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When s-boundaries are manifolds
by
Steve Ferry (Aun Arbor, Mich.)

Abstract. Let 4 ¢ B*. We define 2(e, 4) (the &-boundary of 4) to be the set of
points in B" whose distance from .4 is precisely . In this paper we study conditions which
ensure that a(e, 4) is an (n— 1)-manifold.

‘We prove that for % equal to 2 or 8 8(e, 4) is an (n— 1)-manifold for almost all'e.
We show that if 4 is a finite polyhedron in R" then &(e, 4) is an (n— 1)-manifold for all
sufficiently small values of . We prove a collaring theorem and exhibit counterexamples
to several possible conjectures. The most interesting counterexample is a Cantor set I
in Rt such that @(e, K) is not a 3-manifold for any & between 0 and 1. This example
generalizes easily to all higher dimensions.

0. Introduction. Let A CR" We define o(¢, 4) (the e-boundary
of A) to be the set of points in B* whose distance from A is precisely «
In this paper we will study conditions which ensure that &(s, 4) is an
{n— 1)-manifold.

This problem was stated by M. Brown in [1]. He proved that when
n = 2 the components of (s, A) are 1-manifolds for all but countably
many e. R. Gariepy and D. Pepe [3] have shown that for n = 2 @(e, A)
is a 1-manifold for almost all e. For arbitrary » they have shown that for
almost all ¢ 8(e, 4) contains an open subset which is an (n—1)-manifold
whose complement in &(e, 4) has (n—1)-dimensional Hausdorff measuare
zero. See [2] and [4] for other related results.

In this paper we prove that for # equal to 2 or 3 d(s, 4) is an
{(n—1)-manifold for almost all e. We also’ show that if A is a finite poly-
hedron in B” then (e, 4) is an (n— 1)-manifold for all sufficiently small
values of e. This result is true for all n. Finally, we prove a collaring theorem
and exhibit counterexamples to several possible conjectures. The most
interesting example is a Cantor set K in R* such that 8(s, K) is not
a 3-manifold for any ¢ between 0 and 1. This example generalizes easily
to all higher dimensions.

1. Tn this section we establish a sufficient condition for o(e, 4) to
be an (n—1)-manifold. As a direct consequence, we obtain our result
congcerning polyhedra.

First, we establish some notation. By é(«) we will mean the distance
from # to A in the Euclidean norm. By N (x) we will mean the set of

1 — Fundamenta Mathematicae, T. XC
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points in 4 whose distance from & is precisely §(x). %(N (2)) will denote
the closed convex hull of N ().

PROPOSTIION 1.1. Let A CRP, @« R*—A. If x4 (N (x)) there ewists
@ neighborhood U of @ such that 8(6(x), A) ~ U is homeomorphic to R~

Proof. We can assume that x = 0 (the origin in E"). If 0 ¢ JG(N (0))
there is a hyperplane separating N(0) from 0. More precisely, there is
2 unit vector v and a real number ¢ > 0 such that s < a-v for cach a ¢ N (0).
It follows that there is a positive real number & such that Jla]| > (0) &
for all @ e A such that s3> a-v. For convenience, we choose & << min (5(0), 4s).

Choose an integer #n large enough that the expressions

1) (8— eg)n*—2n6(0)—g,
and ‘
(2) £08— (602 — 26 (0) &o/n

are both positive. Let p e R* be a vector with ||p|| < &/n and such that
p-v=0. We will show that there is precisely one ¢ with |5 < }¢, such
that (p-+ov) €2(5(0), A). In other words, there is precisely one point
of 2(5(0), 4) on each line parallel to v.
For each a,e N(x) we have the four relations:
0+ 4e0v— afl? = [[p|F-+% 65+ 6%0)— 2 - ag— &0+ aq ,
bl < (&),
&S K &V g,
—28(0)&fn < 2p-ag -
Adding these together and applying (1) we get
P4 eov— al* < 6%(0) .

A gimilar calculation involving (2) shows that
lp—%&gv—all >5(0) .

Thus there is at least one § with |§] < & such that p-4-dv is in
2(6(0), 4). To see that there is only ome such 0§, observe that if
lp+dv—al = 6(0) then |lal|<6(0)4¢g. Therefore a-v >s. It follows
that if |p+ 60— alP—|lp+ dyv—al® < 0 with &, <<, then

(20 + (8,4 65) -0—24) (,— 8:,) 0 < 0
and
(81 00) (61— 8,) < 2a-0(5,—by) .

