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Filter characterizations of z-, ¢*-, and ¢-embeddings

by
Robert L. Blair (Athens, Ohio)

To the memory of Lee W. Anderson

Abstract. The paper [6] by the author and A. W. Hager is supplemented here by
a number of filter-theorvetic characterizations of z-embedding, and of those conditions
which must be added to ¢-embedding to produce 0*- or O-embedding. Thesé lead to
filter characlerizations of *- and C-embedding which include results of J, W. Green [15].

1. Introduction. The subset § of the topological space X is z- embedded
in X if cach zero-seb of S is the restriction to 8 of a zero-set of X, (A zero-set;
is the set of zeros of a veal-valued continuous function.) The notion of
z-embedding oceurs (sometimes only implicitly) in some special contexts
in the early papers [12], [167], [17], and [18]. In 1963 the author initiated
the general theory of z-embedding, and at the same time introduced the
term “g-omboedding” itself. (See [2]; portions of [2] are incorporated
in [3], [4], [B], and [6].) Subsequently, the theory has been developed
by A. W. Hager and by the author (sometimes jointly), as well as by others ;
see [6] for a number of basic results and for a comprehensive bibliography
of relevant papors,

This paper may be regarded as a sequel to both [6] and [15]: [6] is
devoted to & study of 2-embedding and its relation to 0*- and ¢'-embedding,
but convergence (i.e., filter-theoretic) considerations are ignored. [15], on.
the other hand, is devoted to filter ¢chavacterizations of ¢*- and ¢ -embed-
dingy, but with no mention of z-embedding. In the present paper we
supplemont both [6] and [15] by providing Lilter characterizations of 2- em-
bedding (see 3.1) and of those conditions which must be added to 2-embed-
ding to produce ¢*- or ¢-embedding (see .1 and 4.2). The ¢* and C-em-
hedding characterizations of [157] (as well as improvements thereon) arc
then, deduced as consequences (see d.1 and 5.3).

Bxeept for 3.2(d), 3.5, 3.6, and 3.9, the results of this paper require
‘nQ‘ separation axioms.

2. Preliminaries. We assume familiarity with [11], whose notation
and terminclogy will be used throughout.
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Throughout this paper, X will denote a topological space. If f e O'(X),
then Z(f) denotes the zero-set of f. The set of all zero-sets of X iy denoted
by 3(X).

By a filter (rvesp. filter base) F we shall always mean o proper filter
(resp. filter base) (i.e., @ ¢ F). Let % and B’ be filter bases on X. As usual,
we say that B is coarser t}mn B, and B’ is finer th an 9B (written 3 < Jj’
or ' > B), in case every member of B contains some member of B,
If 8 C X, then (by abuse of language) we say that S meets B in case § meety
every member of $B; and that B meets B’ in. ease every member of B meety
every member of $'. The trace of % on § is the set B|8 == (S A B: B < &},

A filter base B on X is completely regular in case for cach B e $ there
is B” ¢ 3 such that B’ and X— B are completely separated (ef. [8], Chap. 1V,
§ 1, Ex. 8). A completely regular filter is mawimal if there exists no strietly
finer completely regular filter. By Zorn’s lemma, every completely regular
filter on X is coarser than some maximal completely regular filter on X,
We collect some additional needed information in the following proposition
(which will sometimes be used without explicit mention):

2.1. PrOPOSITION. (a) If F is a completely regular filter on X, then
these are equivalent: (i) & is maximal. (i) If Z, Z' ¢ 3(X), and if Z and 2’
meet F, then Z ~Z' #@.

. (b) If & is a mazimal completely regular filter on X, then there is a unique
z-ultrafilter W on X finer than F; and if Z € 3(X), then Z ¢ L iff Z meels F.

() If W is a z-ultrafilter on X, then there is a unique maximal completely
regular filter on X coarser than .

(d) ([15], Lemma 4) Let S CX. If F is a mawimal completely reqular
filter on 8, then there is a unique maximal completely regular filter on X

Jo

coarser than JF

Proof. For (a), see the proof of [15], Lemma 3. To prove (b), note
that & ~ 3(X) is a base for a z-filter, and is therefore contained in some
z-ultrafilter (which is necessarily finer than &). To prove (), note that

B={f7"0,1T: fe O(X), f>

is a completely regular filter base on X. Then $C ¢ for some maximal
completely regular filter G, and § is coarser than . We omit the detadls.

Let 8§ C X and fe C(8). For each real number ry wo (efine (a% in [20])
the Lebesgue sets L(f) and L'(f) of f as follows:

L(f) I (f) 7.

We shall say that f is z-embedded in X in case, for cach r, there exist
Z, 7" ¢ 3(X) such that L(f) = 8§~ Z and I'(f) = § ~ %', ('L‘ho theory of
z- embedded functions will be treated in detail clsewheie. ) A filter 7 on §
will be called z-embedded in X in case for every F e & there exist IV e F

0,7>0,ZCZ(f) for some Z e AL}

= {wel: flo) 1}, f={weS: fla) >
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and a z-embedded function fe ¢(8) which completely separates B and
S—F (i.c, f==Tonk' f=0on §—F, and 0 < f< 1). Bvery z-embedded
filter on N is, of course, completely regular. The following is a partial
converse: :

2.2. ProrosirioN. Let SCX. If F 4s a mazimal completely regular
filter on S, and if T < G|N for some completely regular filter § on X which
meels S, then F s z-embedded in X. :

Proof. By 2 1((1), there iy o maximal completely regular filter F*
on X such that F* < F. Then ¢ meets F*, s0 § C F* by the ma,mmwhty
of F*. Let I e F. Then, lf'D 6 ~ 8 for some @ €8, and there is ¢ ¢ § such
that ¢ and X ¢ are completely separated in Y. Moreover, since ¢ e F*
we have ¢ D B for some I e F. Choose fe O(X) such that f completely
separates ¢ and X @, Then clearly 18 is 2-embedded in X and completely
separates I and - K.

