Embedding Cantor sets in a manifold
II. Approximating spheres

by
R. P. Osborne (Fort Collins, Col.)

Abstract. It iy shown that Cantor sets can be constructed in s -manifolds that
behave with respeet to lying in open n-cells exactly as embedded spheres behave. That
is we can “approximate” an embedded sphere by a Cantor set. Since every Cantor set
in a manifold lies on & simple closed curve we show that n-manifolds that contain nicely
embodded spliercs that ave not homologieally trivial eontain simple closed curves that
lie in no open a-cell. . )

M will denote a topological n-manifold, 87 the p - sphere and B™~? the
pall of dimension, n—p = 3. A mapping h: X —-M" will be called homolo-
gically trivial it hy H(X) - H(M") is trivial for p =1, 2, ..., n. Our
prineipal theorem is the following.

Turornm 1. Let g: 82X B 7M™ be a homologically non-trivial
embedding with n—p = 3, then ¢(8?x B"P)C M™ conlains a Cantor set
that lies in no open n-cell on M™ If p=1 and g: 8*x B"™' > M" is homo-
topically non-trivial then g (8 % B") C M" contains a Cantor set that lies
in mo open n-cell in M.

Combining this result with Theorem 6 of [T] we get the following.

CororLARY L. If g: APx B"P?»M" is a homologically non-trivial
embedding and 0 << k< n, then M conlains a closed k-cell and a (k—1)-
sphere (with the exception of the 0-sphere) that lie in no open n-cell.

COROTTARY 2. If p--q=> 3 and p and g >0 then 87 x 8% contains an
are that lies in no open p--q-cell.

Proof. T p-q 3 5 or p= 1 and ¢ = 3 the result follows from Corol-
lary L. IE p == g = 2 tho result was given in [8]. Actually, it will be easy to
860 how to handle this case when the methods of this paper have been stus
died. It p-g==3 the result follows from [6, Corollary 1].

Tt should be mentioned that Doyle and Hocking [5, Theorem 7] argue
that an n-manifold in which every Cantor set lies in an open n-cell is
simply eonnected. However, in their proof they seem to assume that
simple closed curves have trivial tubular neighborhoods. This is not even
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the case for the projective plane. Their argument is correet for orientable
3-manifolds.

Corollary 1 shows that engulfing without a local flatness eondition is
not possible even if we are only trying to engulf an arc with a ball in
2 100-connected manifold!

The author wishes to thank David G. Wright for pointing out an error
in a previous version of Lemma 4.1 and showing how to correct this exror,
The statement and proof of the present version of this lemma are essentially
those suggested by Wright.

2. The construction of the generalized necklaces. In this scetion wo give
a construction of a wild Cantor set in E”. Although the construction given
is related to the construction of Blankinship in [3] it is somewhat different
and we get a stronger result than Blankinship got (Theorem 2.5). Although
many details of the proofs of this section have been omitted they are not
difficult to £ill in. The most frequently omitted arguments involve the use
of the Van Kampen Theorem.

Tig. 1

Let T be a solid torus and let 7%,..., T be four eyelically linked
solid tori in T§ as shown in Figure 1. Tf we construet four linked solid tor
inside each T, construet four more linked solid tori ingide cach of these, otic.,
as in the construction of Antoine’s necklace, we can prove the following
theorem. In this and the following sections all unlabeled maps are talken, to
be those indueced by inclusion.

TrrOREM 2.1. Given e >0 there emists a sel DICTY such that

1) D; is the union of disjoint solid tori each of diameter less than e,
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5718 B 739 . .
2) iy (015) = my (Th~D?P) ds o MONOMOrphism,
3) (1 ~I) > 70y (BP ~D2) is & monomorphism.
Properties 2) and 3) ave derived from Theorem 1 of [4].
Denote by 1, the positive half space of B given by
gy By oy @) € B @ > 0} .
v 1 v Y 55 ~ o~ ~ R
Lot X C It ])1",1'111.0 ’,‘\. C. H* by X = {(@,®,, ..., ¥,) « B there exists
(i &, e Ty 1) € & and there exists 0 such that @; = Z; for i=1,2,..
ey N2y 8, qeo80 and @, = «,_ sinf). X is called the rotation
(Lf X about the f 2)-coordinate axes. It is easy to show that
X = 8" X. (Throughout this paper we use 2 to denote homeomorphism.)
It is not necessary to distinguish between two homeomorphic spaces unless
we are concernced with embedding properties.
The following lemma is a trivial generalization of a theorem of Avtin [1].
Timmma 2.2. Let X CHY™ and assume B ~X is path connected.
Let X C " be the rotation of X about the first (n— 2)- coordinate axes. Then
(BT~ X) oy (B~ X) is an isomorphism.

b

Tmma 2.3, Let Xy, X,y and X, be compact metric spaces and let g: X, »X,
be a homeomorphism. Define o1 Xy x Xy X Xy - X, X Xy X Xy by o(, @, )
= (g (1), g (), .'I:,,). Let ¢ >0 be given. Then there ewists () >0 such
that if the diameler of subsets A and B of X, XX, is less than 6(c) and
fi Xy Xy—A then the diameter of (1Xf)o(Xyx B) is less than e.