Since a-v >¢ and §;+ 8, < &, we have &; = J,.
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This establishes a 1-1 correspondence between the points of (5 (0), 4)
in & certain neighborhbood of 0 and vectors p with ||p|| << e&,/n and p-v = 0.
It is not hard to show (using the fact that 8(5(0), A) is closed) that this
is a homeomorphism. @

COROLLARY 1.2. If A is bounded, then (e, A) is an (n—1)-manifold
for all sufficiently large e. (This is also @ result in [1].) &

DmriNiTioN 1.3. A point @« B* is a critical point if a e Je(N (2)).
& is a eritical value it there is a critical point @ with 6(#) = e. From now on,
we will use ¢ to denote the set of critical points,

TeEOREM 1.4, If P CR™ is a finite polyhedron, there is a real number
ey >0 such that for each ¢<<ey 8(e, P) is an (n— 1)-manifold.

Proof. Let the vertices of P be uy, ..., vx. By thickening the open
star of each v; we can construct an open cover of P consisting of open
sets Oy, ..., Oy such that each O; is an open subset of R* and such that
each simplex of P which intersects O; contains v;. Let K be a compact
neighborhood of P such that PC KX CKC|J 0;. Let 1 be a Lebesgue
number for the covering {0; ~ I} of K. Choose & < min (4, }d(P, B"— K)),
“d” being the distance function.

If # €9(e, P), then N (x) C O, for some 4. Therefore, N (z) is contained
in a union of (n—1)-simplices which contain a single vertex. Thus N ()
lies in a proper hemisphere of the sphere of radius d(z) about z. By Pro-
position 1.1, » caunot be a critical point. =

ProrostrIoN 1.5. Let @ and y be elements of C. Then

|6%(@)— ()| < llo—yl* .

Proof. If x is a eritical point there exist #; ¢ N(x) and # > 0 with
2 ti=1 such that & = 3 t;@;. We also have

(1) (@) = lo— adfl® = |[2P— 22 2+ |le]* and

(i) lly— @il = ledlP— 22y + 9l = 6*(y).

Subtracting (i) from (ii), multiplying by ¢; and summing, we get

W P— 2 (y— @) — |lal* = 6*(y)— &%)

Reversing the roles of # and y proves the other half of the inequality. &

2. In this section we will study funections f having the property that
If(@)—f(2)| < M|jz—y|?. Our main result is the following theorem.

THEOREM 2.1. Let A CR™ and let f: A—R" be a real-valued function
such that |f(z)—f(y)| < Mlz—y||* for some M >0. Then f(A) has mea-
sure zero. “

1
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We will prove this for the case n = 2, the only case we use. The gene-
ralization to higher dimensions is not difficult. We will need the following
standard result from measure theory.

Levma 2.2 (Lebesgue density). If § is a measuradle subsel of B B is
a real number with 0 << B < 1, & i a real number greater than gero, wnd u is
Lebesyue measure, then there ewist disjoint balls Diy i = 1,2, ... centered
at points of 8 such that
(i) ;4(U Di—8)< e,

(i) w(§—U D) =0,

(i) @(DsS)u(Di) >p.

Proof. See Saks [3].

Proof (of Theorem 2.1). Without loss of generality, we may assame
that A4 is closed and has finite measure. Choose a positive integer I and
let B >1—1/(2aK®). Let & = u(4) >0. The case u(4)="0 will be taken,
care of in Step 1. Applying Lemma 2.2, we obtain a set of balls D; having
properties (i)-(iil). Let d; be the radins of D;. Let Ay= A— U D; and

let A, = A—4,. We will be through if we can show that fh(» measure
of f(A44) is zero for i =0, 1L

Step 1. Since 4, has measure zero, for any given ¢’ >0 we can find
a set of balls Q, of radii ¢; covering A4, such that Y ¢5<Ce'. For each 1, f(@)
is contained in an interval of length < 8¢3. Thercfore f(4,) is contained
in a set of measure less than 8¢'. Since &' is arbitrary, the measure of
f(4,) must be zero.

Step 2. We now show that f(4,) has measure zero. Let a; be the center
of D;. Let o be any other point of 4; ~ D;. Consider a wedge of Dy with
central angle 1/K containing a. Cut this wedge into K segments whose
distance from a; is between (k— 1)/K and /K units. Bach such segment
has area at least (d%/2K?®). Our choice of f guarantees that each segment
containg at least one point of A4, (see Fig. 1). Let by = ay, byy oy by 6
be points of A; with b; in the ith segment. Then

[f(a)—F(ad)| =

M Fo)—f (b1

.[\/ .

