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Abstract. It is known that Martin’s Axiom plus the negation of the Continuum Hypothesis
assures the existence of a whole variety of normal non-metrizable Moore spaces, e.g. complete
separable ones, countable chain condition metacompact ones and complete metacompact ones.
It also yields a paracompact space T such that T2 is normal but not paracompact.

In this paper we prove that Martin’s Axiom implies the normality of a certain class of spaces
which admit one-to-one mappings onto metric spaces. The existence of the above mentioned exam-
ples is an easy consequence of this theorem. We deduce also that a locally compact separable Moore
space 7" is normal if and only if T% is normal.

On the other hand, we show using Fleissner’s theorem, that Axiom of Constructibility implies
metrizability of every locally countable chain condition (or locally Lindelsf) normal Moore space.

In the last section we discuss the relation between normality and paracompactness in countable
products.

1. Introduction. It is known that Martin’s Axiom plus the negation of the Con-
tinuum Hypothesis implies the existence of a whole variety of normal non-metriz-
able Moore spaces, e.g. complete separable ones [25], countable chain condition
metacompact ones [19] and complete metacompact ones [26]. It also yields a para-
compact space T such that T2 is normal but not paracompact. [18].

In this paper we prove that Martin’s Axiom implies the normality of a certain
class of spaces which admit one-to-one mappings onto metric spaces. The existence
of the above mentioned examples is an easy consequence of this theorem. More-
over, any such example S may be assumed to be non-locally metrizable at any point
and to satisfy the condition S = S,

The above theorem in conjunction with the recent result of Reed and Zenor [21]
shows that a locally compact separable Moore space T is normal if and only if
T“ is normal. ’

On the other hand, we prove using Fleissner’s result [7] that Axiom of Con-
structibility implies metrizability of every locally countable chain condition (or
locally Lindelof) normal Moore space.

Finally, we show that Martin’s Axiom plus the negation of the Continuum
Hypothesis yields a paracompact space 7' such that T is normal but not paracom-
pact and a non-paracompact space T such that 7% is perfectly normal.
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All spaces are assumed to be Hausdorff. We often denote a topological space T
by (X, 7), where X is the set on which the topology 7 is defined. By R and Q we
denote respectively the spaces of real and of rational numbers.

A topological space is countable chain condition if every family of disjoint
non-empty open sets is countable. For the definitions of Moore spaces, subpara-
compact, metacompact and p-spaces see e.g. [1] and [25]. All other undefined no-
tions and symbols are as in [4].

DERINITION. Let P be a set partially ordered by the relation <. We say that

1. elements p; and p, belonging to P are compactible if there exists a pelP
such that p<p, and p<p,.

2. (P, <) satisfies the countable chain condition if every subset of P consisting
of mutually incompatible elements is countable.

3. DcP is dense if for every p € P there exists a p’ € D such that p'<p.

4. LcP is @-generic, where 9 is a family of dense subsets of P, if:

(@) for every p;,p, €L there exists a pe L such that p<p, and p<p,,

(i) if pe L and p<p’ P, then p'eL,

(i) L~ D # @&, for every De Z.

MARTIN'S Axtom (MA) [13]. Let (P, <) be a partial order satisfying the
countable chain condition and let @ be a family of less than continuum dense subsets.
There exists a 9D -generic subset of P.

It is known [13] that Martin’s Axiom is independent of the ZFC axioms of
set theory. It is implied by the Continuum Hypothesis. Nevertheless, it is also
consistent to assume Martin’s Axiom and the negation of the Continuum Hypoth-
esis. We denote the last system of axioms by MA+ TJCH. For topological con-
sequences of Martin’s Axiom see e.g. [27].

2. Main Theorem.

DEFINITION. Let 7 and # be two topologies defined on the set X. We say
that 7 is regular with respect to J if for every Ue J and xe U there exists a Ve J
such that x & Ve V#< U, where P# denotes the closure of the set ¥ in the to-
pology .

TuEOREM 1 (MA). Let T = (X, 7) be a topological space which is the union
of less than contimum compact subsets. If there exists a weaker metric separable
topology M on X such that T is regular with respect to ., then T" is normal for
every ne w.

Proof (*). As for every ne w the space T" also satisfies the conditions of the
theorem, hence it suffices to prove that 7" is normal.

