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Abstract. Let 4, A;, 4, denote categories with the same set of objects consisting of sets
[n]={0,1,..,n}, for n=0,1,... and the sets of morphisms consisting of increasing, strictly
increasing or all functions, respectively. We consider three categories of simplicial objects (A%, 4),
(4%, 4), (A%, 4) of all contravariant functors with values in an Abelian category 4 and we present
some results concerning functors between these categories and the category.of complexes over A4.
Moreover we study the homotopy of maps of simplicial objects of three types and prove severak
theorems on a preservation of the homotopy by some functors.

Let us denote by 4 (resp., 4, resp., 4,) a category with the set of objects
consisting of sets [#] = {0, 1, woon}, n=0,1,.. and sets of maps o: [m]-[n]
consisting of all weakly increasing functions (resp., all strictly increasing functions,
resp., all functions). Thus we have d,c4<4,. All contravariant functors defined
on 4,, 4 or A, with values in a fixed category M and with natural transformations.
as maps form categories (4%, M), (4*, M), (4*, M). Categories (4%, M ) and specially
(4%, Set) play an important role in algebra and topology. Categories (4%, M) and
(4%, M) are considered rather seldom (see [5], [7], [4]).

In the first part of this paper we present some results concerning functors.
(defined below) in the following diagram:

¥zt *za
(@Y, )T (4%, A) T (4%, 4)

NN
Nk NONI N NNl
(Ch, A)

71,2, and z: (4}, 4)-(d4¥, A) are forgetful functors induced by inclusions 4 < 4,
dcd,, 4,cd,; thus z = z,2,. If a category A has finite colimits, then there exist
left adjoint functors *z,, *z,, *z of functors z,, z,, z. For each integer n=0 we
have functions & = &: [n—1]=[n], n' = #': [n+1]>[n], i =0, 1, ..., n, defined as.
follows: &'(j) = jfor j<i (resp., j+1 for j=i), n'(j) = j for j<i {1‘e3p., J—1for j>i).
If X is an object in (4¥, 4), then we write X, = X([r]), tli. = §' = X(&) (face oper-
ator), and if X is in (4*, A), then we write 5; = 7' = X (1) (degeneracy operator).
Let 4 be an Abelian category, then we denote by (Ch, 4) the category of all left
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-chain complexes over A. N,, N, N, denote normalization functors which associate
n

with an object X a chain complex with the nth component equal to (| Ker(d;:
i=1

X,—X,_,) and the nth differential is induced by dy: X,—X,_,. Functors k,, k, k,
-associate with X a chain complex with the nth component X, and with the nth

differential equal to Z (—1)‘d Let X be an object in (4}, A); then we denote by
D(X),n=0,1,..2 subobject Z Im (X (m) —sgn (r) 1X,.)+Z Im X (y) of X,, where n

runs over S, = Aut, ([n]) and y runs over all such maps y. [n]—1p] in 4, that p<n.
The subobjects D,(X) determine a subcomplex D(X) of k,(X) and we denote by
NAX) the complex Coker (D(X)—k,(X)) (see [4]). Let C be a chain complex in
(Ch, A) with differentials 9,: C,—+C,_; then the nth component of an object J(C)
in (4*, 4) is equal to C,, face operators d; are zero for i>0 and d, =3,. The Kan-
Dold functor X (see [2]) associates with a chain complex C in (Ch, 4) an object
KC in (4%, A) such that (KC), = J C, where n: [n]—[q] runs over all epimorphic

maps in 4, g =0,1,..,n. We denote by w,: C,~(KC), the corresponding im-
bedding; then, for any map «: [m]—[x] in 4, an induced map &: (KC),—(KC),
is defined as follows. Let no = e’ where n’ is epimorphic and & is monom01phic
then &o w, is equal to w,, (resp., w, od,, resp.,0) if & = Ip,; (resp., ¢ = &%, resp.,
e % gy, €°). Values of all these functors on maps of objects are deﬁned in
a natural way.

In the second part we study the homotopy of maps of simplicial objects of
three types. In the third part we prove several theorems on a preservation of the
homotopy of maps of simplicial objects of three types by some functors.

We give only sketchy proofs and omit all computations; details may be found
in [1].

§ 1. Three types of simplicial objects
and chain complexes

1. Adjoints of forgetful functors. It is clear that the values of a left adjoint *z,
of z; on a functor X: 4¥—4, ie., *z(X): 4¥—4, is a Kan extension of X along
A¥< 4% and similarly for *z, and *z. Using the well known method of computing
Kan extensions (see [6]), we get

THEOREM 1. Suppose that a category A has finite colimits.