Wo reeall one bit of notation flom [11]: If f: X - ¥ is continuous,
and if & is o z-filter on X, then j *#(F) denotes the z-filter on ¥ consisting
of all Z e3(Y) such that j“‘ ) e F (see [11], 4.12).

It 5 is o 2-Lilter on o sabset § of X, and if p: §— X is the canonical
injeetion of § into X, then we call p* (F) the z-filter on X generated by F.
It & is a g-ultrafilter on S, then ¢*(F)is a prime 2-filter on X ([11], 4.12)
and henee iy eontained in a unique z-ultrafilber W on X ([11], 2.13);

o call AL the z-wlirafiller on X determined by &F.

We shall make frequent use of the following:

2.3, Prorosrion. (a) ([3], 2.2) A «-filter F on X is a real z-ultra-
filter on X if and only if F is prime and closed under countable inter-
section. '

(M) (131, 2.3) If F is a real z-wultrafilier on X and if f: X Y s con-
tinuwous, then f*(F) is o real z-ultrafilter on Y.

3. Characterizations of z-embedding. In 3.1 we give several characteri-
zations of z2-cmbedding. (For convenicnee, wo include one that is not
filtier - theoredie,) Wxeept for (4), cach of these characterizations will be
applied later in this paper. The equivalence of (a), (¢), and (c) makes elear
the convergence-theoretic veason for the importance of z-embedding
(particularly in completely regular spaces, where -filters play a central
role).

3.0 Taimoruem, If 8 CAX,

(uA) N is z-embedded in JX

) If § is any z-ullrafilter on S, and if p: 8 —X is the canonical ingec-
ton, oj S dinto X, then §C o*(8)|8.
(e) If F is any 2-ultrafilter on X which meets S, then F|8 is a z-ultra-

filter on 8.

then these are equivalent:
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() If F is any z-ultrafilter on X which meels 8, then F |8 is a prime
z-filter on 8.

(e) If F is amy real z-ultrafilier on X which meets S then |8 is @ real
z-ultrafilter on S.

(£) If A, and A, are subsets of 8 that are ('omph'{r by separated in 8,
then there emist zero-sels Zy, Zye3(X) such that A, CZy, Ay C 7y, (md
ZinZyn 8 =10.

(g) Bvery (mawzimal) complelely regular filter on S ds g-embedded in X,

Proof. (a)=(b): If A e§, then, by =2 -embedding, A == 8 ~Z for
some.Z e 3(X). Then clearly .4 e (%) 8.

(b) = (c): If & is a z-ultrafilter on X wlaic‘,.ly meets S, then F|8 is
a base for a z-filter on §. By Zorn’s lemma, F|8 CG for some e-ulbrg-
filter § on 8. Clearly & C ¢*(8), s0 F == ¢*(¢). Then F|8 == ¢ by (b).

(¢) = (d): This is immediate since a g-ultrafilter is necessarily prime
([11], 2.13).

(d) = (e): Tf & is a real z-ultrafilter on X which meets S, then |8 iy
closed under countable intersection (becanse F is), and is a prime z-filter
on X by (d). By 2.3(a), |8 i8 a real g-ultrafilbor.

(e) = (f): This is trivial if either A, or 4, is empty, 8o assume neither
is empty. Since A4; and 4, arc complutoly %panmtml in. 8, there oxigh
Zie3(8) with A:CZ; (i=1,2) and Z; nZy=@. Pick wed, and lot

= {Ze3(X): meZ}. F is a real z-ultrvafilber on X, wo F [N i & real
¢-ultrafilter on § by (e); and since %, meels F |8, we have Z) ¢ F 8. Thus
Z; = Z, ~ 8 for some %, ¢ 3(X). Similarly, Z, = Z, ~ & for some Z, ¢ 3(X),
and clearly Z, n Z,~ 8= 0.

(f) = (g): It suffices to show that every fe ¢(8) is z-cmbedded in X,
If 7 is real and % > 0, the Lebesgue sets L,(f) and LMUM( f) are completely
separated in S, so by (f) there is Zy3(X) with L.(f)C Z, and
Zy A IFHOM(F) = @, Then (N Zy e 3(X) and L(f) = (7 Zu ~ S. The argu-

n w
ment is similar for L'(f).
(g) = (a): Let feO(S). For cach n >0, seb
Ay = {wel: |f(a)| = Ln},
and set Ay = Z(f). Forn = 0,1, 2, ..., lot Bu = {g~'[0, #]: # 3= 0, g & non-
negative z-embedded function in ¢(8 ), and A% C Z(g)} Bael ‘l’.,, in w0 (com-
pletely regular) filter base on S. (This follows from the identity
g0, 71 ARTHO, 1= (g v )0, 7 A 8] (g, b3 0),
and the formulas ‘
Lr(g v h) =