Let T = |J F,, where F, is compact and |S|<2". For a totally bounded

seS

metric ¢ in M = (X, .#) (see [4]; Theorem 4.3.5) let B(x, ¢) denote the ball with

(*) We are grateful to J. Chaber for calling our attention to the idea used by Fleissner in
([8], Section 4), which we exploit in the proof.
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the center at the point x and the radius e; let 4, be a finite subcovering of
the covering {B(x, 1/n)},.x of X and put dist(G, H) = inf{o(x,): xe G, yeH},
for G, H=X. Choose two closed and disjoint subsets 4, B of the space T.

Let P = {(G, H): G and H are openin T, dist(G, H)>0, G* nB=H*n 4
= @} be partially ordered by the relation (G, H)<(G', H") if Go G’ and HoH'.

For every se S the sets D; = {(G, H)e P: F,n AcG} and E, = {(G, H) e P:
F,n BcH} are dense in (P, <). Let seS. There exists a neighbourhood G’ of
Fyn A inTsuchthat G*“nB=@ and G'c | B(x,idist(F,n 4, H#)). Then

xeFsnd
we have dist(G L G, H)>min (dist(G, H),  dist(F,n 4, H*)>0and GU G*n B
=@, hence (GuU G',H)e D, and (Gu G, H)<(G, H).
To every pair (G, H)e P we can attach an ne w such that dist(G, H)=5/n
and two sets Gy, H, defined by

Go=U{Be®,: BnG£0@}, Hy= U{Bed, BnH+0}.

One easily sees that G=G,, HoH, and dist(G,, Hy) >1/n. As there are only
countably many of so defined triples (z, Gy, H,) and any two pairs belonging to P
to which the same triple was attached are compatible, we conclude that (P, <)
satisfies the countable chain condition.

Let L be a ({D}ses U {E,} es)-generic subset of P. Define

U= U{G:(G,H)eLl} and V= {H: (G,H)el}.
It is easy to check that Ac U, BV and Un V = @, which completes the proof. &

THEOREM 2 (MA). Let T = (X, ') be a space of cardinality less than continuum.
If there exists a weaker metric separable topology M on X such that  is regular
with respect to M, then T® is perfectly normal.

Proof. By Theorem 1 and Katétov’s result [12] it suffices to show that 7" is
perfect (*) for every n € w. As the cardinality of X is less than contintum, hence —
by ([23], Lemma 3) — every subset of the space M", where M = (X, .#), is of
F_-type and consequently every subset of the space T" is of F,-type. B

Remark. The assumption of &; <2%°<2™ implies the above theorems are
false, so they are independent of the axioms of set theory (see the next section).

One might expect that Martin’s Axiom implies every countable chain condition
(or separable) regular space of cardinality less than continuum is normal. The
following example shows there exists a completely regular separable and first
countable non-normal space of cardinality N;.

ExaMPLE. Let oN be the compactification of the space N of natural numbers
such that aN\N is homeomorphic to the space @, +1 of ordinals not greater than
@, [16]. By the theorem of Katétov [12], there exists a non-normal subspace 4
of w,xw,. The subspace X = (NxN)u 4 of aNxaN has the required prop-
erties. @

(%) A space is called perfect if every open subset is of Fe-type.
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3. Normality of Moore spaces.

THEOREM 3 (MA). Let T'= (X, 7) be a Moore space which is the union of less
than contimuum compact subsets. If there exists a weaker metric separable topology .#
on X such that  is regular with respect to M, then T® is normal.

Proof. By Theorem 1 and Katotov’s result [12] it suffices to show that T" is
perfect for every n € w. Recall that every Moore space is perfect and that the count-
able product of Moore spaces is a Moore space. @

To prove Corollary 1 we shall need the following theorem due to Reed and
Zenor [21].

THEOREM 4 (Reed and Zenor). If T = (X, ) is a normal Moore space of car-
dinality ‘not greater than continuum, then there exisis a weaker metric separable
topology # on X. @

The following question has often been raised: is the square T2 of a normal
Moore space T also normal. Our next result presents a partial answer to this
question.

COROLLARY 1 (MA). Let T = (X, J) be a separable (3) locally compact. Moore
space. The following conditions are equivalent:
(i) T is normal,
(i) T® is normal,
(iii) T is the union of less than contimuum compact subsets and there exists
a weaker metric topology M on X.

Proof. (i)—(iil). Clearly |7|<2". By Theorem 4 it suffices to show that 7" is
the union of less than continuum compact subsets. Let % be an open covering of T
such that U is compact for every Ue % and find a o-discrete closed refinement
F = | F, of U. As the cofinality of 2™ is greater than &, it remains to show that

ne o

every discrete family in 7 has cardinality less than continuum. Indeed, otherwise
by the normality of T there would exist 2° different continuous functions on T and
on the other hand — by the separability of T'-— there are at most 2% of such
functions on 7. .