(i) If X is an object of (4¥, A), then

(z(X), =X, n=0,1,..,
n

where n: [n]—[q] runs over epimorphisms in A and for a map «: [m]—[n} in 4 the
induced map & is defined by ‘the formula & o wy = w, X (&), if nu = s’ and n' is an

epimorphic map in 4, & is a map in A,.
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(i) If X is an object in (4%, A), then
(*z(0), = 1J X,., n=0,1,
n

where n: [n]~[g] runs over epimorphisms in 4, and for a map o: [m]—~[n] in 4, the
ma’ucezl map & is defined by the formula & o w, = Wy o X(e), if na= en’ and ' is an
epimorphic map in 4,, ¢ is a map in A,.

(iiiy If X is an object in (4*, A), then

*2,(X)), = Coker( [| qH__g 1X), n=0,1,..,
(Bymyyma) in mESy
where (B, m (. my) runs over all such triples that B: [a]—[q] is a map in 4, Ty, Ty €S,
and fry = Bry. Moreover, X,, u, are defined by the formula A, u, xs = W, X(B),
Wiy = Wa, X(B) and let v,: || X,—(*2,(X)), denote the natural map. For

a map o: [ml~[n] in 4, we define a map a: (| X,~ (| X,, by the formula &ow,
TeSy eeS,

= W, X(B) if mu = foy, B is a map in A and g, (not unique) is in S,,. Thus v, &l
= v, 84t,; hence @ induces a unique map §: (*z5(X)),~ (*22(X)), suc/z that Gv,,
= y,d

For example, let L be a simplicial complex with vertices ordered by a relation <
Then the sets L, = {<vy, ..., v,>}, where vy, ..., v, alc vertices of a simplex in L and
Uy < ... <b,. with obvious face operators d;: L,—L,_,, determine -an object L' in
(A}, Set ). Similarly we define objects L'* in (4*, Set) and L'" in (4*, Set) with
components consisting of sequences (vg, ..., v,y of vertices of a simplex in L, such
that 0y < ... <v,, or of all such sequences, respectively. It is easy to see that L'’
= *z (L), L' = *z,(L") = *z(L").

2. Direct decompositions of components of objects in (4*, 4). In the sequel
we denote by 4 an Abelian category. It is known (see [2]) that the functor Ko N
is equivalent to the identity functor; thus there exist natural isomorphisms
X,, B I_] (NX), where n: [n]->[g] runs over epimorphisms in 4 and X is an object

in (4* A) We give an effective description of this decomposition. For this purpose
we den ote

Py = (I=sody) .. (I =8, d): X=X,
g = Ao (L=8p 1) o (L=syydy)s X=X -

for ¢ = 0,1,...,7=0,1,..,g=1. It is known and easy to see that
PPy = Pys  mp,= (NX),, Kerp, = Z [m(sj -1 X))
thus there exists a decomposition

Py Wa
Py Xy (NX), = X,
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with p, epimorphic and w, monomorphic. Each epimorphic map #: [#]-[g] in 4 may where p,’ denotes a projection on a direct summand. A standard computation

be uniquely represented as # = git,..njt, with 0<j < .. <j<n, i+q=n
For such # we define maps

iy = Xw,: (NX),~X -X,,
by = p;fj,,q+1 "'ffc,ll: Xn"’Xq_’(NX)q .

THEOREM 2. Let A be an Abelian category an let X be an object in (4*, A). For
each n = 0,1, ... the family of maps {i,,, Dy} where n runs over all epimorphic maps
n: [nl=1lql in A, represents X as a direct sum X, = [] (NX),.

n

Proof. We prove the formulas 1y, = Y i,p,, pyiy = 0 for n # n', pyi, = Lewxy,
n
using the following relations:

for i{#7],
for i=j,

. 0
Sifi,nsjf:f,n = {Sifi N

(I=sd;y 1) . (1=5,_5d,_y) for k=],
Jinsi =10 for k>j,
Slzf;'-l,n-—L for k<J.,
’ n—1

17(,. = Pyt .Zosj, g fj,npn =0.
j=

3. Functors on A, 4 and chain complexes. It is known that functors N, k are
homotopically equivalent, i.e., for each object X in (4%, 4) the chain complexes
N(X), k(X) are naturally homotopically equivalent (see [2]). The functors Ny, k, are
not homotopically equivalent. To show this let A be the category Z-Mod and let / be
a fixed integer different from 0 and +1. We define an object X in (4¥, Z-Mod)
ag follows: X, = Z forn =0, 1, ... and di(x) = Ixforall xe Z, i =0, 1, ... Then
H,, (kX)) = Z/IZ for all m but (NX), = 0 for all n>0; thus H,(NX) = 0 for
all n>0, whence N(X) and k,(X) are not homotopically equivalent.

