (ML)

4. The simplicial inverse limit comstruction. The background for what
follows can e found in Chapter VIIT and §§ 2 and 3 of Chapter IX of
the Bousfield-Kan notes [5]. The principal idea is to associate with
an inverse system of ANR’s an “inverse limit” which commutes with
the homotopy funectors =;. The topological inverse limit does not have
this property. But by passing to simplicial sefs, such a construction ig
possible. We summarize.

Let H, be the category of connected pointed CW complexes and
homotopy classes of maps. Let {Xn} be an objeet of pro(H,) indexed by
the natural numbers N. By the singular funetor one may pass to the
homotopy category of connected pointed simplicial sets: one obtaing an
inverse system of simplicial sets which up to isomorphism can be replaced
by a system {X,} of simplicial fibrations (to be precise, one uses Axiom
OM 5 of [B], p. 242). Let X be the simplicial inverse limit. Denoting the
projection X —{X,} by @, there is (by Theorem 3.1 of [5], p. 254) for
each 4> 1 a short exact sequence of groups and of pointed sets if § == 0!

0—lim* {my (X)) -7 X) 2 lim o, (F,)}—0
where lim?® is a functor which vanishes on pro-groups satisfying (ML)
(see 3.5, p. 256 of [B]). It we apply the geometric realization functor [-1,
th‘i sequence will still be exact. But by Chapter VIII § 3 of [5], the system
{IZal} is isomorphic in proH, to {X,}. If the original system {X,} is mov-
able, the pro-groups {m(|X,[)} will satisfy (ML) (see the end of Section 3).
In summary we have

ProrosiTION 3. Let {X,},.x be a movable object of pro(H,). Then
there is o connected (pointed) simplicial set X and o morplism f: | X|—{Xn}
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of pro(H,) such that f,: m(if N—=lm {7:(X5)} is an isomorphism of groups
for all i = 1. -

Remark. The bonding morphisms of objects of pro (H,) are homotopy
classes of maps. In general it is not possible to pass from such an object
to an inverse system with topological (or simplicial) bonding maps, as
we must do when we make the bonding maps fibrations. But when the
indexing set is NV this transition from homotopy inverse systems to top-
ological or simplicial “representatives” is clearly possible.

5. Our main theorem in pro(H,). Again H, denotes the category of
pointed, connected CW complexes and homotopy classes. A 1110r1?hism
fi A& bpes—{Yplpen Of pro(H,) will be called a weak equivalence 1f.for
each 4 > 1 the induced morphism z,(f): {7, (X,)}—{mw(¥,)} is an equiva-
lence of pro-groups. Artin and Mazur give an example (p. 35 of [1]) of
a weak equivalence which is not an equivalence of pro(H,): see also See. 7,
Example 2 below. However, weak equivalences induce equivalences of
homology pro-groups and cohomology groups (pp. 36-37 of [1]) and are
therefore almost as good as equivalences for algebraic purposes.

By contrast, let us call the morphism f a very weak equivalence if
the induced morphism of groups from li:_n{ni(Xa)} to lil_n{ni( Y5} is an
isomorphism for each i. Proposition 3 then says that for any movable
object {Xu},.y Of pro(H,) there is a CW complex |X| and a very wea.l:
equivalence from |X| to {X,}. When can we remove the word “very
from the last statement? The answer is:

THEOREM 1. Let {X,}, . be a movable object of pro(H,). There exists
« connected (pointed) simplicial set X and o weak equivalence f: | X I—?{Xn}
if and only if for each i =1 the topologized group 1‘1-1{1{751-(Xn)} is discrete.

Proof. The “only if” part follows from the fact fchat @, defined in
Section 3, is a functor (movability is not needed). The “if” part is 13r0v53d
as follows. Let | X] and f be as in Proposition 3. f induces m(f): mi(]X])
—{mi(X%)}, & morphism between pro-groups which s?mtisfy (ML). We
apply P o @ ag in Section 3. @mi(f) = fi is an isomorphism of groups I?y
Proposition 3, and of topological groups by the discretencss hypc?thes.ls‘
Thus PQn:(f) is an equivalence of pro-groups. Proposition 2 then implies
that =;(f) is also an equivalence.

As a corollary we have a partial answer to a guestion put to us by
D. Sullivan.

