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c4 A (8w C)) CA ~ S, But now either |4 ~ 8, <p, or else 4D
In e};ﬁher l:afse,A]A N By <p. Bince 4 A, CA (B, 0)CAn B:"
we have |4 ~ A,| < p. Thus (9) holds when x = & This pletos the
o have 14 p =& This completes the
Now put = [J{£,; u<<qg'}, so £ is a (g* fami

) a* n, p)-family, b .
Wf; shog_v{ff) holds for +. Take § in [ #]% Then, »S',=7Sl for S()l’?:o ,uy< (;2
yet car edb; A S| =p}= g and £ C . Ml (7) holds, 1 o
Hhedeas eompllgt ) = , % C hus (7) holds, and the

Together, Theorems 2.1 and 2.4 establish the sufficiency of (1) and (2).
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A note on Lusin’s condition (N)
by

James Foran (Milwaukee, Wis.)

Abstract. A function is said to satisfy condition (N’) provided the image of closed
wels of moasure 0 is of measure 0. Tn this paper it is shown that for several classes of
funetions (N’) implies Lusin’s condition (N). The Baire functions (in a general setting)
are one such class. Using the continuum hypothesis, a real valued function is constructed
which satisfies (N’) but does not satisfy Lusin’s condition (N).

A function f: X—Y, where X and ¥ are measure spaces, is said to
satisfy condition (N) if the image under f of each set of measure 0 in X is
of measure 0 in ¥. Condition (N) arises quite naturally in the study of
integrals. (See, ¢.g., [4], p. 224{f.) A function. f: X—XY will be said to
satisfy condition (N') if X is a topological space and the image under fof
compaet sebs of measure 0 is of measure 0. The purpose of this note is to
show that for several classes of functions condition (N') implies condi-
tion, (N); that is, the compact sets of measure 0 are a determining class for
condition. (N).

Although greater generality is attainable, the spaces X and ¥ will
always be o-compact metric spaces. The following notation and defini-
tions will be used:

1) B(f; A) will denote the graph of f on the set A, i.e., if f: X—F,
B(f; A) = {(@,y) e Xx ¥| w e A,y = f(@)}-

2) m () will denote the measure of F when it is clear which measure
thig is. .

3) n—m(H) will denote Hausdorff n-measure. Briefly, a set B has
n-measure less than or equal to b if for any given & > 0 there is a cover U,
of B with cach set IeU, having diameter less than & and
> (diam I)* < b-e.
TeUs
4) projy will denote the projection map from X X Y to Y similarly,

projx denotes the projection map from X x Y to X.
5) A meagure space X i8 of o-finite measure if X is the countable
wnion of sets of finite measure.
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6) A measure on a topological space is regular if each measurable
set 4 is contained in a @, set B with m(B— 4) = 0. Here, as usual, a set 4
is measurable if m(T) = m(T ~n A)4+m(T— A) for every set 1.

The following three classes of functions will be shown to satisly con-
dition (N) provided they satisfy condition (N):

(1) Funetions f: X— ¥ where X and ¥ have regular o-finite measures
and f satisties ,

i) f(0) is measurable for every compact set q,
i) f™(y) is closed for almost every y in Y.

(2) Functions f: X — ¥ where X and ¥ have rogular ¢-finite moeasures
and B(f; X) iy an analytic set in X x Y.

(8) Functions f: By—H,, with Lebesgue n-measure on the range
and domain, with f satisfying: B(f; By) is of o-Ffinite Hausdortt M - MeaAFUro
and is m-measurable.

Continuous functions are a special cage of (1) and Baire functions
of (2). (A proof that Baire functions have analytic graphs is given in [2]
p. 384 and, for the real valued case, in [1] p. 300.) Furthermore, given
a meagurable function f satisfying condition (N'), there is a Baire 2 fune-
tion ¢ equal to f almost everywhere and (2) implies that ¢ satisfics condi-
tion (N). (Lusin’s theorem is easily modificd to this setting. That is, there
are an increasing sequence of compact sets {En} with m (X X) =
and a sequence of functions {f,} with f, defined and continuous on X,
such that f, equals the regtriction of J to Xy. Choose a point 4, in. ¥ and
define fu(@) = y, it © ¢ X,. Then, f,, is a Baire 1 funetion on all of X ginee
for a closed set FC Y f7YF) is a Gy in fact, frY(#) is cither a cloged
set or the union of the open set X? with a closed set. Then g = limf, is
& Baire 2 function which is equal to S almost everywhere.)