THEOREM 3. Let A be an Abelian category.

(i) The functors k, and N o *z, are equivalent.

(ii) kyoJ = NyoJ = Lich,ay-

(ii) The functors *z,oJo N and 14 4, are equivalent.

(iv) K = *zy0J.

(v) (Kan-Dold Theorem) The functors N o K, Ko N are equivalent to the identity
Junctors.

(vi) Functors Kok and *z, are equivalent.

Proof. (i) Let X be an object in (4%, A); then we define the equivalences ¢
and y as compositions

wl[nl

PO, (X0 = X, (52,(X))— > (N*20) (X)),

Wn

YO0, (V2) (X)), 25 (52,(X)), —> X, = (ky(X)),

in‘Which we use the formula dopq = Pg-19,, shows that oY =1 and Yo =1
tii) and (iv) follow by the definition of functors k,, N,, z,, K and J. .

(iii) In the proof we check that for each object X in (4*, 4) the isomorphisms
described in Theorem 2 '

(20T N(X0)y = LI (= M)(X)), = L V), ~ X,
] n ) )

determine the natural isomorphism of objects (*z; o J o N)(X) ~ X in (4%, A)
{v) From (i) and (iif) it follows that NK = N*z\J = k,J = I, KN = *z JN’m 1
(vi) Follows from (i) and (v). ' 1 '

4. Functors on 4, and chain complexes. It is not known whether are functors &,

and N, homotopically equivalent or not (see [4]). A partial answer is contained
in the following theorem.

THEOREM 4. Let A be an Abelian category.

(i) The functors k, and Ny*z = N,%z,%z, are equivalent.

(i) The functors k, and k,*z are homotopically equivalent.
(iii) The functors N and Ny*z, are equivalent.

(iv) The functors k,*z and Nj*z are homotopically equivalent.
(V) The functors k and N,*z, are homotopically equivalent.

Proof. (i) Let X be an object in (4¥, A). We have the formulas
(*z(X)), = X, L D,(*2(X)),

D,(*z(X)) = Zs Im {(X(n) —sgn(n) 1y,) o Wit U L X,,
n

wEdy

where n: [n]—>[g] runs over epimorphisms in 4 and g<n; thus we get the iso-
morphisms

(kX)) = X, & Coker(D,(*2(X)»(*2(X)),) = (Ni*2(X)), ,

and it is easy to check that they are natural and commute with differentials.
(i) Let X be an object in (4¥%, 4); then we define maps of chain complexes

SO k(X)~> ko *2)(X) . g(X): (ky 0 *2) (X)—>ky(X)

as follows:

Wi

JX): (l(X))y = X, L1 X, = (*2(X), = (koo *2) (X)), ,

2y 000 (ko *2) (X)), = LI X, X, = (k,(X)), ,
"
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where 3" = ¥ sgn(m)p,, p, denotes a projection onto a direct summand corre-
TEeSh

sponding to 7 and #: [1n]—[g] runs over epimorphisms in 4,. A standard but lengthy
computation shows that f(.X) and g(X) are, in fact, maps of complexes. It is clear
that g (X)f(X) = L) ‘

We prove that f(X)g(X) is homotopic to the identity map of the complex
(k, o *2)(X) by means of acyclic models. In the categories (4¥, Z-Mod), (4}, Z-Mod)
the objects C(p), C(p) corresponding to a standard p-dimensional simplex are
‘defined as follows:

C(]J),,=L_\Zg, C(p)n= UZ‘)’ ”=0’]""’
£ ¥

where ¢: [n]—[p] runs over maps in 4, y: [n]—[p] runs over maps in 4, and Z,,
Z, are free Z-modules on free generators ¢, y. Maps induced by a map [m]—[n]
in 4, or 4, are obvious. We know that C(p) = *z(C(p)) and the chain complex
k,C(p) is homotopically trivial.