COROLLARY. If {Xulny 45 a movable object of pro(H,) such that
Tim {72,( X))} 48 diserete for all 4 1, then there is ¢ CW complex | X| and a mor-
ﬁ_ﬁism f: X |[={Xu} of pro(H,) which induces am isomorphism betweea‘l: the
singular cohomology of |X| and the Cech cohomology of {Xn} (i.e., the direct
limit cohomology of {Xu}).
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An example i given in Section 7 to illustrate the difference between
weak and very weak equivalences.

6. Our Main Theorem in shape. The theorem (Theorem 2 below) would
be most easily stated in terms of a “Tech shape theory” in which one
would associate with each pointed connected space the natural object of
pro(H,) generated by the (pointed) nerves of all open covers of the space.
But since no such theory exists in the literature we formulate our theorem
in terms of Fox’s theory of shape [6]. We shall now give the necessary
definitions.

Let M, be the pointed. category of connected closed subsets of (metrie)
ANR’s, and maps. Liet ANR, be the pointed category of connected metric
ANR’s and homotopy classes of maps. A typical object of I, is (X, m,)
C(Z, %) where Z is an ANR. The set of all (pointed) connected open
neighborhoods of X in Z, {(X,, m,)} is an inverse system of ANR’s directed
by inclusion. If each inclusion map is replaced by its (pointed) homotopy
class, one obtains an object X, @)} of pro(ANR,). The Fox shape
functor 8: M,—pro(ANR,) takes (X, %) C(Z, ) to this object. S is
defined on morphisms in the obvious way. A shape morphism from (X, m,)
to (¥, y,) is & morphism of pro (ANR,) from S(X, %) to S(Y¥ ,» %) (the
ANR superspaces being suppressed). Two objects of M, have the same
pointed shape if their 8-images are equivalent in Pro(ANRy).

This is essentially Fox’s idea of shape. In § 3 of [6] he shows that,
up to equivalence in pro(ANR,), § (X, m) is independent of Z and of
the embedding of X in Z. We will therefore suppress Z from now on.
In § 4 of [6] he shows that on compact metric spaces, his definition of
“having the same shape” agrees with Borsuk’s.

If X is an ANR, we adopt the convention that §(X, «,) is the trivial
inverse system {(X, 2,)}. _

A connected pointed compactum, (X, o) is called movable it S(X, m,)
is a movable object of Pro(ANR,); see See. 3. It follows as in [14] that
this definition is independent of the ANR in which X is embedded ete.
and is equivalent to Borsuk’s original definition [3], [4]. Mazrde¥ié has
shown that if X is #-dimensional and locally (n—1)-connected then
(X, 2) is movable, see [16] for a simple proof. Solenoids are not movable.
Borsuk [4] has shown that if X is movable then §(X, x,) is independent
of w, up to equivalence in pro(ANR,): his proof is geometrical bub our
statement follows from the equivalence of definitions.

By our convention, §(Xx ) %) 18 movable in pro(ANR,) whenever
X is an ANR.

I 8(X, a) = {(X,, #,)} theith shape group of (X, ) is lim {m,(X,, m,)}.

As in Section 3 we may give thege groups the inverse limit topology.
The notions of weak equivalence and very weak equivalence in pro (ANR,)

iom°

o
Compacta wealk shape equivalent to ANR’s 121

are defined as in pro(H,), see Sec. 5. A shape morphism from (X, wo)‘ to
(Y, y,) is a weak shape equivalence (respeet'ively very weak shapfz eglzm'vg
lence) if it is a weak equivalence (respectively very weak equivalenc
of pro(ANR,).

TuroREM 2. Let (X, %) be a connecied pointed movable compact'l.mm.
There is & connected pointed ANR, (Y, 4,), and a very weak shape equw]cj-
lence f: (X, 40)— (X, #). Moreover, ¥ and f may be chosen so as lo make