Assuming the continuum hypothesis an example of & function f can.
be constructed so that f satisfies condition (') but does not satisfy condi-
tion (N). Such a function can be chogen to be measurable, but it is not
known whether such a function can be constructed without o condition
like the continuum hypothesis.

The following simple lemma will be needed.

Luwvva. If f: XY, with Y o measure space and X o topological
space, satisfies f~(y) is closed for almost every y € X (every y e X) and if {0}
18 4 decreasing sequence of compact sels such that J(Cu) is measwrable, then
(N F(Cn)) = m{f(N )] (NF(C) = () Cu).

Proof. Since M f(0n) D F(N On) it follows that

M(ﬂf(On)) = ”"'(f(ﬂ On)) .

If Z={y| f™(y) is not closed} by hypothesis m(Z)=0 (Z=0). If
Ve f(On)~Z then y=f(za) where zye (. Then Tnig € Upyy C On,

icm
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impli i limit point z, of

, e ¢ and O compact implies there exists 2 ;
Einﬂigl in Z)’; Then #, ey for every n. Since f~*(y) is closed, it foll?ws
Ehﬁ?di,sel FHy), f(®y) = ¥, and y ¢ f(Cy). This being true for almost every ¥

(every @) in M) f(On), 1t follows that
m () F(Cn) < m{f(N) Cu))[N F(Ca) CFHN Ca)] -

] " 4 / - finite measures.
rrmoreM L. Let f: X — Y where X and X fiave regular o -f

Suppose [ satisfies:
# i) F(€) is measurable for every compa(r[,y set CCX,

ity 7 y) 4 closed | ost every y e Y.

ii (y) 45 closed for alm yYye - o ,

l?lai)zl f satisfies condition (N) provided f satisfies condition (N ).. .

Proof. Suppose not. Then there is a set 4 of measure 0 GOIE&EZ !
in X (since X is regular 4 can be chosen to be a @) sue !
m(f(4)) > a>0. There is a set EC Y such that co > m(f(4) nf); aﬁijt(;
Tet A= )6, Gu open. Let Gy= U Iy, Iy compact an k1 i

7 Ay = .

measure. Choose %k, such that m(f(Al ~ A) ~ E) >a where A, kL=J1 1k

Thig is possible since m(f(4) ~ B) >a and
fd)y=f(4n LkJIm) =f(U (4~ Iip)) = Lka(A NIy .

k .
‘ i ' = here
Note that 4, is compact and 4; ~ G is an F.Let 4, nG=U 12,’0 .W €

ez
G b Ay = atisties
each I, is compact. Choose %, so that A, kL=J1 Iy s

m(f(A ~Ag) E)>a.
Thig is again possible since m(f(4 ~4;) N E) >a and
= Io) -
JA N 4)=fAdndn %JIzk)—— %)f(A Ay 0 Iy)

. e i< n A G = I with
Continuing this construction, if for 1 <¢<n Ajoq N G p -1

each I,_,, compact, %y has been chosen so that

It . ;

Ape= Ul and  m(f(Adind)n B)>a,

JTors 'l
then A, , A Gy is an I,. Choose Tux compact so that
AR 20—

'A‘n-l m Gn = U Ik .
k

Choose T so that

Ay = Cj I satisfies  m(f(danA)n B >a.

Jo=1
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E[‘ﬂhlf) ?(g:;un J]f posmlble S,l?w ?H(f(fln_lf\.ll) m.'ﬂ) >a and f(d 4, )
U fldndyy ax). The induction proceeds yielding a decreasing

sequence of compact sets A, with 4, C 6. Let H = (| 4y. Then H C N &
so that m(H) = 0, and H iy compact since each A, is com.pdéh. By ‘rhn(;
Pemma, m(M) f(dn) A ) = m(f(M) An) A B). Since oo >'m(7"(‘An) A Iﬂ) ;a
it follows that m () f (4n)) 2 @. Thus the image of the (;-,01m.m.a1: sal .TI he :
positive meagure, contrary to hypothesis. A S
THEOREM 2. Let f: X—Y where X and Y are o-compact spaces with
rewlar o-finite measures. Suppose further that the graph 0/"'( S s an (w;ralv (724
set in X X. Then, in order that I satisfy aow.(l'/l‘lﬂlm::, (‘.N‘) it s #’M/"fi(fi(f)l"/’l;;ra;