For each object X in (4*, 4) and for each epimorphism #: [n]—[q] in 4, we
denote by wy, the imbedding wy,: X,— (*z(X)),. We define by induction such
natural maps /,(X): (*2(X)),— (*2(X))y+1, » =0, I, ... that
() FAI0GX) =Ly, = Ot X) -1 (X) 0
where 6,’,( denotes the nth differential of a complex k,*z(X). We put /7o(X) =0

" and let us assume that the maps Ag(X), ..., i~ (X) are defined for all objects X
n (4%, 4) and an arbitrary Abelian category 4 and that they satisfy (0), ..., (n—1).
Then we have

SEPLL(C(p)n(CP)) = 15 —Tu- 1 (C(p)AEP] = 0

and for each epimorphic map #: [n]—[p] in 4, we have weg, ,(Ir,) € C(p),: thus
there exists such an element b, & (C(p)),+; = LI L1Z, (where y': [n+1]1-[q]
/I 4

runs over epimorphic maps in 4, and ¢': [¢]—[p] runs over maps in 4,) that
a,'ff_"l)b,, = [ﬁ,(C(p))g,,(C(p,))*la(p)”—/l,,_i(C(.p))a,?(p)] WC(p),u(l[p]‘)
and b, is of the form
b'l = Z, wc(p),rr’(z a(n, '7l= 91)8’) >
L &

where a(n, n’, &) € Z. For any object X in (4¥, A) we define /1,(X) as follows: let
n: [n]—[p] be an epimorphic map in 4,; then

hn(X)wx,r] = Z wX,n'(Z DC(I’[, ,1/> 8’) X(El)) .
W

g

It is easy to verify that /,(X) is natural and the formula (n) follows by a standard,
but lengthy, computation.
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(iii) We define maps #,(X): | | X,—(NX), by the conditions t(X)w, = sgn(n)p,.

nESy
and it is easy to prove that the maps 1,(X) induce the maps 7(X): (N *z5(X )y
—(NX),. Let maps @,(X): (NX),~(N,*z,(X)), be compositions o

(NX)y == X, =3 L) X, = (42, X), = (Ni*2,(X),
N TEeS, ’

Then.ﬁ,,(‘X ) are inverses of f,(X) and commute with differentials.
(iv) follows by (i) and (ii), (v) follows by (iii).

§ 2. Homotopies in categories of simplicial objects

1. A standard triangulation of prisms. We denote the vertices of a standard
n-dimensional simplex 4, by 0, I, ..., . For any map «: [m]—[n] in the category 4,
we denote by [o|: 4,,~4, such an affine map that lof (i) = a(i), i=0,1,..,nand
by &: 4,,—4, such a simplicial map of barycentric subdivisions that a barycenter-
of a face o of 4,, is mapped onto a barycenter of a face laf () of 4,. If o is mono--
morphic, then jo| = & We denote by 4,[n], (resp., 4]n], resp., 4,[n]) a contravariant
functor represented by an object [#] and defined on the category 4, (resp., 4,
resp., 4,). Let ¢, 4,y =4, %1, for n=0,1,.., j=0,1,..,n be such affine
maps that ¢, (/) = (i, 0) for i<y (resp., (i—1,1) for i>j). The maps @y for j
= 0,1, ..., n, determine a standard triangulation of a prism 4, x I. To this triangu-
lation (with the usual ordering of vertices) correspond objects P, ; in the category
(4¥, Set), P,y = *z(P,.,,) in the category (4*, Set) and Prita= *2(Pyoq1s)
= *23(P,+,) in the category (4}, Set). It is well known that P,.; =~ 4 [n]x 4[l].
It is easy to see that similar formulas do not hold for P+, and P, ,. Essential
properties of standard triangulations of prisms are collected in the following
proposition:

PROPOSITION |. Maps ¢, A, —d,xI, n=0,1,..., j=0,1,..,n satisfy-
the following relations: ’

(I) Py o |6”+]l = iO » (PO:" e |60J = fl

where iy: d,—d,x1, § = 0,1 and ix) = (x,d) for x€ 4,,

(2) Qio 6] = ("X 1) 0oy, SJor i<j,

(3) P8 = @rg,o et Jor  i=0,1,..,n=1,
4) Ppuole] = (e X D)o@ my  for i>j+1,

) i = (0% D) o @peyaer Sor i),

(6) Pino |’7i| = (‘|’71_1| XD o @juer Jor i>j.
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Each isomorphism n: [#]—[n] in the category 4, induces the simplicial map
In]: 4,—~4, but the maps |n|x1: 4,xI—>A4,xI are not simplicial unless = = 1.
Thus to define a homotopy in a category (4%, M) which is “consistent with models”
we have to consider another triangulation of prisms.

