180

N. H. Williams

 $\subseteq A \cap (S_{\xi} \cup C_{\xi}) \subseteq A \cap S_{\xi}$. But now either $|A \cap S_{\xi}| < p$, or else $A \in \mathfrak{D}_{\xi}$. In either case, $|A \cap B_{\xi a}| < p$. Since $A \cap A_{\xi a} \subseteq A \cap (B_{\xi a} \cup C_{\xi}) \subseteq A \cap B_{\xi a}$, we have $|A \cap A_{\xi a}| < p$. Thus (9) holds when $\mu = \xi$. This completes the construction.

Now put $\mathcal{A} = \bigcup \{\mathcal{A}_{\mu}; \ \mu < q^+\}$, so \mathcal{A} is a (q^+, n, p) -family, by (9). We show (7) holds for \mathcal{A} . Take S in $[\bigcup \mathcal{A}]^q$. Then $S = S_{\mu}$ for some $\mu < q^+$; yet card $\{A \in \mathcal{A}_{\mu}; \ |A \cap S_{\mu}| \geqslant p\} = q^+$, and $\mathcal{A}_{\mu} \subseteq \mathcal{A}$. Thus (7) holds, and the proof is complete.

Together, Theorems 2.1 and 2.4 establish the sufficiency of (1) and (2).

References

[1] A. Tarski, Sur la décomposition des ensembles en sous-ensembles presque disjoints,
 Fund. Math. 14 (1929), pp. 205-215.

UNIVERSITY OF QUEENSLAND Brisbane, Australia

Accepté par la Rédaction le 18. 2. 1974

A note on Lusin's condition (N)

by

James Foran (Milwaukee, Wis.)

Abstract. A function is said to satisfy condition (N') provided the image of closed sets of measure 0 is of measure 0. In this paper it is shown that for several classes of functions (N') implies Lusin's condition (N). The Baire functions (in a general setting) are one such class. Using the continuum hypothesis, a real valued function is constructed which satisfies (N') but does not satisfy Lusin's condition (N).

A function $f: X \to Y$, where X and Y are measure spaces, is said to satisfy condition (N) if the image under f of each set of measure 0 in X is of measure 0 in Y. Condition (N) arises quite naturally in the study of integrals. (See, e.g., [4], p. 224ff.) A function $f: X \to Y$ will be said to satisfy condition (N') if X is a topological space and the image under f of compact sets of measure 0 is of measure 0. The purpose of this note is to show that for several classes of functions condition (N') implies condition (N); that is, the compact sets of measure 0 are a determining class for condition (N).

Although greater generality is attainable, the spaces X and Y will always be σ -compact metric spaces. The following notation and definitions will be used:

- 1) B(f; A) will denote the graph of f on the set A, i.e., if $f: X \to Y$, $B(f; A) = \{(x, y) \in X \times Y | x \in A, y = f(x)\}.$
- 2) m(E) will denote the measure of E when it is clear which measure this is.
- 3) n-m(E) will denote Hausdorff n-measure. Briefly, a set B has n-measure less than or equal to b if for any given $\varepsilon>0$ there is a cover U_s of B with each set $I\in U_s$ having diameter less than ε and $\sum\limits_{I\in U_s} ({\rm diam}\,I)^n < b+\varepsilon.$
- 4) proj_Y will denote the *projection map* from $X \times Y$ to Y; similarly, proj_X denotes the projection map from $X \times Y$ to X.
- 5) A measure space X is of σ -finite measure if X is the countable union of sets of finite measure.

6) A measure on a topological space is regular if each measurable set A is contained in a G_{δ} set B with m(B-A)=0. Here, as usual, a set A is measurable if $m(T)=m(T\cap A)+m(T-A)$ for every set T.

The following three classes of functions will be shown to satisfy condition (N) provided they satisfy condition (N'):

- (1) Functions $f \colon X \to Y$ where X and Y have regular σ -finite measures and f satisfies
 - i) f(C) is measurable for every compact set C.
 - ii) $f^{-1}(y)$ is closed for almost every y in Y.
- (2) Functions $f: X \to Y$ where X and Y have regular σ -finite measures and B(f; X) is an analytic set in $X \times Y$.
- (3) Functions $f: E_n \to E_n$, with Lebesgue n-measure on the range and domain, with f satisfying: $B(f; E_n)$ is of σ -finite Hausdorff n-measure and is n-measurable.