Lig) "Lk, I'(g v h) = L'(g) © L'(h)

{which imply that g v kb is 2-embedded if both g and & are z-ombedded).)
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Suppose that B, meets some B, y % >0. Then there is a maximal
completely regular filter F on 8§ that contains both By and B,,. We claim
that F moeets A,. If not, there is F e F with T ~ Ao = 0; and then by (g)
there exist I ¢ F and a ponnegative z-embedded ge C¢(S) such that
g=1 on F' and g=0 on S—F. But then ¢ Y0, eB,CF, so0
g0, F] 4 Gy o contradietion. Thus & meets 4,, and, similarly, & also
meety A,. But 4, and A, are disjoint zero-sets in S, which is contrary
to 2.1(a). We conclude that 8, misses every $,, n >0, and hence for
cach n =0 there is w 2-embedded gn e O(8) with 4,C Z (ga) and Z(gn) n
A Ay == O BInee ¢y is 2-embedded, there is Z, ¢ 3(X) with Z(gn) = 8 ~ Za.
Then. H Zy € 3(X) and Z(f) s ﬂ Zn ~ 8, so the proof is complete.
(3 N

3.2 Remarks. (a) The equivalence of (a)-(f) of 3.1 is proved in [2];
(a) < (f) iy recorded again in [1], Theorem 6(1).

(b) The implication (a)=> (¢) is proved by Green ([14], Theorem 3)
under the hypothesis that § iy *-embedded. 3.1(c) can fail spectacularly
if § is not 2-embedded: the proof of [15], Lemma 9 shows that if § is the
z-axis of the tangent circle space I' (see [11], 3K), and if F is a z-ultra-
filber on [ which meets 8, then F|8§ is never even a z-filter on 8.

(e) If in 3.L(f) the requirement “Z; ~ Z, ~n S = @” is replaced by
“liy ~ Zip == 37, then the resulting statement is precisely the condition for
¢*-embedding given by the Gillman-Jerison version of Urysohn’s Exten-
gion Theorem ([11], 1.17).

- (1) Congider this modification of 3.1(¢): (¢/) If F is any z-filter on X
which meets S, then T8 is o 2-filter on 8. It ig easy to see that (a) = (o').
We are indebtod to the referee for the following observations:

(i) I¥ X i8 Tychonoff, then (¢') = (a). More generally, if there is
a function f e ¢(X) which is nonconstant on 8, then (¢’) implies that § is

omhoddud in X. To soo this, pick @, w, e § with f(z,) # f(2,), and set

s {7 e 5(X): wy e Z}. Then there exist Z; ¢ F; such that Z; n Z, = 0,
‘md by (e'), Fi|8 is o e-filter on 8. Let A «3(8). Since (4 v Zy) mS
DZy 8, wo have (A w Zi) ~ 8 ¢ F4| 8, and hence (A v Zy) n8=Z; 8
for some Z; e 5(X). Then A == Z; ~Zy~ 8, so § iy z-embedded in X.

(i) Tt A Do w regulay ’U":Hp(wu on which every real-valued con-
tinwous funetion iy constamt. If a, be X with a % b, then 8= {a, b}
satintion (¢'), but & iy not s-embedded in X. ‘

We next consider hriefly the following weakening of 3.1(¢) (see the
diseussions in [13], pp. B4EL, [15], pp. 1031, and [21], p. 177):

(% ) Tt & iy any s-ultrafilter on X which meets S, then 7|8 is a base
for a e-ultrafilter on S.

Lot us eall o subset 8 of X weakly 2-embedded in X in case whenever
A, Be3(8) with Ao B==8, cithet A=F8nZ for some Ze3(X) or
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B =8~ Z for some Z' € 3(X). Obviously every z-
z-embedded.
3.3. ProrosiTION. If S @8 a weakly =
~ compact space X, then S satisfies (x).
Proof. Let 7 be a g-ultrafilter on X which meets 8. Then F[§ iy
a base for a z-filter § on 8. We show first that § is prime: Let 4, B «3(9)
with 4 v B = §; it suffices to show that A «§ or Be§ ([LL], 210.2). By

embedded set is wealkly

-embedded subset of a 'pseudo-

weak z-embedding, we may assume that 4 == 8 ~'Z for some Z e 3(X).

Now it Z' ~n A = @ for some Z' ¢ F, then Z' ~ 8 C B, whenee B e G, Thus
we may assume that 7 meets 4. But then F moeets 7, so 4 ¢ F[SC6,

Observe mext that J is real: If not, there exist fu e (X)) with
0<fu<<l, Z(fa)eT, and () Z(fu)=0; but then [f== ¥ 27, iy in

n "

C(X), Z(f) = ©, and 1jf is unbounded. It follows that ¢ is closed under
countable intersection, so § is a (veal) z-ultrafilter by 2.3 (a). Thus (x) holds.

The converse of 3.3 is false; sce 3.8 below,

3.4. Remarks. Mrowka ([21], 2.7) has given an example of a zero-set §
m a (completely regular, zero-dimensional) pseudocompact space X which
satisfies a condition somewhat stronger than weak &-embedding, but which
is not z-embedded. By 3.3, this § satistics (x) (this is noted by Mréwla),

50 (x) does not imply z-embedding. The relationship between - embedding,

weak z-embedding, and {* *) for non-pseudocompact X iy left open by
Mréwka. On this question we can contribute two facts: for psendocom-
pact S, (x) is equivalent to C-embedding (sce 5.6 below); and the following:

3.5. THROREM. Let S be a vealeompact subset of « completely reqular
space X. If 8 is weakly z-embedded in X, then S is z-embedded in X (and
hence (*) holds).