2. Homotopy in categories (4*, M). Let M be an arbitrary category. We recall
a well-known definition of homotopy in (4%, M).
DEFINITION 2. A homotopy of maps of an object X in ¥ in a category (4%, M)

is a family of maps {h;,}, n=0,1,..,j=0,1,..,n, where &;,;: X,— Y, which
satisfy the relations

(7) ) dilyy = hjq,oqd; for i<j,

(8) Qipihigr,n = digihiy for i=0,1,..,n—1,

©) dihj, = hjp_ydioy for i>j+l1,

(10) Sihiy = Hip1 418 for  i<j,

(11 $ihyy = Rjypy8;0,  for  i>j.

Homotopy {#;,} joins maps fy,fi: X—Y where

(12) ' (fo)n = dn+ Ihn,n 2 (‘fi)n = dOIZO,n .

It is well known that there exists a natural one-to-one correspondence between
the set of all homotopies of maps of object X'in Y and the set of all maps of X' x A[l]
in Y (see [2]).

Let us suppose for a moment that M = Set. Then each element x, e X, de-
termines a unique map X,: 4[n]—X such that £,(I;,) = x,; thus for a map
h: XxA[l]- Y corresponding to the homotopy h;, we have

hj,n(xn) = hn+1(S iXn s _]) = hn+1(‘9 kn(l[n]) ) = hn‘l-l(fn(l”j), O—j)
= (/Z o (X, % ]))n+ 1(’7 > Uj) = (h ° (inx Do (P;’,")n+1([[n+l]) >
where ¢}, 4[n]— P, denotes such a map that ¢;, = |p;,l and o; = a;,: [n]-]1]
satisfies o;(f) = O for i< (resp., 1 for i>j). Now it is easy to check that all the

formulas (7)-(11) follow from Proposition 1; for instance; we obtain formula (7)
as follows:

dihn(x,) = di{h o (%, %1) o Y N P
(/l o (®,x1)o (/’},u)ndi(l[n-u])

= (ho(%,%1) 0 0] )u(e")

= (ho @ x1) o @fu)yo Al (15)

= (h ° (iu X 1) a ¢},n od [gi])n(l[n])

I

1
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= (h ° (jen X 1) ° (A [si] X l) e go}—l.n——l)n(l[n])
= (o Go AL X1 0 010 )ullg)

= (h(dixn x1)o (P}~1,n—1)n(1[n])
= Iy p-1(dix,)

. since @}, 04[] = (4 [a‘]xl) o @iy -y and %, o A[e'(Ipy—y9) = %,(e" = % 2 i(1y)

= (llxn(l[n]) = d)“ = dixn(l[n 1])
Thus relations (7)-(11) reflect properties of the standard triangulation of prisms.

3. Homotopy in categories (4*, M

DEFINITION 3. A homotopy of maps of an object X in Y in a category (4%, M)
is a family of maps {hiny, n=0,1,.., j=0,1,..,n where h it K= Yopq,
which satisfy relations (7)—(9). Homotopy {h;..} Joins the maps fy, f1: X— ¥ defined

y (12).

-Let us assume that the category M is closed with respect to finite coproducts
For each object X of the category (4¥, M) we define an object Xx 4,[1] in 4% M
as follows:

n—1

|—]an l‘-}[_len:

=1

(Xx 4], =

where X, = X, " and we denote the corresponding imbeddings by Wient Xt

(XX 41D, Wi, X~ (Xx4]1]),. Face operators are defined by the con-
ditions
Wit u—1d; for i<k,
Wie g e for i=k
Ay, = § K- tu=1 ’
P MWy for i=1k+1,
Wen—1di—y for i>k+1,
’
Wiy n—yd;  for i<k
dw' ___zj ke~ 1,n—14%1 S,
En T \ Wiy for i>k.

Each map f: X—X’ induces a map fx 1: Xx A4J1]-X’ x A[1] and maps fp, i;: X
=X % 4,[1] are defined by (i), = wy,, (i), = W1,

It is easy to see that if X is a scheme of vertjces of a polyhedron | X|, then X x
x 4,[1] is a scheme of vertices of a polyhedron |X]|xI.

"THEORBM 4. There exists a natural one-to-one correspondence between the set
of all homotopies of maps of an object X in Y in the category (d¥, M) and the set
of all maps of Xx AJ1] in Y. If a map h corresponds to a homotopy which Joins f,
and fy, then we have hoiy = fo, hoi, = f.