f & weal shape equivalence if and only if the topologized shape groups of ZL

are discrete. .
Proof. Let X be embedded in some ANR. Since X is compacthifh]i
inverse system S(X, ) has a cofinal subsystem.{.(Xn, 990)}@5N tg ; 1;)
S(X, #,) is equivalent in pro(ANR,) by Proposition 1. Since ( -,n t;
is movable so also is {(Xa, 2)}. From now On We Suppress base 1})010 -
Let ¢: ANR,— H, be the functor which assigns to each ANR the &ie:s
metric realization of its singular complex, and to «?,ach hiomo.to_ply ¢ ;L :
of maps the corresponding homotopy class of .reavhz'ed S'II.ll:pllOl;lv Xm&]fd
(see for example [11]), By Prpposition 3, ’Fhere is a simplicial se nd
a very weak equivalence f: | X|—{G(X4)} in pro(H,). The GVZhGOHf?; xS
|#] and G(X,) can be triangulated ([11], p. 100) and can 611‘;38 o
given metries which do not alter their homotopy types ([11], pjp];l b ’ndmé
With such metrics they become ANR’s ([9], p. 106). f and 1’;& e hoj1 ne
morphisms come from simplicial maps and sTo need not . elc{ ;J( Xg )}.
f becomes a very weak equivalence in pro (ANR,). The syslin 11; 6,
with metric topology is equivalent in pro (ANR,) to {X.} ([11], ﬁg Mt,
131). Thus the first part of the theorlemtls pro‘:;e(}‘.ﬁ E‘o(x)‘ni“;hi ;:(;ov ” L}?hat;
roves “only if” as in Theorem 1; to pro ]
g?eTI;;(?;?em 1, } is a weak equivalencg when _reggrded as aknzoru};l‘l:;l]zln ;)2
pro(H,) and so, by the above discussion, f remains a weak eq
in pro(ANRy).

7. Examples, questions and remarks. Clearly shape equl.va,ll(z;ccz 111%{11?5
weak shape equivalence implies vtckrly Vze::]]:e igigfsee&?;ﬁ}a,ﬁoﬁs it
Txamples 1 and 2 we show that neither ol ; g D ple 3
even for connected movable compacta. We then ghow, by ML ; nce,
that abiliby in pro (H,) is nob preserved under w‘eak equivalence.
i’l‘;zi pl(l);(zav?j;;}]ﬁy(11103115.)1011(.%, O;nd conclude the section with a remark on
the “shape Furewicz theorem” of K. Kuperberg.. .

Throughout this section we suppress bas‘e 1:)0.111 S. ' of oiroles

Exavere 1. Let 7% be the countably infinite 1)1*0;1::0_ 1?11@ %-foid
() has a cofinal sub-system of the form {T“}M v where frollil o
product of open annuli in the plane, agd the bonding maI; AN
is the obvious projection map, This is a movable obj(facT ¢ 1; o LA 1?@’
henee T is movable; see Sec. 3. The first shape group of 1718 1l .
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By Theore 2, there is an ANR, Y and a very weak shape equivalence
f: ¥—T°, but T and f cannot be chosen s0-as to make f a weak shape:

equivalence.

Bxawpre 2. Let X = [[8" where 8” is the n-dimensional sphere.
7n>0

By examining a suitable inverse system {X,} as in Example 1, one can

see that X is movable. This time the shape groups are all discrete. Hence,

by Theorem 2, there is an ANR Y and a weak shape equivalence f: T—X.

But f cannot be a shape equivalence. To see this let z,: ANR, — (groups)

be the functor which assigns to each object Z the group []mi(Z) which
=0

is the direct product of the homotopy groups. One easily shows that the
induced functor on pro-categories takes {X,} to a pro-group satisfying
(ML) whose topologized. inverse limit group is not discrete. The discussion
in Section 3 implies that {X,} cannot be equivalent in Pro(ANR,) to an
object of ANR,.

Exawprr 3. Let X, be the wedge (= one-point union) of spheres
\/ 8% Let {Xy},.n be the object of pro(H,) whose bonding maps are

k>n
generated by inclusions. All the homotopy pro-groups vanish: hence

there is a weak equivalence from a point to {X,}. Let {Xy} is not movable.
To see this, let H,y: HO_—» (groups) be the functor which assigns to each
object Z the group [] H:(Z). The induced functor on pro-categories
>0
takes {Xy} to a pro-group which does not satisfy (ML).
Exsyprn 4. There is also a non-movable compactum which is weak
equivalent to a point: it was construsted by D. Kahn; see [8].
QuestroNn 1. What additional hypotheses are needed in order to
reverse the implications with which we opened this section?