The proof of the above lemma is a routine exercise in point set topology.
In fact the hypotheses could be substantially weakened without changing
the conclusion.

Notation. (§')* denotes the k-fold product of S*.

DErINITION. An #-tube is a space homeomorphic with (84"~ x 1%,
where 1% denotes a solid torus. T® will henceforth denote an n-tube.

We can now proceed inductively to construct the pair (1% D7) in B™

TurorREM 2.4, Let & > 0- be given. There exists o patr (I™, DY) in ET,
n 3, such that

L) P C™ s the wndon of digjoint n-tubes each of diameter less than e,

9) gy (B > g, (1~ D) 48 @ monomorphism,

3) (0 ) s g, (0 DY) ds 4 monomorphism.

Proof. Suppose we have proved the theorem for dimensions less
than n, that is for any choice of § > 0 we have a pair (7%, Di™") satis-
fying 1), 2), and 3). We may assume that ™ ig in BY™'. We rotate B*
about the hyperplane determined by the first (n— 2)-coordinate axes.
This generates o pair  homeomorphic with (8;x 7" 8;x D§). By
Lemma 2.2 this pair satisfies condition 3). Clearly condition 2) is satisfied.
However condition 1) is not satistied. In. order to insure that the diameters
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of each component are small we view (S;xT"™", 81X Dy) as a produet
space with the usual product metric and switch coordinates as in
Temmsa 2.3. Note that Six 7%= 81x 8ix I"* and let g: S7—8] be
a homeomorphism. Let 777 i =1, 2, ..., k;, be the components of Di+,
For each 4, choose a homeomorphism fi: ™t 1t Now we apply
TLemma 2.3 to show that each component of (1Xfi)o(S]x.Di™) has

diameter less than s. A simple application of the Van Kampen Theorem
ks

shows that 2) and 3) are still satistied by the set (J (1 X fi) o (S*x DF™).
gl

Using Theorem 2.4 it is now a routine matter to-construct the Cantor
set 4 C 7™ C E™ One need only map the model (1™, D7) homeomorphically
onto each of the components of D? successively, choosing ¢ at cach step so
that the diameters of the components at successive stages approachey zero,

From Theorem 2.4, 2) and 3) we use direct limits to got:

TEEOREM 2.5. A C T"C E" is a wild Canior set. Furthermore,

oy (B~ T") = (B" ~A)

is a monomorphism.

COROLLARY 2.6. m(B™~A) contains no non-trivial elements of finite
order.

3. The embedding of T™ in 87 x B, Let h': (8%)? x B'— &Y < B bo
an embedding such that S?XB'~n'((S"?x B') has exactly two com-
ponents, one containing 87 x {—1}, the other containing &% x {1}. Let
B (8YH"PTEx B'>Int(B"PTY) be any embedding. Define b= h'x
X W (8P % BYx ((SY"P 2 x BY) —» (8 x B x B"?7%,  Since ((8') x
x BY x ((81y""?~*x B') is homeomorphic with (8')*~*x B we shall henee-
forth assume that k: (SY)""2x B 8% x B,

LeMMA 3.1, hy: H,((8Y)7 X B"?) - H,(8? X B""T) is an epimorphism,
and if p=1, h: m(8' X B* ) »m (8 x B"™Y) is an isomorphism.

Proof. Since 2'((8")F x {0}) separates 87 x BY, it follows that 4'((8") x
x {0}) carries a cycle homologous with a generator of F(S¥ x B').

4. Proof of Theorem 1. Throughout this seetion all unharoed maps
will be assumed to be induced by inclusion. (%)™ will be thought of as
a subspace of (8')* obtained by the injection omto the first m factors
of (8. (§)™ denotes the subspace of (SY)* obtained by injection of (§%)™
onto the last m coordinates of (%)% ‘