Proof. If {i;,} is a homotopy, then we define a corresponding map h: Xx
X 4,[1]= Y by the conditions /1wy, = fy ,—q, BW,5 = dirihy, for k=0,1,
and hw', , = dohg,, Conversely, if i: XxA4[1]- Y is any map, then we deﬁne
a corresponding homotopy {%;,} as k;,

§ — Fundamenta Mathematicae, T. XCI

= h, Wine1-
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It is easy to see that in the case M = Set we have XxA4,l] = X®4,[1],
where ® is defined in [7], and in this case our homotopy is identical with that
defined in [7]. :

4. Godement homotopy in categories (4%, M). The definition of homotopy
in the category (4¥, Set) given by Godement in [4] admits an obvious gener-
alization for categories (4*, M). For each object X in (4*, M) we define an object
Xx 4,11 in (4%, M) as follows:

(x40, = 11 X,

where X, = X,, o runs over all maps ¢: [n]—[1] in 4, and any map «: [m]-[n]
in 4, induces a map &: (Xx4,[1]),~(X x 4,[1]),, determined by the conditions
GoW, =W, X() for all ¢ (w,: X,,—~(Xx4,[1]), denotes an imbedding). Each
map f: X— X' induces a map fx 1: Xx4,[[]>X' x 4,[1] and maps iy, i;: X—Xx
x 4,[1] are imbeddings corresponding to two constant maps [n]~[1].

DEFINITION 5. A G-homotopy of maps of an object X in Y in a category
(4%, M) is a map h: XxA,[11-Y and it joins maps /o iy and /o /.

If M = Set then a standard computation shows that the functor - x 4,[l]:
(d¥, Set)>(4¥, Set) is a Kan extension of a functor Q: 4,—(d¥, Set) along the
Yoneda map A4,—(d4},Set) where Q([n]) = 4,[2n+1] = 4,[n]x4,[1] and for
a: [m]—=[n] in 4, a map Q(o): 4,[2m+1]-4,[2n+1] is defined as follows. For
each map y: [p]-+[2m+1] there exist unique maps y,: [pl-[m], y,: [p]=[1] such
that y = y,+(m+1)y, and we define (Q(@),(y) = @0y, + (n+1)y,. It is easy to
see that Q is equivalent to a functor [#]i~>4,[n] x 4,[1].

5. t-homotopy in categories (4*, M). We have observed that in the case of
categories (4¥, Set), (4%, Set) (and similarly for (4*, Set)) we can identify a homo-
topy of maps of an object X in ¥ with a map of one of objects X x AJ1], X< A[1],
Xx4,[1]in ¥ and that functors - x A[1], - xd[l], ~ x4,[1] are Kan extensions
of one of the functors P, P (which is defined similarly as P,), 0, along a Yoneda
map. Using formulas which express values of Kan extension on an object X, we
can define a homotopy in categories (4*, M), (4*, M) and (4%, M), where M is
assumed to be closed with respect to direct limits (this assumption is not essential).
A choice of one of the functors P,, P, Q and of transformations ig» 1y of a Yoneda
map in Py, P, Q determines a “model” for homotopy. The functors P,, P and- the
transformations correspond to traditional “prismatic models™ 4,xJ with maps
of 4, into lower and upper faces of 4, x J. The functor Q corresponds to “simplicial
models” 4,4, with maps of 4, into faces {0, 1,..,n}, {n+1,n+2, ..., 2041},

Now we describe ajhomotopy of another type in categories (4¥, M) which
correspond to “prismatic models”. A construction of a required functor A, (4¥, Set)
is in fact a construction of some special triangulation of prisms 4, x 1, appropriately
related to maps induced by maps in 4,. We describe one such triangulation, called
t-triangulation. It is not as good as the standard triangulation, which corresponds
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to the functor P, because maps |7/|x 1: 4, xI—4,_ xI map t-simplexes onto
v-simplexes, but are not affine in general (compare formula (19),).

We can obtain another useful functor A,—~(4¥, Set) by constructing another
triangulation of prisms. Over each simplex ¢ of a barycentric subdivision of 4,
(with natural ordering of vertices induced by an inclusion of faces) we build the
standard triangulation of a prism ¢ x I. The sum of all such triangulations determines
the triangulation of a prism 4, x I appropriately related to maps in 4,. Imbeddings
of 4, into lower and upper faces of 4, % I are simplicial if we consider 4, with a bary-
centric triangulation. Consequently, we have to replace objects X in (4*, M) by
their simplicial subdivisions, generalizing the Kan construction in (4*, Set). We
shall not discuss this subject here.