(ii)=(i) is obvious and (iii)—(ii) follows from Theorem 3 and the observation
that local compactness of T clearly implies 7 is regular with respect to .. ©

Let us recall that in the model of Martin's Axiom plus the negation of the
Continuum Hypothesis there exist separable locally compact Moore spaces which
are normal but not metrizable (see e.g. the proof of Corollary 2 below).

(%) Martin’s Axiom implies 2% = 2%0 for every infinite cardinal A less than continuuro. Using
this fact, one can easily check that the assumption of separability of T'may be replaced by the assump-
tion that the density of T'is less than 2%0, In particular, Corollary 1 is valid for locally compact Moore
spaces of cardinality less than continuum, which was first observed by G. M. Reed [20]. We also
gratefully acknowledge that the final form of Corollary 1 arosed from discussions with him.

Normality and Martin's Axiom 127

Theorem 3 implies the existence of a whole variety of normal non-metrizable
Moore spaces S additionally satisfying the condition S = S“. Note that if S is
4 non-metrizable space such that S = S, then S is not locally metrizable at any
point. Hence, if S is complete, then .S cannot be represented as.a countable union
of its closed metrizable subsets (*).

Such spaces may but do not have to contain dense metrizable subspaces. Let
us recall, that the results of Fitzpatrick [5], Fleissner [7] and Przymusifski and
Tall [19] show that the existence of dense metrizable subspaces in normal Moore
spaces is independent of the axioms of set theory.

The following corollary is a strengthening of the result of Silver (see Tall [25])
and Bing [3].

COROLLARY 2 (MA+ T1CH). There exists a separable complete normal non-
metrizable Moore space S such that S = S®.

Proof. To illustrate the usefulness of Theorem 3 we shall give two examples:
A. Let P be any uncountable subset of R of cardinality less than continuum
and let T = (X, ) be a subspace of the Niemytzki space, where

X ={(x,»)eR* y>0 or y=0 and xeP}.

It is clear that T is a complete separable non-metrizable Moore space and the con-
ditions of Theorem 3 are satisfied. It suffices to put S = T°. @

B. Let P be any uncountable subset of the irrationals of cardinality less than
continuum and let X = (Q x Q) u (P x {0}). For every p € P fix a sequence {z,(2)},c o
of points of @x O converging in the usual sense to the point (p, 0) and define
a topology 4 on X in such a way that the points of Qx Q are isolated and the
family {U,(p)}se forms a base of neighbourhoods of the point (p,0), where
Udp) = {(p, 0} U {z,(D}7=, (cf. [1], p. 167). It is well-known that T = (X, J)
is a locally compact, separable non-metrizable Moore space. As the condition (iii)
of Corollary 1 is obviously satisfied, it suffices to put S =T°. ®

The next Corollary improves the result of Przymusiriski and Tall [19].

COROLLARY 3 (MA + T CH). There exists a metacompact countable chain con-
dition normal non-mefrizable Moore space S such that S = S“.

Proof. For an uncountable subset of the unit interval I of cardinality less
than continuum let T = (X, Z) be the subspace of the space defined by Pixley
and Roy in [17], where X = {F: F<P and |F|<¥,}. As in [19] we show that T is
a countable chain condition metacompact non-separable Moore space. Consider
the relative topology . on X induced by the Vietoris topology on 2F (see [4],
Problem 2.7.20). The space M = (X, .#) is metric separable (see [4], Problem

(*) Normal Moote spaces which are not metrizable at any point has been studied e.g. by
Fitzpatrick and Traylor in [6] and [29].
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4.5.21), M is weaker than ” and Z is regular with respect to .. It follows from
([11], Theorem 5.5) and Theorem 3 that S = T is countable chain condition and
normal. To complete the proof it suffices to recall that a countable product of
metacompact Moore spaces is a metacompact Moore space. @

Note that the last space is not complete [19].

CorOLLARY 4 (MA+ T\CH). There exists a metacompact complete normal
non-metrizable Moore space S such that S = S°.