T
15

1

b

M= byl

\

n\

s
-
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:zr
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Thus, f(4) is contained in a set of measure (10M/K)(Zd3). K is
arbitrary and condition (i) of Lemma 2.2 guarantees that X'd; << 2u(4).
Therefore f(4,) also has measure zero. B

CoRrOLLARY 2.3. If 4 C R? then 8(e, 4) is a 1-manifold for almost all e.

Fig. 1

!

Proof. By Proposition 1.1, we need to show that §(0) has measure
zero. By Proposition 1.5 and Theorem 2.1, 6%(C) has measure zero. Since
the square root funection is absolutely continuous §(C) also has measure
zero. ®© .

3. In thig section we will prove the analog of Corollary 2.3 for subsets
of R®. The main observation is that the critical points are constrained to
lie near a countable set of planes. We can project onto these planes and
obtain a countable number of functions like those studied in the last section. .

TrworEM 3.1. If A C R then 8(e, A) is a 2-manifold for almost all e.

Proof. The proof is divided into two steps.

Step 1. We will show that for each @ « ¢ there is a vector » such that

(i) (@4 v)—yl = lle] and

(i) Jl(e— )=yl = |1l
for every y e (. These inequalities say that the critical set lies outside of
two tangent balls. '

Choose » g0 that -4 20 and #— 2v are both in J@(N ) This is possible
since # iy not an extreme point of JG(N (w)) Let y be an arbitrary critical
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point. By definition, y € J¢(¥ (2)) and there are sequences {:} and {y:} of
points and {s;} and {t;} of scalars such that
(iii) Zsiws =20 and Xty =0,
(iv) Zsy=Zti=1, 81,44 >0,
(v) @+m e N(2) and y-+y; e N(y) for all i.
For each 4,

lot-a—olP = *(y)  and  (y+yi—alt > 6%x) .

Therefore,
(vi) Z' (el ol B - [y R4 2 b3 — 2y — By ) s el 62 -1 |l P+
+ 4 "u+2o;-y*4v-1 = 63(y).
Similarly,

(Vi) g+ 62(y) + lall— 22y = (@) -
Adding (vi) and (vii), we get

2||afE 42 |lylP+dw-v—dv-y—dw-y = 0.

This is equivalent to [[(&-v)—y| = |jvll. The inequality (ii) follows by an

entirely analogous argument. This completes step 1.

TFor each z <, choose »(z) such that inequalities (i) and (ii) hold.
Using the fact that a countable union of sets of measure zero has measure
zero, we can make the following assumptions about C.

(viii) There is an integer k, independent of », such that |jo(@)] = 1/k
for each x e C.

(ix) llo—yll < 1/k for all »,y e C.

Choose z; ¢ ¢ and let P: R*—R? be the projection of R onto the plane

normal to v(x,).

Step 2. We will show that |P(@)— P ()l = Lle—yl for all &,y in C.

() o)
H"f('*n o

I (@)= Pl = [P (z—y)l| = ”(mw -

2 [le—yll| 1~

(r-/1/ - J(, ]
lle—wlllo H‘

We estimate the expression on the right.
(=) o) || _ | (2—9)0(@) _(0—) (w(m) ) ) l
lle— 2l llv (o) le—ylllo(@)  le—yl @l o ()

_|e=pow] 1
le—yllilo)| " 4

Lo
(=4
(=14

When e-boundaries are manifolds

Therefore,

(—y)-v(w)

IP (@)~ P @)l = llo— yll‘ G"‘ lz—ll[lo (=)

)

Inequalities (i) and (ii) guarantee that

tHlo—yP = [(e—y)v(2)] .
Therefore,

1P (@)~ P ()l = lle— il (3 — & (le—yll/lo (@)]) -
Inequalities (viii) and (ix) insure that [lz— y|lf|lv(2)] < 1. This completes
step 2.

The vest is easy. P|C has an inverse function, so we can define
2P~ P(0)—R'. From the above it is clear that

[|6°P~*(m)— 6P~y )| < 16]lz— y|P

for all #, y in C. By Theorem 2.1, the image of §°P~* has measure zero.
Since the image of 2P| P(0) is precisely 6% C), we are done. &

4. Before proving the collaring theorem, we note that Theorem 3.1 can
be improved if A is bounded.

THEOREM 3.1%. Let A CR* be a bounded set, n << 3. The set of & for
which 0(e, A) is an (n—1)-manifold contains an open dense set.