Proof. Let 4 €3(8) and let

={{8—4)nZ: Ze3(X) and ACZ}.

It will suffice to show that @ ¢ 5. Suppose, on the contrary, that € ¢ B,
Then & is a base for a z-filfer & on the space S—A, and clonrly F is
closed under countable intersection. Morcover, Ty complete regularity
of X, F=0.

Wc claim that the e-filber F is prime: Lot Iy, By e 3(8-- A) with
Fy o Fy= S8—A. Now §—4 i cozero in S and henee o-cmbeddod in §
(see [6], 1.1). Thus there is B;e3(S) with Iy == (8= A) ~ By Thon,
AVTi= 4w By s0 Aol e3(8). By weak z-embedding of ¥, m follows
that either 4 w Fy= 8~ Z, for some Z, €3(X) or A Bye: 8§~ 7, for
some Z, e 3(X). But then either F, ¢ B or Fy e B, 50 F is prime.

Now by 2.3(a), 5 is a veal z-ultrafilter on §— 4. Since - A is cozero
in the realcompact space S, 8— 4 is itself realcompact ([1L], 8.14). Butb
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then, F —o for some @ ¢ §— 4, which is a contradiction. This completes
the proof.

A closed subset of a realcompaet space is realecompact ([11], 8.10),
so we have:

3.6. COROLLARY. 4 weakly z-
space is 2-embedded.

‘We now show that the converse of 3.3 is false. (This improves the
observation in [15], p. 103 to the effeet that (x) does not imply ¢*-embed-
ding.) Llemma 3.7, which follows, is due to A. W. Hager. (For 3.7 and related
results, see [7].)

3.7. LimmMA (Llager). If A is a countable (Tychonoff) space with no
countable base, and if B is a disevele space with cardinality 2%, then A X B is
not 2 cmbcdded in BA X pB.

3.8. Ixamrrn. There is a compact Hausdorff space X and a (real-
compact) subset 8 of X such that § satisfies (), but such that S is not
weakly z-embedded in X

Proof. Choose A = {a,, a,, ...} and B as in 3.7. (For an example of
such an 4, $ee c.g. [10], Hxample 3 1.4.) Let X = BA X B and S = A x B.
Since A and B abo re; alcompact, S is realcompact ([11], 8.11). By 3.7 and 3.5,
it will therefore suffice to show that § satisfies (x).

Let F be a z-ultrafilter on X which meets §, and let § be the #-filter
on § genernted by F|S. Let g« 0(8), 0 < g<1, and assume that Z(g)
mects 8. For each n, let A, = {ay, ..., ¢z}, and let 8, = 4, x B. Extend
g1 8n t0 hy e ¢(X) (Livst extend over 4, x B, and then over X). For each
integer ¢ 2= 1, there is Ky e O(X) with kye=1 on {a,, ;} X B, ku=10
on Ay x BB, and 0 < ki < 1. Let Foo = ha V kne and set Fp= 3 27 Fpi.

T
Then ,e 0(X), and one casily verifies that Z(Fu) ~ 8= Z(g) ~ Sa.
Now suppose tlmt Z(Iy) ¢ F for all n. Then for each n there is Z,, ¢ &
with Z () ~ Z;, == 0. Let Z' = ﬁ Z, and note that Z' ¢ F (since X is

compaet). Then Z(g) ~ Z" £ 0, s0 Z(g) ~ 8y~ Z" £ @ for some n. Bub
then Z(Ih,) ~ 7'+ 0, a contradiction. Thus Z (I"m) e J for some m. Since
Zi(By) 8 C Z’(g) we have Z(g) €, and it follows that § is a z-ultrafilter
on S. Thus () holds, and the proof is complete.

Wo eonclude this seetion with a simple application of (a) = (e¢) of 3.1 to
realcompactnoss, (For some other applications of a somewhat similar na-
ture, see the proofs of [5], 2.2 '1,11(1 [3], 2.6, 6.3, and 8.1.)

Reeall that a map f: X -7 is z-closed in case f(Z) is closed in ¥
whenever 7 e 3(X).

3.9, TunornM. dssume that X and ¥ are Tz/("h(moff If X ds 1ealcom-
pact, and if theve ewists & continwous 2- closed map f+ X -1 such that f~(y) is
realcompact and - embedded in X for every y e Y, then X is 7ealcompaot.

embedded closed subset of a realcompact
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Proof. Let F be a real z-ultrafilter on X. Then f*(F) is a real z-ultra-
filter on ¥ (2.3(b)), so f*(F)—»y for some ye Y. If Z T and y ¢ f(Z)
then (sinece f is z- closed) there exists 2’ e 3(Y) such that f(%)C 2’ and
y ¢ Z'. But then f~(Z') e F, so Z' «f*(F); hence y e Z', a contradiction.
Thus 8 = f~}(y) meets F, so F| S is areal z- ulfmhl‘ou on § by 3.1. Since S is
realcompact, 7|8 —# for some z ¢ §. But then F -, 50 X is realcompact.

3.9 generalizes [19], 5.3 and [9], 4.9. It ,shoul(l be remarked that 3.9 iy
only a fragment of the general theory of realproper maps (see [4]).