Continuous functions are a special case of (1) and Baire functions of (2). (A proof that Baire functions have analytic graphs is given in [2] p. 384 and, for the real valued case, in [1] p. 300.) Furthermore, given a measurable function f satisfying condition (N'), there is a Baire 2 function g equal to f almost everywhere and (2) implies that g satisfies condition (N). (Lusin's theorem is easily modified to this setting. That is, there are an increasing sequence of compact sets $\{X_n\}$ with $m(X - \bigcup X_n) = 0$ and a sequence of functions $\{f_n\}$ with f_n defined and continuous on X_n such that f_n equals the restriction of f to X_n . Choose a point y_0 in Y and define $f_n(x) = y_0$ if $x \notin X_n$. Then f_n is a Baire 1 function on all of X since for a closed set $F \subset Y f_n^{-1}(F)$ is a G_0 ; in fact, $f_n^{-1}(F)$ is either a closed set or the union of the open set X_n^c with a closed set. Then $g = \lim f_n$ is a Baire 2 function which is equal to f almost everywhere.)

Assuming the continuum hypothesis an example of a function f can be constructed so that f satisfies condition (N') but does not satisfy condition (N). Such a function can be chosen to be measurable, but it is not known whether such a function can be constructed without a condition like the continuum hypothesis.

The following simple lemma will be needed.

LEMMA. If $f: X \to Y$, with Y a measure space and X a topological space, satisfies $f^{-1}(y)$ is closed for almost every $y \in Y$ (every $y \in Y$) and if $\{C_n\}$ is a decreasing sequence of compact sets such that $f(C_n)$ is measurable, then $m(\bigcap f(C_n)) = m(f(\bigcap C_n))$ $(\bigcap f(C_n) = f(\bigcap C_n))$.

Proof. Since $\bigcap f(C_n) \supset f(\bigcap C_n)$ it follows that

$$m(\bigcap f(C_n)) \geqslant m(f(\bigcap C_n))$$
.

If $Z = \{y \mid f^{-1}(y) \text{ is not closed}\}$ by hypothesis m(Z) = 0 $(Z = \emptyset)$. If $y \in \bigcap f(C_n) - Z$ then $y = f(x_n)$ where $x_n \in C_n$. Then $x_{n+j} \in C_{n+j} \subset C_n$,

 $\{x_{n+j}\}_{j=1}^{\infty} \subset C_n$, and C_n compact implies there exists a limit point x_0 of $\{x_{n+j}\}_{j=1}^{\infty}$ in C_n . Then $x_0 \in C_n$ for every n. Since $f^{-1}(y)$ is closed, it follows that $x_0 \in f^{-1}(y)$, $f(x_0) = y$, and $y \in f(C_n)$. This being true for almost every y (every x) in $\bigcap f(C_n)$, it follows that

$$m(\bigcap f(C_n)) \leqslant m(f(\bigcap C_n))[\bigcap f(C_n) \subseteq f(\bigcap C_n)]$$
.

THEOREM 1. Let $f: X \rightarrow Y$ where X and Y have regular σ -finite measures. Suppose f satisfies:

i) f(C) is measurable for every compact set $C \subseteq X$,

ii) $f^{-1}(y)$ is closed for almost every $y \in Y$.

Then f satisfies condition (N) provided f satisfies condition (N').

Proof. Suppose not. Then there is a set A of measure 0 contained in X (since X is regular A can be chosen to be a G_{δ}) such that m(f(A)) > a > 0. There is a set $E \subset Y$ such that $\infty > m(f(A) \cap E) > a > 0$. Let $A = \bigcap G_n$, G_n open. Let $G_1 = \bigcup I_{1k}$, I_{1k} compact and of finite measure. Choose k_1 such that $m(f(A_1 \cap A) \cap E) > a$ where $A_1 = \bigcup_{k=1}^{k_1} I_{1k}$. This is possible since $m(f(A) \cap E) > a$ and

$$f(A) = f(A \, \cap \, \bigcup_k I_{1k}) = f\bigl(\bigcup_k \, (A \, \cap \, I_{1k})\bigr) = \bigcup_k f(A \, \cap \, I_{1k}) \; .$$

Note that A_1 is compact and $A_1 \cap G_2$ is an F_{σ} . Let $A_1 \cap G_2 = \bigcup I_{2k}$ where each I_{2k} is compact. Choose k_2 so that $A_2 = \bigcup_{k=1}^{k_2} I_{2k}$ satisfies

$$m(f(A \cap A_2) \cap E) > a$$
.