the image wnder f of compact sets of measure 0 be of measure 0. o
. Proof. Suppose not. Then there is a funetion, i X—T and o set X,
with 7 (Xo) = 0 but m(f(X,)) >a > 0. Since X is regular 111'10”4(*1; L’ ‘cfh )
be 0}103011 to be a G,. Then f(X,) is meagurable sinee Vi (X(,) =2 PL0] 1.( b(;‘~(,1{)‘ .
~ Xy x X) is an analytic set (it is the continuous J'.Ihwge of "th.o;.ixﬁzorls'(:gtiorll

of an analytic set with a @, set). Since ¥ is a regular (rwfinité ;r‘;<{;L<"|1r
space, there is a closed set ¥, such that oo >m( F(X,) m}) \f»a(>(())

Let 4 = f~%Y¥,) n X,. Then B(f; Ay is an analytie s.gt q‘i:ri((i(>’ B; s 1.
= B(f; X) n X, % _Y(,. Choose o detiermining system {./lnl’,,,»,,,k}L(ﬁ()l]’,HiHl‘;iI(‘l{"’Ji)gf
compact sets 50 that dum,...upmp, C Ay, and g0 that -
B(f; A) = U (A, Angng ™ oo Anlwa,..nk L)

?

Eﬁlefhe 11]1101;L extends over all sequences Ny Wy eeny N ... Chooge By g0
o ;llhls ;lllL(‘Jn(ce Snx ’qunwi‘\]--- A Angng.ogy ) (where the wnion, extends
ences with m, << by) satisfies m(proi o !
. " 1< Tn) sasisties m(projy(4,,)) > a. This is possible
since B(f; 4) = (J 4,, the projcction of P
; 1.91 7y the projection of the union is the wnion of the

roiecti L " .
P ](?G 1ons, and the projection of an analytic set iy amalytic (and thus
measurable). Tn general chooge %y so that ’ o

Aoty = U (Aay A Ay o A Anpgeny ™ k)

;“v:ftlllefle the union, extends over all sequences with Wy 5 Bogy ity 5 Ty g liy)
atisfies m(pro,]y(A,Ll,m._,,,J)) > a. Thiy iy possible gince e

(=]

hLaJl‘A‘hl...hj“lh = 'A]u7l.a...hj-1 N
Tt A. — . ,

et Ay = | | Ay, where n; < Jy. Then Ap C Ay Lot Ay = | (4

[a RN aY An P} ) where n, < Vi [ ; < » on. (J‘ i 'A'"'l""’ )
A 1151;]1(13 o 1Sy N K hgy ey 1y <<y Then Ay, C Ay sinco
2 1y mite union of compact sets, each Ay is comjj:m,ct. That

4;C . i " .
7@1 1CB(f; A) is a set theoretic argument and can be found e.g. in [4]
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p. 49. Since the 4; form a decreasing sequence of compact sets and projy is
a continuous function, by the lemma it follows that

(M proje(4s) = projy((M 44) -

Since Almhg... Iy c Ai? I)'[‘Oj Y(Ahﬂm...hj) c I)I'Oj Y(‘A-f) and m(pron(-Af)) > a.
Since projy(4s) forms a decreasing collection of measurable sebs having
finite measure m(() projr(4y)) > a. Letting I = projx((1) 4y), it follows
that F' is compact, I C A, and

m{f(F)) = m{proje(N) A7) = m{() proje(4s) =a >0,

a contradiction.

TusorEM 3. If f: X—Y where X = ¥ = B, endowed with Lebesgue
measure, and if B(f; X) has o-finite Hausdorff n-measure and is n-measvr-
able, then for f to satisfy condition (N) it is sufficient that f satisfy condi-
tion (N'). )

Proof. Pirst observe that for any set .4 contained in X x ¥ with
n—m(A4) = 0 one hag m(proj y(A)) = 0. This is immediate from the defini-
tion of % -meagure. For if n—m(4) = 0 then given ¢ >0 there is a eover U,
of A such that Y (diam(I)* < e. But then the projection of U, into Y

1T,

€

will have Tebesgue measure less than s since proj(l) is contained in an
n-dimensional cube of side length diam (T). It follows that m(proj ¥(4))=0.