4, z-embedding versus (*-and C-embedding. As in [6], § 3, we consider
the following three conditions on an embedding S cA:

() Disjoint zero-sets of § are completely separated in X.

(B) If %y, Zo e 3(X) and Zy ~ Zy n 8 = O, then Zy n S and Zy ~ 8 are
completely separated in X.

(v) § is completely separated from ecach disjoint zero-set in X.

These are important because of the following: («) is equivalent to
C*-embedding (the Gillman~Jerison version of Urysohn’s Extension
Theorem [11], 1.17, [6], 3.6A; cf. 3.2(c) above); ¢-embedding plus (B) is
equivalent to C*-embedding (41A below); C"-embedding plus (y) is
equivalent to C-embedding ([11], 1.18); and (more gencrally) ¢-embodding
plus (y) is equivalent to C-embedding (4.1B).

Conditions (B) and (y) are characterized in [6], 3.1 in terms of partial
extendibility of functions. Here we supplement the results of [6] by giving
filter characterizations of both (8) and (y) (4.2 below). In § 5 these will
be combined with 3.1 to yield filter characterizations of C*- and
C-embeddings.

The following is given a different proof in [6], 3.6. We¢ base our argu-
ment here on the easy equivalence (a) < (f) of 3.1.

4.1. TueorEM. Let S C X,

A. These are equivalent:

(1) § is z-embedded and (B) holds.

(2) 8 is C*-embedded.

B. These are equivalent:

(1) 8 s z-embedded and (v) holds.

(2) 8 48 C-embedded.

Proof. A. This is immediate from (a)
of («) with C*-embedding.

B. If (1) holds, then by [11], L.18 (above) it suffices tio show that & is
C*-embedded. Let 4, and 4, be completely separated in & and choose
Zyy Zy €3(X) as in 3.1(f). By (v), § and Z,~ Z, are cowmpletely sepa-
rated, so there is Ze3(X) with SCZ and Z 2%y~ Z,== O. Then
Z ~nZ, and Z n~ Z, are disjoint zevo-sets in X containing .4, and 4,

< () of 3.1 and the equivalenco
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go 8 is C*-embedded by Urysohn’s Extension - Theorem The converse is
clear from [11], 1.18,

The deceptively simple 4.1B is actually a result of some importance in
the theory of (f-cmbedding; its depth is roughly that of Urysohn’s Exten-
sion Theorem (ile latter being used in an essential way in its proof).
Tor some applications of 4.1B, sce [6], 4.2 (which includes [14], Theorem 7),
[6], 4.4, 4.5, and 4.6, [3], 3.2, 3.4, and 5.1, and 5.2 and 5.3 below. In the
same vein, we note | fhat [1")], Theorem. 6 asserts that a zero-set § in X is

(-embedded in X if and only if § satisfies 3.1(c) above. Since a zero-set
automatically satisfics (v), this is an immediate consequence of 3.1 and 4.1B.
(Two other hypotheses on § automatically ensure (v); see 4.5(b) below.)

4.2, Turorum. Let S C X,

A. These are equivalent:

(1) (B) holds.

(2) If 5 is any maximal completely regular filter on X, and if F|S
me(‘ts Ziyy Zy € 3(X), then Zy ~Zy~n 8 £ G.

B. These are equivalent:

(1) (y) holds.

(2) If F is & maximal completely regular filter on S, and if W is the
wnique z-ultrafilter on X finer then the unique maximal completely regular
filter on X coarser than F, then U meets S. )

(3) If G 48 any z-filter on X which meets S, then there exisis a z-ultra-
filter W on X which meets §|S.

Proof. A. (1)=-(2): If (2) fails, then there is a maximal completely
regulay filter F on X with the following property: there exist Z,, Z, ¢ 3(X)
such that F|8 meets Z; and Z,, but Z, nZ, ~ 8§ = O. Since F meets
both Z; n 8 and Z, ~ 8, it follows from 2.1(a) that Z, ~ S and Z, ~ § are
not completely separated in X. Thus (B) fails.

(2) = (1): Tt Zy, Z, € 3(X) with Z, n Z,n 8 = @. For i =1, 2, let

Bye= {70,777 >0, fe O(X), £ 0, and Zi~ S CZ(f)} .

Then B is & completely regular filter base on X. Suppose that B, meets B,.
Then there exists o maximal completely regular filter F on X finer than
both By and By, As in the proof of (g) = (a) of 3.1, it follows that 57 mects
both Z, ~ 8 and Z, ~ 8. Then F|§ meets both Z, and Z,, 80 Z; ~ Zy ~
AN 43 by (2). This is a contradiction, and we conelude that there exist
Zie By (==, 2) with Z; ~ Z, == . Since Z;, Z, ¢3(X) and Z; ~ §C Z;,
it follows that 7, ~ § and Z, ~ § are completely separated in X.