This is again possible since $m(f(A \cap A_1) \cap E) > a$ and

$$f(A \cap A_1) = f(A \cap A_1 \cap \bigcup\limits_k I_{2k}) = \bigcup\limits_k f(A \cap A_1 \cap I_{2k})$$
 .

Continuing this construction, if for 1 < i < n $A_{i-1} \cap G_i = \bigcup_k I_{i-1,k}$ with each $I_{i-1,k}$ compact, k_i has been chosen so that

$$A_i = \bigcup_{k=1}^{k_i} I_{i-1,k}$$
 and $m(f(A_i \cap A) \cap E) > \alpha$,

then $A_{n-1} \cap G_n$ is an F_{σ} . Choose I_{nk} compact so that

$$A_{n-1} \cap G_n = igcup_k I_{nk}$$
 .

Choose k_n so that

so that
$$A_n = igcup_{k=1}^{k_n} I_{nk}$$
 satisfies $m(f(A_n \cap A) \cap E) > a$.

This again is possible since $m(f(A_{n-1} \cap A) \cap E) > a$ and $f(A \cap A_{n-1}) = \bigcup_k f(A \cap A_{n-1} \cap I_{nk})$. The induction proceeds yielding a decreasing sequence of compact sets A_n with $A_n \subset G_n$. Let $H = \bigcap_k A_n$. Then $H \subset \bigcap_k G_n$, so that m(H) = 0, and H is compact since each A_n is compact. By the Lemma, $m(\bigcap_k f(A_n) \cap E) = m(f(\bigcap_k A_n) \cap E)$. Since $\infty > m(f(A_n) \cap E) > a$ it follows that $m(\bigcap_k f(A_n)) \ge a$. Thus the image of the compact set H has positive measure, contrary to hypothesis.

THEOREM 2. Let $f \colon X \to Y$ where X and Y are σ -compact spaces with regular σ -finite measures. Suppose further that the graph of f is an analytic set in $X \times Y$. Then, in order that f satisfy condition (N) it is sufficient that the image under f of compact sets of measure 0 be of measure 0.

Proof. Suppose not. Then there is a function $f\colon X\to Y$ and a set X_0 with $m(X_0)=0$ but $m(f(X_0))>a>0$. Since X is regular the set X_0 can be chosen to be a G_δ . Then $f(X_0)$ is measurable since $f(X_0)=\operatorname{proj}_Y(B(f;X)\cap X_0\times Y)$ is an analytic set (it is the continuous image of the intersection of an analytic set with a G_δ set). Since Y is a regular σ -finite measure space, there is a closed set Y_0 such that $\infty>m(f(X_0)\cap Y_0)>a>0$ Let $A=f^{-1}(Y_0)\cap X_0$. Then B(f;A) is an analytic set since $B(f;A)=B(f;X)\cap X_0\times Y_0$. Choose a determining system $\{A_{n_1...n_k}\}$ consisting of compact sets so that $A_{n_1n_2...n_kn_{k+1}}\subset A_{n_1n_2...n_k}$ and so that

$$B(f;A) = \bigcup (A_{n_1} \cap A_{n_1 n_2} \cap \dots \cap A_{n_n n_n \dots n_k} \cap \dots),$$

where the union extends over all sequences $n_1, n_2, ..., n_k$... Choose h_1 so that $A_{h_1} = \bigcup (A_{n_1} \cap A_{n_1 n_2} \cap ... \cap A_{n_1 n_2 ... n_k} \cap ...)$ (where the union extends over all sequences with $n_1 \leq h_1$) satisfies $m(\text{proj}_Y(A_{h_1})) > a$. This is possible since $B(f; A) = \bigcup_{h=1}^{\infty} A_h$, the projection of the union is the union of the projections, and the projection of an analytic set is analytic (and thus measurable). In general choose h_j so that

$$A_{h_1h_2...h_j} = \bigcup (A_{n_1} \cap A_{n_1n_2} \cap ... \cap A_{n_1n_2...n_k} \cap ...)$$