Questron 2. Is there a (nom-movable) compactum which is not
very weak shape equivalent to an ANRY? In this connection, see Sullivan’s
example on page 3.4 of [18].

QUESTION 3. Examples 2 and 3 suggest a possible strengthening of
the definition of weak equivalence: f is a weak equivalence if and only

I my(f) (1> 1) and m,(f) are equivalences of pro-groups. With this det

finition is there a true pro (H,) Whitchead theorem? (i.e., is every weak
equivalence an equivalence?)

CoNCLUDING REMARK. We point oub again that weak equivalences
induces isomorphisms on homology both at the pro-group and inverse
limit levels, and on direct limit cohomology ([1], pp. 36-37). If HH is
the homotopy category of CW pairs, the homology pro-groups of objects
qf pro (H]E[) always satisfy the Exactness Axiom. Not so the inverse
limit (or Cech) homology groups: but Overton [15] has shown that on
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movable pairs of compacta Cech homology is exact. This is because mov-
ability implies (ML), and the inverse limit functor on groups is exact in
the presence of (ML). Similar remarks apply to homotopy exact sequences.

K. Kuperberg [10] has proved a “shape Hurewicz theorem?” for
movable connected pointed compacta: the vanishing of the first n—1
Cech homology groups and shape groups implies the isomorphism of
the nth. We should point out that the stronger “pro(H,) Hurewicz theo-
rem” proved by Artin and Mazur in [1] and the disenssion in § 3 above
together give an alternative proof of Kuperberg's theorem.

Added in proof, November, 1975. Since this paper was written, two and a half
years ago, much progress has been made. See our papers Shapes of complexes, ends
of manifolds, homotopy limits and the wall obstruelion, Ann., Math. 101 (1975),
pp. 521-535, The stability problem in shape and a Whitehead theorem in pro-homotopy,
Trans. Amer. Math. Soc. (to appear). Infinite dimensional Whitehead and Vieloris
theorems in shape and pro-homotopy, Trans. Amer. Math. Soc. (to appear), and The
stability problem in shape and pro-homotopy (submitted).

References

[1] M. Artin and B. Mazuxr, Btale homotopy, Lecture Notes in Mathematics, Vol. 100
Berlin 1969.

[2] M. Atiyah and G. B. Segal, Bquivariant K -theory and completion, J. Ditf. Geom.
3 (1969), pp. 1-18.

[3] K. Borsuk, On movable compacta, Fund. Math. 66 (1969), pp. 137-146.

[4] — Some remarks concerning the shape of pointed compacta, Fund. Math. 67 (1970),
pp. 221-240.

[5] A. K. Bousfield and D. Kan, Homolopy limits, localizations and completions,
Lecture Notes in Mathematics, Vol. 304, Berlin 1973. :

[6] R.H. Fox, On shape, Fund. Math. 74 (1972), pp. 47-71.

[7] A. Grothendieck, Technique de descente et théorémes d’ewistence en géoméirie .
algébrique II, Seminaire Bourbaki, 12-iéme année, 1959-60, Exp. 195.

[8] D. Handel and J. Segal, An acyclic continuum with non-movable suspensions,
Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), pp. 171-172.

[9]1 S.T. Hu, Theory of Relracts, Detroit 1965.

[10] X. Kuperberg, An isomorphism iheorem of Hurewicz-type in Borsul’s theory
of shape, Fund. Math. 77 (1972), pp. 21-32.

[11] A. Lundell and 8. Weingram, The Topology of CW Complexes, New York
1969.

[12] 8. Marde&ié, Shapes for topological spaces, Gen. Top. and Appl. 3 (1973),
pp- 2065-282.

[18] — and J. Segal, Shapes of compacta and ANR -syslems, Fund. Math. 72 (1971),
pp. 41-59.

[14] — — Movable compacta and ANR-sysiems, Bull. Acad. Polon. Sci. Sér. Sci.
Math. Astronom. Phys. 18 (1970), pp. 649-654.

[15] R. Overton, Cech homology for movable compacta, Fund. Math. 77 (1972),
pp. 241-251.


Artur


124 D. A. Edwards and R. Geoghegan

[16] R. Overton and J. Segal, 4 new construction of movable compacta, Glasnik
Mat. 6 (26) (1971), pp. 361-363.