B. (1) = (2): Assume (y) and suppose that (2) fails. Then there is
Z €W with Z ~ 8 = @, 5o by (y) there is fe C(X) with f=0on Z, f=1
on 8, and f> 0. Then %= {f[0,r]: >0} is a completely regular
filter base on X such that $CW. Now if F* is the (unique) maximal
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completely regular filter on X coarser than &, then \'B meets*&” * (by 2.1(b)).
By maximality of 5, it follows that % C F*. But since F* < F, we then
have [0, 3] ~ S # 0, a contradiction. ~

(2) = (3): Let § be a #z-filter on X which meets 8. Then 8§ C U/
for some z-ultrafilter U’ on 8. Let  be the maximal completely regular
filter on 8 such that F < U, let F* be the maximal completely regular
filter on X such that F* < F, and let W be the z-ultrafilter on X such
that 5% < U (see 2.1). Now since 5 < U’ and 8|8 < W', § meets
and hence § C U (2.1(b)). But W meets & by (2), so it follows that W
meets §|S. -

(3) = (1): If (1) fails, then there is o zero-set Z ¢ 3(X) with Z n S = @
such that § and Z are not completely separated. Let

B={f70,7): r>0, fe O(X), f> 0, and ZCZ(f)},

and note that B is a base for a z-filter § on X. Since § and Z are not
completely separated, it is clear that $ (and, a fortiori, §) meets §. Now
it (3) holds, there is a z-ultrafilter W on X which meets §|§. Then Z ¢ U
(since Z ~ 8 =0), so there is Z' €W with Z nZ' = @. Since disjoint
zero-sets arve completely separated, there is fe O(X) with f= 1 on 7/,
f=0o0n Z, and f > 0. But then f7[0, §] ~ S € 8|S, and hence 70, ]
~Z7Z' +#@, a contradiction. Thus (3) fails, and the proof is complete.

The following condition on the embedding §C X is considered by
Green ([15], pp. 103 ff):

(') Bach z-ultrafilter on § is finer than some e-ultrafilter on X.

‘We conclude this section with a brief study of (y') and its relation-
ship to (vy).

4.3. ProrosrtionN. If 8§ C X, then these are equivalent:

(a) (v") holds.

(b) If & 4s any z-ultrafilter on S, then the z-filter on X generated
by F is a z-ultrafilter on X.

Proof. Let ¢: §—X be the canonical injection and let 7 be a z-ultr
filter on 8. If (v') holds, then there is a z-ultrafilter A on X with AL <<
Then U Cg¥*(F), s0 ¢*(F) = U. Conversely, it (b) holds, then ¢*(F) is
a g-ultrafilter on X, and clearly ¢*(F) < 7.

4.4. PROPOSITION. For any embedding S C X, (v') implies (vy).

Proof. We verify 4.2B(3): Let 6 be a z-filter on X which mects S.
Then §|§ C 5 for some g-ultrafilter & on &; and then by (y') there iy
a z-ultrafilber W on X such that U < F. Clearly Al meets g|8.

4.5. Remarks. (a) The converse of 4.4 is false: The x-axis & of
the tangent circle space I' is a zero-get in I', and hence the embedding
8 C I" automatically satisfies (v). But [15], Lemma 8 asserts that ('} fails.
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(b) There are two other hypotheses on the embedding S C X that
automatically ensure (y): (i) If § is #s-dense in X (i.e., each nonempty
G- set n X meets 8), then (y) holds (trivially). (i) (y) holds for every
embedding of § it (and only if) § is pseudocompact ([6], 4.3). We show
now that if (y) is veplaced by (y'), then (1) fails, but (i) still holds.

4.6. BxampLr. There is a G- dense embedding §C X for which
(y') fails. ‘

Proof. Let N and W be disjoint copies of the spaces of natural
numbers and countable ordinals, respectively. Let 8 be the topological
sum of N and W, let X = 8 U {co} e the one-point eompactification of §,
and let g: 8 —X e the eanoniceal injection. Clearly § is G;-dense in X.
For cach n e N, lot By == {m e N: m = n}, and let B = {B,: n ¢ N}. Then
B is a base for a z-filter on 8, so B C F for some z-ultrafilter 5 on §.
By 4.3, it suffiees to show that ¢*(F) is not a 2- ultrafilter on X; and this
18 true because: W o {oo} €3(X), coeZ for all Z € p*(F), and W U {co}
£9*(T.)

4.7. ProvosrrioN. These conditions on a space S are equivalent:

(a) 8 48 pseudocompact.

(b) For every embedding 8 C X, (v') holds.

Proofl. (a) = (b): Let F be a e-ultrafilter on S and let ¢: 82X be
the canonical injection. As in the proof of 3.3, F is real, so ¢*(F) is
a e-ultrafilter on X by 2.3(b). Now apply 4.3.

(b) = (a): By (b) and 4.4, (y) holds for every embedding of 8. Hence
& is pseudocompact by [6], 4.3.

It is noted in [15], p. 103 that (v') does not imply (*-embedding.
In fact, (y') does not even imply J-embedding. (8 is v-embedded in the
Tychonoff space X in case vS C vX. This is an embedding condition weaker
even than ¢-embedding; see [3].) To see this, let & be the topological sum
of tiwo copies of the space of countable ordinals, and let X be the one-
point  compactilication. of 8. Then § is pseudocompact, and hence
the embedding 8 C X satistics (v); but & is not v»-embedded in X (see
the prool of [3], 6.2).