(where the union extends over all sequences with $n_1 \leqslant h_1, n_2 \leqslant h_2, \ldots, n_j \leqslant h_j$) satisfies $m(\text{proj}_{X}(A_{h_1h_2...h_j})) > a$. This is possible since

$$\bigcup_{h=1}^{\infty} A_{h_1...h_{j-1}h} = A_{h_1h_2...h_{j-1}}.$$

Let $A_1 = \bigcup A_{n_1}$ where $n_1 \leqslant h_1$. Then $A_{h_1} \subset A_1$. Let $A_j = \bigcup (A_{n_1} \cap A_{n_1 n_2} \cap \cdots \cap A_{n_1 n_2 \dots n_j})$ where $n_1 \leqslant h_1$, $n_2 \leqslant h_2$, ..., $n_j \leqslant h_j$. Then $A_{h_1 h_2 \dots h_j} \subset A_j$ since each A_j is the finite union of compact sets, each A_j is compact. That $\bigcap_{j=1}^{n} A_j \subset B(f; A)$ is a set theoretic argument and can be found e.g. in [4]

p. 49. Since the A_j form a decreasing sequence of compact sets and proj_Y is a continuous function, by the lemma it follows that

$$\bigcap \operatorname{proj}_{Y}(A_{j}) = \operatorname{proj}_{Y}(\bigcap A_{j})$$
.

Since $A_{h_1h_2...h_j} \subset A_j$, $\operatorname{proj}_Y(A_{h_1h_2...h_j}) \subset \operatorname{proj}_Y(A_j)$ and $m(\operatorname{proj}_Y(A_j)) > a$. Since $\operatorname{proj}_Y(A_j)$ forms a decreasing collection of measurable sets having finite measure $m(\bigcap \operatorname{proj}_Y(A_j)) \geqslant a$. Letting $F = \operatorname{proj}_X(\bigcap A_j)$, it follows that F is compact, $F \subset A$, and

$$m(f(F)) = m(\operatorname{proj}_{Y}(\bigcap A_{j})) = m(\bigcap \operatorname{proj}_{Y}(A_{j})) \geqslant \alpha > 0$$
,

a contradiction.

THEOREM 3. If $f: X \to Y$ where $X = Y = E_n$, endowed with Lebesgue measure, and if B(f; X) has σ -finite Hausdorff n-measure and is n-measurable, then for f to satisfy condition (N) it is sufficient that f satisfy condition (N').

Proof. First observe that for any set A contained in $X \times Y$ with n-m(A)=0 one has $m(\operatorname{proj}_Y(A))=0$. This is immediate from the definition of n-measure. For if n-m(A)=0 then given $\varepsilon>0$ there is a cover U_s of A such that $\sum_{I \in U_s} (\operatorname{diam}(I))^n < \varepsilon$. But then the projection of U_s into Y

will have Lebesgue measure less than ε since $\operatorname{proj}_{\mathscr{C}}(I)$ is contained in an n-dimensional cube of side length $\operatorname{diam}(I)$. It follows that $m(\operatorname{proj}_{\mathscr{C}}(A)) = 0$.

Suppose the theorem is not true. Then there are a function f with B(f;X) of σ -finite n-measure and a G_{δ} set E with m(E)=0 and $m^*(f(E))>0$. Since $f(E)=\operatorname{proj}_X(B(f;E))$, it follows from the observation that B(f;E) has n-outer measure >0. Since B(f;X) is n-measurable, $B(f;E)=B(f;X)\cap E\times Y$ is also n-measurable and furthermore B(f;E) has σ -finite n-measure. But then $B(f;E)=B(f;Z)\cup\bigcup_n B(f;X_n)$

where $B(f; X_n)$ are compact sets of finite n-measure and B(f; Z) has n-measure 0 (see [3], pp. 90–99). Since B(f; Z) has n-measure 0, from the observation it follows that m(f(Z)) = 0. But $m^*(\bigcup f(X_n)) > 0$ implies there is an N so that $m^*(f(X_N)) > 0$. However, X_N is compact, $X_N = \operatorname{proj}_X(B(f; X_N))$ and X_N is contained in E. Hence the Lebesgue measure of X_N is equal to 0 while $m^*(f(X_N)) > 0$ contrary to hypothesis. This contradiction proves Theorem 3.