[171 T. Porter, Borsulk’s theory of shape and Cech homotopy, Math. Scand. 33 (1973),
pp. 83-89.

[18] D. Sullivan, Geometric topology, part 1, Localization, Periodicity and Galois
Symmetry, mimeographed notes, Massachusetts Institute of Technology, Cam-
bridge, Mass., 1970, Revised 1971.

STATE UNIVERSITY OF NEW YORK AT BINGHAMTON
Binghamton, New York

Aecepté par la Bédaction le 3. 8. 1973

O mepacTATMBAIOIINX OTOOPAKEHUAX KOMIAKTOB

C. . Baraguc (Mocksa)

Abstract. Two sufficient conditions on the compact K, K CH?, for which a non-
expansive mapping f: K—K’ has a fixed point, are given.

B ar0ii 3aMeTKC PACCMATPHBAIOTCS TAK HASHIBAEMBIC HEPACTATHBAIOIME OTO-
Gpaiennst. Orobparkenue f METPHUECKOr0 OPOCTPAHCTBA X B METPHYECKOE IIPO-
CIPaHCTBO ¥ HA3LIBACTCS HePaACMAUGAIOMUM, ECTH (T, Y) = g(f(m), F)
V3 9TOro yCJIOBHMSA Cpasy CIeNyeT M HENPepPHIBHOCTH.

Hapecrus! npamepsr (em. manp. [1], [2], [3], [4]) anmomyeckux xomnaxros K,
KOTOpbIC He 00NANaroT CBOMCTROM HENONBIDKHON TOUKM, T. €. CYIIECTBYET OTO-
Gpaxernne f: K— I Taxoe, uro f(x) # & pa Beex # € K. Bompoc o cymrecrBo-
Bapde TAKHX KOHTHMHYYMOB HA TIJJOCKOCTH, & TAKXKE OFHOMEPHBIX KOHTHHYYMOB,
ocracTest OTKPBITEIM. C Ipyroft CIOPOHET XOPOIIO M3BECTHO, UTO AJLT CYKMMAIOIIETO
orobpazkeHns (T. e. g(f(m) ,fly ))< Ao (2, ¥), tie 2<<1 ¥ He 3ABUCHT OT & ¥ ) IO~
HOTO METPHUECKOTO IIPOCTDAHCTIBA CYILNECTBYET CNUHCTBCHHAA HENOABIDKHAS
Touxa. VIHTEpEeCHO 3HATH WMMEIOT 1M HENOJBIDKHBIE TOUKH HEPACTATHUBALOIIHAE
OTOOPDKEHAA AUHIIIMYECKHK KOMIAKIoB. OKashIBAeTCs, YTO TPH HEKOTOPBLIX
YCIHOBHAX, KOTOPBIE BCELAA BBINONHEHLI A ANUKIMYCCKHX KOHTMHYYMOB Ha
IUIOCKOCTH, 9TO TaK.

Mokao TIOHTH Hansnie B 3TOM IzanpaBneHun ¥ TIOCTABMTE CIeyIOWuii B0~
mpoc. Iyers I — KOMIAKT B €BKIMIOBOM IpocTparcTee K™, Bce IpyIIbl romo-
soruit (Y) KOTOPOro MMEIOT KOHewHOe Wucio oGpasyrommx. ITycrs nasnee f — He-
pacrsicuBaroniee oroGpaenue K B cebs, nua xoroporo wucno Jledmena Ay 5= 0.
Bysier 1 B 910M ciryuae oroSpaKenne f MMETh HETONBIDKHYIO TOUKY, T. €. TAKYIO
TouKy, wro f(z) = ¢

Teopema 2 IOKASHIBACT, UTO 9TO TaK, eCIH pACTONoyKenpe Kommawra IO
B Ji™ yRoniersopsier HCKOTOPHIM YCIOBMSIM.

Teopema 1 OTHOCHECT K AIMUKIMIECKHM KOHTHHYYMAM.

TEOPEMA 1. ITycimy K — xomndxm ¢ npocmparcmee T™ 041 rxomopozo cyugec-
meyiom maxue ckomb yeoduno maase & i oxpecmuocmu U, xowmndima K, wmo

() MmeroTess BBHAY TOMOJOTHE AJCKCAHIPOBA.
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