Greeen has usked whether (v') implies (/- embedding when S is g zero-
set i o Tychonoft space X ([15], p. 104). In view of 4.7, any pseudo-
compact zero-seb whieh iy not ¢-embedded provides a negative answer
to this question, We are indebted to the referee for the following example
of sueh o zero-set:

4.8. TixAmprr, There is a Tychonoff space X and a pseudocompact
zero-set 8 of X wueh that S is not ¢-embedded in X.

Proof. Let W* be the space of ordinals < oy, W= W*—{w,}, and
Yoz Wi W Lot A== {{a, w;): a< o} and B= {(a,a): a< o,}. By a theorem

T — Fundamenta Mathematicae, T. XC


Artur


206 R. L. Blair

of Bngelking (1), there is a Tychonoff space M containing ¥ as a subspace
and such that J— Y is countable, open, and dense in . Let X = 4 u
UBuU(M—T) and let §= A4 v B. Since § is elosed in X and X—&8 ig
countable, § 3(X); and since 4 and B are homeomorphic to W, § is
pseudocompact. Now if 8 were C-embedded in X, then the characteristic
function on S of the set 4 would have a continuous extension over X,
50 A and B would be separated by disjoint open sets in X. Bub then
‘(because M— T is dense in M) A and B would be separated by disjoint
open sets in Y. As is well-known, this last is impossible.

‘We remark in passing that the zero-set § of 4.8 is not even v-embedded
in X (since, as noted in [3], § 3, a pseudocompact v-cmbedded subset is
necessarily C-embedded).

5, Characterizations of (C*-and O -embeddings. Here we apply the
results of §§ 3 and 4 to obtain filter characterizations of 0*- and C-em-
beddings. These include, and somewhat improve, characterizations given
by Green in [14] and [15].

In 5.1, the equivalence of (a), (b), and (¢) is due to Green (see [15],
Theorem 2 and [14], Theorem 2).

5.1. TesorEM. If SCX, then these are equivalent:

(a) 8 is OF-embedded in X.

(b) If & is a mazimal completely reqular filter on X which meets S,
then F|S 4s a mazimal compleiely regular filter on 8.

(c) Bwery mazimal completely regular filter on 8 48 the trace on 8 of
some maximal completely regular filter on X.

(d) Bvery maximal completely regular filter on 8 is coarser than the
trace on S of some (mawximal) completely regular filter on X which meets S.

(e) If & is & mawimal completely regular filter on 8, and if F* is the
unique mawimal completely regular filter on X coarser than T, then F < F*|8.

Proof. (a)= (b): Let 4;, 4,e3(8) and suppose that F|§ mects
both 4, and 4,. By 2.1(a), it suffices to show that A, ~ 4, 5 . Tf 4, A
~ A,= 0, then by (a) there exist Z,, Z, ¢ 3(X) with 4;C Z; and Z, ~
n Zy=@. But § meets both Z, and Z,, which is contrary to 2.1(a).

(b) = (¢): Let § be a maximal completely vegular Liltor on, 8. By 2.1(d),
there is a maximal eompletely regular filter & on X with F|§ <5 6. Then
F|8 =G by (b).

() = (@) is trivial.

(@)= (e): Let & and & be as in (e). By (d), thero is o complotely
regular filter 8 on X such that § meets § and F < 88, As in the proof
of 2.2, §C &% and hence F < F%0.

() See Theorem 1 of R. Engelking, On the double civoumference of Alewandroff,
Bull. Acad. Polon. Sei. 8ér. Sei. Math. Astronom. Phys. 16 (1968), pp. 629-634.
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(e)= (a): By 4.14, it suftices to show that & is z-embedded and
satisties (B). .
© By (e) and 2.2, every maximal completely regular filter on § is
z-embedded in X; henee 8 is 2-embedded by (g) = (a) of 3.1.
For ((5), wo verify 4.2A(2): Let 8 be a maximal completely regular
filter on X, let Z, Z, ¢ 3(X), and assume that SIS meets Z, and Z,.
Then § mecets 8, so 6|8 C F for some maximal completely regular filter F

Cone 8. By (0) we have F <5 %8, Then F* meets 8, s0 7 = §. It follows

that F meets Z, 8 and Zy, ~ 8, and henee Z, ~ Z, ~n 8 % @ by 2.1(a).
The proof iy therefore complete.

Following [[15], we say that two filter bages B ahd %' on X are com-
pletely separated in, X in case some set in B is completely separated in X
from some set in &', Green notes that § is ¢*-embedded in X if and only
if any two distinet maximal completely regular filters on 8 are completely
separated in A7 ([15], Theorem 7). In the same vein:

5.2. CororrAwry. If S CX, then these are equivalent:

(a) N i8 O*-embedded.

(b) Distinet z-ultrafiliers on 8 determine distinct z-ultrafilters on
X (seo §2).

(e) Any two distinel ¢-ulirafilters on 8 arve completely separaied in X.

Proof. (a)=(b): This follows easily from Urysohn’s Hxtension
Theorem.

(b) = (¢): Let 9, and 8, be distinct »-ultvafilters on 8, let ¢: § X
be the canonical injection, and let Uy be the (unique) z-ultrafilter on X
with ¢*(8;) C Wy. By hypothesis, Wy 7 W, so it follows that ¢*(8;) does
not meet p*(8,). Henece 8, and 8, are completely separated in X.

(e) = (a): We verify 5.1(b): Let ¥ be a maximal completely regular
filter on X which meets S, and suppose that §, and 8, are z-ultrafilters
on § such that F|S <@ ({=1,2). To show that F|§ is maximal, it
suffices by [15], Lemama 3 to show that 8, = 6,. I 6, # G,, then by (c) there
exist 7y, 4y € 3(X) with Z; ~n Zy = @ and Z; ~ 8 € §;. But then Z, and Z,
meet F, which contradiets 2.1(a).