Proof. The eritical set ¢ is bounded when A is bounded. It is always
closed. Therefore, 6(C) is compact. The result now follows from Theo-
rem 3.1. ®&

THEOREM 4.1. Let A CR™ If 0 <<a<<b and [a,b] contains no critical
values, then 6 '[a, b] s homeomorphic to [0, 1]x 6 Ha).

Proof. Assume that 4 is compact. Let o and b be given as above.
As usual, the proof has two steps.

Step 1. We show there is a fixed ¢ >0 such that for each 2 in 67 [a, ]
the bhall of radius & about £ does not intersect H{a e 4] [v— al] < 6(x)+ ¢}
The proof is by contradiction. If the assertion is false, there are sequences
{edh0% {37 {1150, Fuo and {ay)} such that

(i) O(ws) e [a—ec, btei],

(11) PLq == VQJCLL”LEUEA tij 0 Z‘[Lj-—-l
J=0
(iii) |l agl| < 280+ 6 (@4) ,
(iv) lime; = 0. ‘
Here we are using the fact that if B is a compact subset of E" and
@ € Je(B), then there are elements by, ..., by of B such that o e 3&({bs}).
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{z;} has a convergent subsequence. By taking &ubacquenecs of subse-

quences, we can find «*, {a.}7, {;}s, such that Z’tzaz~ @ and {jn*— a|
=0

= 8(z*), as e A, 4> 0, Zt; = 1. This makes o* a critical point, a contradic-
tion with completes the proof.

Step 2. We wish to define a veetor field w(z) in such a way that
trajectories of the vector field intersect each surface 7Y e) in o singloe
point. Cover 67[a, b] by a locally finite collection of bally of radius §e.
Let @; be the center of the ball Bi,i=1,2, .. Choose a vector v(w)
such that for each y such that |lwi—yl < e and a e A such that [|a— x4
< 8(ms)+ e we have v(2)-(y—a) > 0. That there is such a veetor follows
from our choice of e. Let {p} be a smooth partition of unity subordinate
to the cover {B;} of 67* [a, b]. Define a vector field by w(z) = Zpi(=) v (x:).
Let y(t) be an integral curve of this veector field. This means that y:
R'-R" and (1) = w(p(?)). Let ¢ and s be real numbers, § >'s

y
p()—yp(s) = f?/)'(m)dar;
t

= [ D #lv(@)-v(z)de
:Zm;cv(vz) ¢ =0, ¢cg=1t—s.

‘We may assume that ¢ and s are chosen so that for some fixed ¢,y (r) e B;
for all 7 between s and ¢ Let A;= {a e A| |mi—a| < d(m)+¢}. 4; is
compact. Let d be the Euclidean distance function. It is clear that
aly(r), A) = afy(r), 4;) for all r between s and ¢. It will sutfice to show
that for each aeA4; we have d(y(1), a) > d(y(s), a). It aedy,

Il (1)~ alP—lw (s)—alP = Iy ()~ @)P+-2(p ()= (9)- (w(s)—a) .
But,
[p()—9(s) w(s)—a) = Eciﬂ(wt)-(w(8)~(t) .
Since llw,- (sl < & for each ¢ with ¢; % 0 we have o(: («p § ~—a) >0,
Therefore, 6(1,0( )) = 68w (s)).
The proof in the noncompact case is somewhat more complicated.
Instead of ¢ we must use e(x). We omit the details. @

5. Counterexamples. The examples in this paper arve variations of a simple
construction which we now outline. Let .4 C R™ be a closed sct and lot * ¢ 4
be a.point. Define a function f: A—R! by the formula

k .
fla) = mf{z lai— a;_4|P| @i A, ag=, ax = a, and k an inte.ger} .
i=1
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It is clear tlLaJt [f@)—f) < llz—y|k for each w,yGA. Now, form

A* = {(a, £VF(a) ¢ B x R' = B**}, Tt is not hard to see (and will be
shown in the examples) that 4 x 0C R* ig contained in the critical
set of 4%,

BxAavmprLE 1. We construct a set 4 C R? such that &(e, 4) fails to be
a 1-manifold for uncountably many e.

Proof. Let € be the Cantor set obtained by starting with [0, 1] and
removing the middle two thirds at each stage. The complement of €
in [0,1] is a countable union of disjoint open intervals. We write
[0,1]—C = U (an, bu). Let fla)=3% > [ba—aq® for each aeC. We

n In<a
define
A = {(a, :};]//f(_a-)): aeC}.