Suppose the theorem is not true. Then there are a function f with
B(f; X) of o-finite n-measure and a Gs set B with m(E)=0 and
m*(f(H)) > 0. Since f(E)= projy(B(f; B)), it follows from the observa-
tion that B(f; B) has n-outer measure > 0. Since B(f; X) is n-meagurable,
B(f; B)=B(f; X)nBExY is also n-measurable and furthermore
B(f; 1) has o-finite n-measure. But then B(f; B)= B(f; Z) v U B(f; Xn)

N

where B(f; X,) are compact sets of finite »-measure and B(f; Z) has
n-meagure 0 (seo [3], pp. 90-99). Sinece B(f; Z) has n-measure 0, from
tho obscrvation it follows that m(f(Z))= 0. Bub m*(\U f(Xn)) >0
implies there is an N so that m'(f (X)) > 0. However, Xy is compact,
Xy == projg(B(f; Xy)) and Xy is contained in 7. Hence the Lebesgue
meagure of Xy is oqual to 0 while m*(f(Xx)) >0 contrary to hypothesis.
This contradiction proves Theorem 3.

The following cxample shows that it is possible, agsuming the con-
tinuum hypothesis, for a meagurable funetion to satisfy condition (N') and
not to satisfy condition (N).

Tet A be a dense G, subset of the real numbers with m(4)=0.
Let By, Ty, ooy Py oony 0 < 2, be a well ordering of the closed nowhere
dense subsets of the line. Choose @, e A— I, which is possible since 4 is
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residual and 7, is 1st category. If, for every § < a, ; has been chogen such
that @ze A—|JF, and such that =z, x, for every y<p, choose

y<B
i . . .
z,e A ﬁL<)ulf s {@p}s<q- Since | Fy is a countable union of first category

B<a
.sets, {®s}s< & countable set, such a point #, can be chosen and the induction,
;Sh complete. Let X = {#,},.o and let g be a map with domain X and image
e r:eayl num,bel."s. L.et f(.m) = 0ifx ¢ X, f(#) = g(x) if 2 ¢ X. Then f satisties

condition, gN ) since if F'is a closed set of measure 0, F = F, for some o, < Q
a'nd f@ 1§ an at most countable set. However f does not satisfy condi‘r
tion (N) since f(4) is the real line.

This same example can be constructed if the conti i
' ntinuum hypothesis
is rel?laced by both of the following: ypothests

1; E]ﬁe union of fewer than v sets of measure 0 is of measure 0,

ii e union of fewer than 7 sets of 1st category is of 1st
where v iy the power of the continuum. . eategorys
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A comment on Balbes’ representation theorem
for distributive quasi-lattices
. by
R. Arthur Knoebel (Las Cruces, N. M.)

This short note points out that Balbes’ [1] representation theorem
for distributive quasi-lattices may be proven from rather general con-
siderations. (A distributive quasi-lattice is an algebra with two semi-
lattice operations conmected by the distributive laws.) Recall his Theo-
rem 4 (rewritten slightly): an algebra © = (D; +, > with two binary
operations is o distributive quasi-lattice iff there are two families ¥, X of
sels closed to intersection and union, respectively, and two one-to-one corre-
spondences p: D <X and g3 D X such that

ab ==y pa v yb),
@b = o (pa ~pb) ,
a (b-Fe)y=abtac,
a-bre= (a+tDb) (a+o),

for all a, b, ¢ed. This is true because any semni-lattice is isomorphic to
a family of subsets closed to intersection (or uniom) [2].

Sinee this representation theorem. for semi-lattices is equivalent to
saying that cach gomi-lattice is & subdirect power of the two-element
semi-lnttice, the technique of Theorem 4 is generalizable to any algebra

QW s (AG Jrg vy Sy Jua oer G By eeey By eoe?

of which cach reduct
Y, = CAs fuy s 62
Wy = (A5 sy s Jm)

P

is represendable as a subdirect power.
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