Green motes (without proof) that a zero-set § in X is C-embedded
if and only it & watisfies 5.2(e) ([158], p. 104). This is now clear in view
of 5.2 and 4.1B.

It in 5.2 (b), the phrage “distinet 2-ultrafilters” is replaced by “distinet
real g-ultrafilters”, then one obtains a necessary and sufficient condition
for 8§ to be v-embedded in X (see [3], 3.2).

In 5.3, the cquivalence (a) < (b) is due to Green. This is proved
in [14], Theorem 4 (for X Tychonoff), and-improved in [15], Theorem 5
(for X arbitrary) as follows: § is 0-embedded if and only if every z-ultra-
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filter on § is equivalent to the trace on § of some z-ultrafilter on X. Thig
last is a consequence of our (a) < (e).
5.3. TarorEM. If 8 CX, then these are equivaleni:
(a) § is C-embedded in X.
(b) Ewery z-ultrafilter on 8 is the trace on 8 of some z-ultrafilter on X.
(c) EBwery z-ultrafilier on S is coarser than the trace on 8 of some &- ultra-
filter on X which meets S.

(d) Brery maximal completely regular fm‘m on 8 48 coarser tham the -

trace on S of some z-ultrafilter on X.

(e) If & is a mazimal completely regular filter on S, if F* is the wwique
magimal completely reqular filte’i on X coarser thun F, and if W is the unique
z-ultrafilter on X finer than F, then F < F*|S and W meets 8.

Proof. (a) = (b): Let p: § »X Dbe the canonical injection, and let &
be a z-ultrafilter on 8. Then ¢*(F) C W for some e-ultrafilter W on X.
We claim that W meets S. If not, there exists Z ¢ U with § ~ Z = @.
Then § and Z are completely separated (4.1B), so there is Z' ¢ 3(X) with
SCZ and Z ~ Z' = @. But then Z' ¢ p*(F) C A, a contradiction. Thus U,
meets S, so WIS is a z-filter on § by (a) = (¢) of 3.1. But by (a) = (b)
of 3.1 we also have ¥ C ¢*(5)|§ C WS, and hence F = aL|S.

(b) = (e) is trivial.

(c)=> (d): It 5 is a maximal completely regular filter on &, then
F <G for some z-ultrafilter § on § (2.1(b)); and, by (¢}, § < W|S for
some z-ultrafilter W on X which meets S. Then F < WS,

(d) = (e): Let &, 7*, and U be as in (e). By (d) there is a z-ultra~
filter U’ on X Whlch meets § such that F < W[S. Since F* < F, we
have F* < WS, and it follows that W’ meets F*. Hence W' C b (2. 1(b))
50 W= .

It remains to show that & < F*|8. If this is false, then there is I e
such that (4 ~ 8)—F = @ for every 4 e« F*. Choose # ¢ F and fel(8)
such that f = Lon ¥, f = 0 on S—F, and > 0. Then B = {70, rlir > 01
is a completely regular filter base on 8 which meets 7* |8, 80 by (d) there
is a z-ultrafilter A" onm X such that AU meets S, WS = B, and
W8 = F*|S. This last inequality implies that W' meets F*, and bhenee
{once again) W’ = U. Thus W8> F. But sinee WS 2= By, we then,
have F'.~ f7[0, }1 # 0, a contradiction.

(e)=(a): By 5.1, § is 0*-embedded (or by 2.2 and 3.1, N i 2-cm-
bedded). Moreover, 4.2B holds, so (y) holds. Thus & it ('-embedded by
4.1B, and the proof is complete.

5.4. Remark. It is perhaps worth noting that (b) = (1) of 5.3 can
be proved quite directly: If (b) holds, then S satisties (v"), and hence (y)
(see 4.4). To verify z-embedding, let 8 be a z-ultrafilter on. S; by (b),
8§ = WS for some z-ultrafilter U on X Then W C p*(8) (wheve p: § » X iy
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the canonical injection), and hence @ = W[S C o*(8)[S. Thus & is 2-em-
bedded by the (virtually trivial) implieation (b) = (a) of 3.1. Hence § is
(¢-embedded by 4,18,

5.5. COROLLARY (Green [15],
in X 4f and only if § satisfies (v')

P. 103). Let SCX. § 48 O-embedded
and (x) (see § 3).

Thix is an immediate consequence of the equivalence of (a), (b),
and (¢) of 5.3 and (a) < (¢) of 3.1, 5.5 bears o somewhat curious relationship
to 4.10: OF the tiwo conditions (v/) and (x ), one is (in general) strictly
stronger than (y) and the other strictly weaker than z-embedding (see
4.5(n) and 3.4); but, togother, they imply (y) and 2z-embedding.

5.6, CoROLLARY. Tf 8 is a pseudocompact subset of X, then these are
equivalent:

(a) 8 ds O-embedded in X,
(b) S s =-
(e) If F ds amy z<ullrafilier on X which mects 8, then 3

g-ultrafilter on 8 (i.e., (%) holds). .

Proof. () = (b) is trivial, (b) = (¢) by 3.1, and (¢) = (2) by 5.5 and 4.7.

The equivalence (a) <= (b) of 5.6 is given a different proof in [6], 4.4

embedded in X,
F|8 is a base

Sor
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