For fixed n (n = 0, 1, ...) we consider sequences (i,, Iy, o5 By—q; 6) such that
Osms<n, 6 =0,1, iy, iy,., iy are different integers and 0<i,<n for k
=0,1,..., m—1. For each such sequence we denote by i,, ..., i, such integers that
Ur ooos in} = {0, oy nN\{igs oo, iy} and ip< ... <i,. We can identify a sequence
{ig; s fy—q) With a2 monomorphic map i: [m—1]-[n] in 4,. We denote by
Tyat{lgs voes fy—y; 0} Ay —+d, % I such an affine map that

s O)() = (b(ij, ijﬂ,...,i”),%) for 0<j<m,
Pl T (i;-1,0) for m<j<n+1,
where b(i;, ..., i,) denotes a barycenter of a face of 4, determined by the verticeS

ijy ooy iy If m = 0, then we have

7"114—1([07 .

Tn—}-]( ;5)(0) = (b(oa s ”)s %) and Tn+1( ;5)(/) = (_/_ 1 s 5)
for 0<j<n+ 1. Itis easy to see that all maps 1,4 1(ig, ..., i,y— ; ; 6) determine a triangu-

lation of a prism 4,x 4, and we call it the t-triangulation.
PROPOSITION 6. Maps T,y (iy, ..., in—1;0) satisfy the following relations:
(13) Tn+1( ;5)" Isol =i, d= 0,1.
(14)  If m>0, i,i" are monomorphic maps and the diagram
&0
[m—2]—=[m—1]
" b

it
g0

[n—=1]1- [n]
is commutative, then T, (iy,

(15) If C<j<m, then

() im-—l; 5) ° !EOI = (lﬁiul x 1)" Tn(iéy ey iy:r~2; 5)‘

T/l'l'](.[()w (] 1",_1;6) © !bjl = Tn+l(l[)1 vy Ljs gy ey Iy [15) ° |6 I .

(16)  If m<j<n+1, m<n, then

. m+1| ,

Ty 1(,[09 ey im—l :()) e lajl = Tn+1(i0> s ly—1 [j—1;5) ° IC

a*
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) Tus1lios oos dn138) o [ = Ty y(gs oo fymys 1=8) o [T 1]

(18)  Let =: [n]=>[n] be an automorphism_ in A, and let in< .. <iy be such
integers that {iy, .., in} = T{in, ., l.y; then we define an automorphism
o: [n+1]=[n+1] as follows: o(p) = p for O<p<m and ¢(p) = q if m<p
<n+1 and n(i,—,) = iy_,. Thus we have

(177‘1 X 1) o Tn+1(i0’ sees im—l;é) = T,,+1(7T([o), sera n(im—-l.);(s) a |~Q| .

(19)  Consider a fixed map v,y (g, s in—130) and a fixed infeger j such that

0<j<n. Let k, 1 be such integers that {j,j+1} = {i,, iy} and k<l

(19)y If k<m—1, then
> . . .
(ﬁjx 1) ° Ty+ 1(i0’ e im—l :5) = Tn(ﬂj(io), ween "j([k)a e 771([”1—1); b) @ lnll'
(19), If k>m—1, then

k41

(1) o Tyasios s Iue130) = Tu(ﬂj(fo), s (= 1)5 0) © My
where 5t A, =4, is defined by the formula
Pt (1=1)y) = tx+(1=DF()
Sor all points x,y lying on faces of 4, determined by the sets of vertices
{0,1,...,m}, {m+1,..,n+1} and 0<2<1 ().
The following definition of homotopy in (4%, M) is related to the t-triangu-

lation of prisms in a similar way as homotopy in (4*, M) is related to the standard
triangulation of prisms. We preserve the notation of Proposition 6.

DEFINITION 7. A r-homdtopy of maps of an object X in Y in a category
(4%, M) is a family of maps {hiy. - vomb> Miorsimeyiont KXo Yuy1 Which satisfy
the relations

(]4/) . dohiu_.”.,im_;,;é,n = hi(’, ,,,, i,,(_z;ﬁ,n—-ldin’

(157 illig,. . imm 8 = il isig tyeerion= 13601 3

(16,) djhl'o,,.‘,i,,,_l;ri,n = dm+1/7ig,...,i,,(n1,i1_‘;ﬁ‘n H

a7 ot tlig,..ime o = Dt tPign oo i1 =500 »

(18" Bigy..imeszo®e = Dle(io),eunrelion - 12801 »

(19') it 158085 = Skl io)sees it Con = 300 1 5
(19'), Rigyeroyim=r35:055 = Skt 1 Myd(io) ool sin—1 -

The homotopy . {Pig,....im—san} Joins maps fo,fi: X—Y where (fo), = doltyon
(fl)n = dOh;I,n'

() Les us remark that |7 1| (et (1—p) = ne-(1—1) I+ 1 ().
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§ 3. Preservation of homotopy in categories
of simplicial objects