We will identify ¢ with {(a,0): a ¢ C} C R’ For convenience, we will
refer to the point (a,0) simply as o We will refer to the points
(@) :tl/f(a)) as ot and a7, r’espectively

Step 1. We show that &(a) = Vf(a)

Proof. Since [la— | =} j(a), we have d(a) < V(a). On the other
hand, let g e 0. Then |la—fBif = |a—BP+f(f). If B >a, we are in fine
shape, since f is increasing. If < a

flo—fB) =% D ia—anf < Fla—pi.
p<bn<an

Therefore
lla— ¥ > la— B2+ f(a)— }la— B > f(a) .

This completes the proof of step 1.

Step 2. We wish to show that if b, < a is sufficiently close to a,
there is a point of 2(5(a), 4) in the interval (am, bm).

First, we notice that if a i3 not one of the by’s, then for large n there
is an interval (am, by) of length £(2)" with |bp— of < (3)*™* and bm < a.
Thiy is clear from the constructmn of C.

Second, we shall show that the point ty = % (am—-3bm) has the property
that d(tm, 4) > 6(a). Sinee d(am, 4) < d(bm, A) = 6(bm) < 6(a), this will
complete step 2. We can compute thatb

llon—B35IR = llim— a2 = f(bm)+ ()7

Since we know that [[bm— o < (1)"*%, we have f(a)—f(bm)<3 (Lynte,
Therefore |[tn— |2 > f(a). Now we need to show that b;,t and al zue the
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closest points of A t0 tm. If B > bm, (87— tull >[bt—tull. I @ < tm, wo
can write
l[tm— o[ = f(@) - l[tm— ol* = f(a)+ lam— alf*+[ftm— am|®
> f(am) + [[tn— aml? = [[tm— ag* -

Thus, the interval (am, bm) contains points of 3(6(a), A). Tt is clear that
the line from b7, to by, cannot contain any points of 8(0(a), 4). Therefore,
if ais not one of the b,’s, then 8(8 (a), 4)is not locally eonn,octed and cannotb
be a 1-manifold. This completes Example 1. &

BXAMPLE 2. We construct a set B C R such that (¢, B) has compo-
nents which are not 2-manifolds for uncountably many e Thus, Brown’s
theorem [1] does not generalize to R°.

Proof. Let B be AXx0C R*x R'= R where A is the sct from
Example 1. The proof in Example 1 shows that the component of 2(6(ay, A)
between the lines # = a, and 2 = b, consists of a simple closed curve
which is the union of segments of circles of radius 6(a) centered at o
and bf.

There are no points of (8(a), B) on the line ln = {(tm, 0,2) ¢ B*}.
Therefore, this simple closed curve is not contractible in I 1w D 8(6 (a), B}
Tt is easy, on the other hand, to see that the part of 8(3(a), B) in the region
z< o of R® is connected. @

Examrre 3. We construct a set ACR4 such that d(e, 4) i not

a 3-manifold for any ¢ such that 0 <e<< —— 100

Proof. This example is basically due to Whitney [6]. Omitted details,
including a picture, may be found there. Let @ be the unit cube in F°
and let Q(0), ..., @(7) be subcubes of side £ placed so that each is 3 unit
from the boundary of @ and <% unit from the boundary of adjacent
subcubes. Choose the enumeration of the cubes in such a way that @ (4)
and @(¢41) are adjacent. Let Q(0,1),...,Q(0,7) be cubes inside of
©(0) arranged in the analogous faJsluon The 111’001‘5001;1011 of these sets
of eubes is a Cantor set, K.

We can write each point of IC as Q(iy, .., iz, ...) with 0« iy T for
each j. Define f: K—R' by f(Q iy, -.r) ity -on)) = 115 s '110/87“ Lot

A= {(a, + l/f(a)) eR*x RY a efl.f .

We will use the same notation, a, a™, «= as Defove.

Step 1. We wish to show that if a € Q (y, ..., i) for k large and i = 0,
there is a component of 2(8(a), 4) in the area near @iy, «y i)

Proof. Le’o k be large enough that (1)"* < ()1 Teb

R

ae@Q, .. . Let Q* be the boundary of a cube with sidoes of length

3(z)R2 pamlld 0 Q (4, ey G—y)- We claim that if @ e Q¥, then 5 (2) >V f(a).
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Let f e K. We will estimate |jz— g¥>
Case 1. B¢Q(iy, ..., 15_,).