The following example shows that it is possible, assuming the continuum hypothesis, for a measurable function to satisfy condition (N') and not to satisfy condition (N).

Let A be a dense G_{δ} subset of the real numbers with m(A) = 0. Let $F_1, F_2, ..., F_a, ..., a < \Omega$, be a well ordering of the closed nowhere dense subsets of the line. Choose $x_1 \in A - F_1$ which is possible since A is residual and F_1 is 1st category. If, for every $\beta < \alpha$, x_{β} has been chosen such that $x_{\beta} \in A - \bigcup_{\gamma < \beta} F_{\gamma}$ and such that $x_{\beta} \neq x_{\gamma}$ for every $\gamma < \beta$, choose $x_{\alpha} \in A - \bigcup_{\beta < \alpha} F_{\beta} \cup \{x_{\beta}\}_{\beta < \alpha}$. Since $\bigcup_{\beta < \alpha} F_{\beta}$ is a countable union of first category sets, $\{x_{\beta}\}_{\beta < \alpha}$ a countable set, such a point x_{α} can be chosen and the induction is complete. Let $X = \{x_{\alpha}\}_{\alpha < \alpha}$ and let g be a map with domain X and image the real numbers. Let f(x) = 0 if $x \notin X$, f(x) = g(x) if $x \in X$. Then f satisfies condition (N') since if F is a closed set of measure 0, $F = F_{\alpha_0}$ for some $\alpha_0 < \Omega$, and f(F) is an at most countable set. However f does not satisfy condition (N) since f(A) is the real line.

This same example can be constructed if the continuum hypothesis is replaced by both of the following:

- i) the union of fewer than τ sets of measure 0 is of measure 0.
- ii) the union of fewer than τ sets of 1st category is of 1st category, where τ is the power of the continuum.

References

- [1] F. Hausdorff, Set Theory, New York 1957.
- [2] K. Kuratowski, Topology, vol. 1, New York-London-Warszawa 1966.
- [3] C. A. Rogers, Hausdorff Measures, Cambridge 1970.
- [4] S. Saks, Theory of the Integral, New York 1937.

UNIVERSITY OF WISCONSIN-MILWAUKEE Milwaukee. Wisconsin

Accepté par la Rédaction le 14. 3. 1974

A comment on Balbes' representation theorem for distributive quasi-lattices

by

R. Arthur Knoebel (Las Cruces, N. M.)

This short note points out that Balbes' [1] representation theorem for distributive quasi-lattices may be proven from rather general considerations. (A distributive quasi-lattice is an algebra with two semilattice operations connected by the distributive laws.) Recall his Theorem 4 (rewritten slightly): an algebra $\mathfrak{D}=\langle D;+,\cdot\rangle$ with two binary operations is a distributive quasi-lattice iff there are two families Y,X of sets closed to intersection and union, respectively, and two one-to-one correspondences $\psi\colon D\leftrightarrow Y$ and $\varphi\colon D\leftrightarrow X$ such that

$$\begin{aligned} a+b &= \psi^{-1}(\psi a \cup \psi b) \;, \\ a \cdot b &= \psi^{-1}(\varphi a \cap \varphi b) \;, \\ a \cdot (b+c) &= a \cdot b + a \cdot c \;, \\ a+b \cdot c &= (a+b) \cdot (a+c) \;, \end{aligned}$$

for all $a, b, c \in D$. This is true because any semi-lattice is isomorphic to a family of subsets closed to intersection (or union) [2].

Since this representation theorem for semi-lattices is equivalent to saying that each semi-lattice is a subdirect power of the two-element semi-lattice, the technique of Theorem 4 is generalizable to any algebra

$$\mathfrak{A} = \langle A; f_1, ..., f_k, g_1, ..., g_m, h_1, ..., h_n, ... \rangle$$

of which each reduct

$$\mathfrak{A}_f = \langle A; f_1, ..., f_k \rangle,$$

 $\mathfrak{A}_g = \langle A; g_1, ..., g_m \rangle,$

is representable as a subdirect power.