Proof. Take any uncountable subset P of R of cardinality less than continuum.
For every p e P define

A, ={(x,)eR: x=p+y},

X=U{4,nB;:p,qeP}

B, = {(x,») e R*: x = p—y},

and let M = (X, .#) be the subspace of R We shall introduce a stronger topol-
ogy J on X in such a way that every point (x, y) € X such that y s 0 is isolated
and if p e P then the family {U,(p)},., forms a base of neighbourhoods of the
point (p, 0), where

Uup) = (4, © B~ {(x, ) € X1 —1/2"<y<1/2"} .

It is easy to verify that the space T = (X, Z) is a metacompact, complete, (locally
metrizable), non-metrizable Moore space. Theorem 3 implies S' = T is normal. &

It is known that the assumption of 2¥° <2 contradicts the existence of spaces
considered in Corollaries 2 and 3 (Sapirovskii [24], Theorem 2.5; see also Tall [25],
Corollaries 11.0.14 and 11.0.15). Using the result of Fleissner [7] we can prove
a stronger consistency result. Here V = L denotes the Godel’'s Axiom of Con-
structibility (see [10]).

THEOREM 5 (V = L). Every locally countable chain condition (or locally Lindelif)
normal Moore space is metrizable.

As every Moore space is subparacompact it remains to prove the.following
lemma.

Lemma 1 (V = L). Paracompactness, metacompactness and subparacompactness
are equivalent in the class of normal locally countable chain condition (or locally
Lindelif) first countable spaces.

Proof. Note first that V = L implies CH [10]. It suffices to prove that meta-
compactness (resp. subparacompactness) implies paracompactness. We can restrict
ourselves to the “locally Lindel5f” case. Indeed, let U be a countable chain con-
dition subset of a metacompact or subparacompact space. Then U is also count-
able chain condition and metacompact or subparacompact. From ([24], Theo-
rem 2.3") we infer that U is collectionwise normal, hence paracompact, hence
Lindelsf. Our conclusion follows from ([26], Lemma 4) and Lemma 2 below.
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Lemma 2 (V = L). Let {F},.s be a discrete collection of closed Lindelsf sub-
sets of a normal first countable space. Then there exists a disjoint collection {U.}

S
of open sets such that Fyc U, for se S. -

Proof. By Arhangel’skil’s theorem [2] we have |F]<2%. First countability
and Lindelofness of‘Fs imply that the character of the sets F; in the entire space
is less or equal to 2% = N;. Identifying the sets F, to points and making use of the
theorem due to Fleissner [7] we complete the proof.

4. Normality of products. Zenor proved [30] that if (i) T" is paracompact for
every new and (ii) 7% is normal, then T° is paracompact.

A natural question arises whether (i) can be replaced by the assumption of”
paracompactness of 7. Our next corollary improves the result of Przymusinski [18]
and gives a (partial) negative answer to this question.

COROLLARY 5 (MA+ T1CH). There exists a (separable, first countable) para-
compact space T such that T is perfectly normal but not paracompact.

Proof. Take any uncountable subset X of R of cardinality less than continuum
satisfying: | —xe X iff xe X. Let T = (X, J) be the subspace of the Sorgenfrey
line. It follows from Theorem 2 that T° is perfectly normal. One easily checks
that 72 is not even collectionwise normal (cf. [18]). m

Nagami asked ([15], Problem 3) if normality of S implies paracompactness
of §. The answer is negative —it suffices to take the X-product of uncountably
many unit intervals (°).

Assuming MA+ TJCH we can give a better example.

COROLLARY 6 (MA+ 7| CH). There exists a (separable, first countable) non-
paracompact space S such that S® is perfectly normal.

Proof. It is a straightforward consequence of Corollary 2. @

It follows from [18] or from our Corollary 5 that it is consistent to assume
the existence of a paracompact space T such that I'x T' is normal but not para-
compact. On the other hand, we have the following theorem which is a simple
consequence of the results of Tamano [28], Morita (°) and Starbird and Rudin [22].

THEOREM 6 (Tamano, Morita, Starbird and Rudin). If S is a paracompact
p-space and T is paracompact, then:

SxT is normal < SxT is paracompact <> SX T is countably paracompact.

Proof. Let f: S—M be a perfect mapping of S onto a metric space M. We
may assume M is non-discrete, If $x T is normal then M x T is normal as a perfect

(% This remark is due to R.Pol. Also N.Noble noticed that the countable product of the space
of countable ordinals is normal.

(%) As Professor Morita kindly informed us, the proof presented by Tamano in ([28], Theorem 3)
contains some difficult to repair errors. A correct proof of Tamano’s theorem has been given by
Morita in ([14], Theorem 2.4) and ([9], Theorem 1.3).
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