In this case, feQ(iy, ..., %) and B¢Q (i, ..., iy, for some I with
0< I k—2. Then

|f(a fﬂl<1nn 2(%)1.:111)0 %)17
r=lt1
and

lo—BFIF = lle— B IF+£(B) > 1i5 (5 +F(B) > fla) .
Case 2. If feQ(iy, ..., 4;_,), then

lo—BI* > [F5(H*F  and  fla)—f(B) < qm(DF .

In this-case we also have |lg— | = f(a). A similar calculation shows that
8(a) = Vf(a). This completes step 1.

Step 2. We show that if a= Q (44, ..., i, ...) with infinitely many
ix 5% 0 there is no neighborhood U of a with diameter < }$4(a) such that
U ~o(s(a), A) is homeomorphic with R

Let fe@(iy, o, %._;) ~ K. There are no elements of 8(6((1), A) on
the line I, from 7 to 7. On the other hand, we have shown in Step 1 that
676 (a)] separates f trom @*. Thus, by Alexander dusality, there is a two-di-
mensional Gech cocycle in 8(6(a), 4) ~ R® which does not bound in B*— .
Thevefore, it cannot bound in U—1,, which contains ol6(a), A)n T.

This leaves us with the case where a= @ (i, iy, ...) and iz = 0 for
all & > K. In this case, there is a neighberhood U of a such that () > f(«)
for all fe K ~ U. Let uye U n R Then the vertical ray through u, in
the upper half space of R* will contain precisely one point of 8(5(a), 4)
which is within }é(e) of R® The same is frue of the ray in the negative
divection. Thevefore, a has a neighborhood in 2(5(a), 4) which is homeo-
morphic to a double cone with o as the cone point. This completes the last
example. g

6. Addendum, There is a related theorem of independent interest.
Let A be o closed subget of R™.

Tunornm 6.1. Let K = {w ¢ R"| Intd (N (x)) # O} K is countable.

Proof. Let @,y e K with @ # y. Let S(z) and S(y) be the spheres of
radius d(2) and 6(y) about 2 and ¥, respectively. Then N (x) and N (y)
lie on opposite sides of the plane through the intersection of S(x) and S(y).
Therefore, [IntdC(N (2))] ~ [Intde(N (y))] = 0. A collection of disjoint
open subsets of R" iy countable. @

COROLLARY. For A C R?, let K = {x ¢ R*| N (x) has at least 3 poinis}.
I is countable.

Proof. The proof is immediate. @
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Abstract. The work deals with some classification of continuous functions transform-

ing plane into planc. For every finite or countable ordinal number was defined a class

Accepté par la Rédaction le 21. 11. 1973 ‘ of superposition of functions of bounded variation (in the sense of Rado, see [3]). The

main results of the work are following theorems: every class of superpositions is non-

empty and there exists a continuous function which does not belong to the sum of all

classes. Similar results for real functions of real variable are included in the classieal
work [1] by Nina Bary.

Nina Bary in [1] has studied the possibility of representing arbitrary
real continuous funections of a real variable only by superpositions of
continuous functions of bounded variation. She has introduced the notion
of superposition of class a for every finite or countable ordinal a and she
has proved that all classes of superpositions are non-empty and that their
sum is not equal to the class of all continuous funections. This work containg
similar results for plane transformations defined on the unit square (open
or closed). The notion of transformation of bounded variation is taken
from [3] and [4]. The definition of superposition of class a is similar to
that in [1] if « is 2 countable ordinal of the first kind (i.e. having a pre-
decessor) and differs from the definition in [1] by using uniform convergence
instead of ordinary convergence if a is a countable ordinal of the second
kind.

The work congists of two parts. The first part contains the proof
of an auxiliary theorem which explains the structure of plane transforma-
tions F,, F, such that their superposition F = F,oF, is of the form
P (o, a®) = (f(2), 2?) for (4", a*) [0, 11X [0, 1]. The second part contains
soveral theorems concerning superpositions of transformations of bounded
varigtion. The main results of the work are: Theorem 13, which states
that every clagss of superpositions is non-empty, and Theorem 14, which
gives the construction of continuous plane transformation which does
not belong to the sum of all classes (both these theorems deal with transtor-
mations defined on the open unit square) and the corollary (after
Theorem 14), which includes the same results for transformations defined
on the closed unit square.
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