Leyva 4.1 Let PC(8Y* be o polyhodron. If Tmm(P) - m(S")Y)
48 a subset of Im(nl((Sl)"“l)—»nl((sl)’v‘)) then Im(chﬂ((Sl)h'"l)-—>H7¢_1((81)k)
is a subset of Tm(H, (8~ P)—H,_,((8")). :
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Proof. Let g: (8~ x B'—(§)* be the covering projection that is
the identity on the first k—1 coordinates. We may assume that P i con-
nected (since if not we can enlarge it without changing the assumed property
of its fundamental group so that it is). Our hypotheses guarantee that each
component of ¢7*(P) i3 a compact polyhedron. Let N be a regular neigh-
borhood of ¢™(P) in (§")**x I". Let N be the union of all components
of N which intersect (87)°7*x {0} and let N¥= & ~ (84 x [0, ).
Clearly ON* detiermines a bounding cydle in the (k— 1)- dimensional chain
group of (8"~ x E'. Call this cycle b;_,. Denote by Cy—; the generator
of the (k—1)-dimensional homology of (§')F~ x E* earried by (8% x {0}.
Now with the proper orientations ¢,_,—b,_, is a generating cycle for
Hyo((SYF X B'Y) and lies in (§8%¥* x B*~p~Y(P). The lemma follows.

LuMMA 4.2. Let P be o finite polyhedron in (8 and suppose (L)

- my((8Y¥) 48 trivial on the last two factors, i.e., Im(yzl(P)—-)rcl((Sl)k)) is
P X

in Ker(yzl((S‘)"“)—»nl((ﬁl)ﬂ)) where ¢ is the projection of (SY)* onto the last
two coordinates of (SY)*. Then nl((S‘)’“NP)—»nl((S‘)k) is an epimorphism on
the last two factors, i.e., the injection (8")* ~P —(8M* followed by @ induces
an epimorphism on the fundamental groups.

Proof. Without loss of generality we may assume that P is connected.

Let p: (8")F~*x I*—(8")* be the covering projection for (§*)* that is the
identity on thoe fivst k—2 factors. The hypotheses guarantee that each
component of o~!(P) is a compact polyhedron. Let P be union of all boun-
ded components of (8152 x B2~} P). Then because Hy,_((8H)2x B?)
is trivial, each component of a regular neighborhood N of P has a connected
boundary. From this we see that (8§")**x B>~ is path connected. Let
@y € (8")F ~o(P) be a base point for @ (S")r. The points in p~Y(z,) can all
be joined by paths to a base point @, in ¢~*(z,). ¢ of these paths followed
by the projection onto the last two coordinates provides the desired
epimorphism.

Proof of Theorem 1. Let b be as defined in Section 3. If gh(4) lies
in an open n-cell in W™ then it lies in a nested pair of closed eells ¢, C Int C,.
Triangulatoe é)(ylu(,’lm)) g0 that no simplex intersects both C, and 20, and
lot X be the union of all simplexes of &(gh(T™) that do not interseet Cj.
Suppose K containg a loop fin é)(gh(l’”)} that projects non-trivially into
the gh(aB?) factor of gh(e2™). This loop lies in M"~C,, is homotopically
trivial in M™ and iy linked with gh(4) in g(S? x B"*7?). This last statement
follows from Theorem 2.5 and an application of the VanKampen Theorem
to 8§2x B* P C L™ Another application of the VanKampen Theorem
shows that 8 is homotopically linked with gh(4) in M™. (It is at this point
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that we use n—p >3 80 that x,(2B""?) - 1). This contradiction leads us
to conclude that K contains no loop that projects non-trivially into the
gh(2B?) factor of gh(921™). By Lemma 4.1,

Im H,,_o(6(gh (T"™)) = H,, _o{gh (61™))
‘is cbnteuined in '
Ton (H, oo g5 (27) ~ ) > H, oo (gh (7)) :

This implies that gh(@T™) carries only homologically trivial eyeles in J"
By Lemma 3.1 g(87) is homologically frivial in 2™,

If p =1 we need to modify the Cantor set h(4)C §'x B**. We do
this by constructing another Cantor set 4 in 8* x B*™* 5o that if y is a loop
in @7™ that prejects non-trivially by the projection of 27™ onto the next-
to-the-last factor and & (y) is homotopically trivial in 8 x B** then h(y) is
linked with A. Let b*: 7" -8 x B*™* be an embedding with the property
that & (y) is linked with 2*(T") in 8* x B Then by Theorem 2.5 and an
application of the VanKampen Theorem we see that A = A*(4) has the
desired properties. . ‘

‘We are now ready to complete the proof of Theorem 1 in the case
p = 1. Denote by A* the Cantor set g(h(4) v A) in g(S* x B*1). Let 0y, 0,
and K be defined as above. Suppose K contains a non-trivial loop p that is
homotopic with a non-trivial loop in Im(m(gh(ﬁl X 0BY) - m(gh ((’)T”))).
Then § lies in M™~C; and is linked with A*. This contradiction leads us to
conclude that K satisfies the hypotheses of Lemma 4.2. It follows from
this lemma that m,(07"~h~"g™*(K)) contains a loop 6 homotopic with the
generator a of Im(m,(§') -7, (6T"). But then gh(6) lies in C,. Theorem 1
follows.
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