Le!; .Top denote the category of topological spaces and continuous maps. By
Proposition 1.3 of Chapter 1T of [3] it follows that there exist pairs of adjoint

s | \u
mre (A% D= F — . . .

functors (4%, Set) ?? Top, (4%, Set) ==~ Top, where Sing, = z, - Sing, Sing, are

inge Sing,

functors “simpliciz ¢ of si i ’
m.}pllcul. set. of singular simplexes”, | |,, | |, and I 1: (4%, Set)—Top
are geometric realization functors and we have [ le=11o*zy =] [40*z, | |
a >

= oo "2,

It is weu known (see [3]) that |4 [n] x 4 [m]l = |4[n]] x |4 [m]| and this implies
I.'ha?t [XxA[1]| = |X|x|4[1]]; thus the functor | | preserves homotopy. The de-
finitions immediately imply

COROLLARY 1. The forgetful functor z,: (4%, M Y= (4¥, M) preserves homotopy.

COROLLARY 2. The forgetful functors 2 (¥, M)—»(d* M), z: (4%, M)
~(d¥, M) preserve G-homotopy. ‘

To prove that the functor *z, preserves homotopy we need the following

PROPOSITION 3. There exists such an equivalence ¢ of functors that the diagrams

[d¢

sz ()% AT1]

AN Ve
21X N\ Jatza (o0
*zy(X)

“2,(Xx 4,[1)

& =0, 1 are commutative for all objects X in (4*, M); i, j; denote the appropriate
imbeddings.

F’roof. Let wy,: 2y (X)) 2 (X), x (4[1]),, k= —1,0,..,4q, denote im-
beddings; then we define a natural transformation ¢ and its inverse ¥ by the
formulas

PUX)W Wy = W W, k=0,1,..,9~-1,

3 ’ ~ort
PUX)WyWig = MW Wiy, k= -1,0,..,¢

for all epimorphic maps n: [n]=[q] in 4, and if n = 7' ... o with 0<j, < ... <,
<n then
W, Wy for j,<k<j
v e s

l//u()‘/) wl;./n Wy == 1 ) . "
wnj’,,.nj"'r,j'"*’1...r;j‘Wk—1zl,q+1 f()l" k = Jm+1
A standard and lengthy computation shows that ¢ and y are in fact natural trans-
formations and that  is inverse to .

THEOREM 4. The functor *z; = (4%, M)—(4*, M) preserves homotopy.

Proof. Let a homotopy {#;,} join maps fy, f1: X— Y in (4%, M). By Theorem 4
of part 2 to this homotopy corresponds a map #: X x 4,[1]— ¥ such that / s j, = f;,
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hojy =f1 and hyp = M Wipeq- The map o= *zy(h) o Y (X): *z(X)x 4[]
—*z,(Y) determines a homotopy which joins *z,(f,) and *z,(f}). The components

k;, of a homotopy corresponding to h are given by the formula

hy Wy = Wois_pdmgdme s+ 1, gdet 0oy
Where 1’[ = ylj1 e ﬂjt and jm <j\<~jm+1‘ N
In [2] it is proved that the functors k, NV, K preserve homotopy.
THEOREM 5. Let A be-an Abelian category.
(i) The functor ky: (4%, A)—(Ch, A) preserves homotopy.
(i) The functors *z; oz, and 14 4y are homotopically equivalent.

Proof. (i) Let a homotopy {A;,} join maps f,,f;: X— Y in (4%, A); then the
maps h, =y (—1)’h;, determine homotopy which joins the maps ky(fy) and
i=0
k{f1) in (CH, A).
(ii) Since k = ko z;, by Theorem 3(i) of part 1 it follows that No %z, oz,
~ kgoz; =k; thus by Theorem 3(v) of part 1 (Kan-Dold Theorem) we get

*2102; ® Ko k. Since K preserves homotopy and the functors k¥ and N are
homotopically equivalent, K - k is homotopically equivalent to the identity functor.

THEOREM 6. The functors k, and N, preserve t-homotopy..

Proof. Let a t-homotopy {fy, ._,.5.; join maps f,fi; X—Y. We
define the maps #,: (k,X), = X,—(k,Y),41 = Y, as follows:

/’l" = Z ('" I)Hhio ..... im =130, 2

where the sum is taken over all admissible indices of s, a = 0+1(igy s byey)F
m=1
+ 3, (i+k+1) and I(i, ..., i,_,) denotes the number of such pairs (k, k) that
k=0 )
0k <k’<m and i >i,.. Using relations (14')~(19"), one can compute that d,., /1, -+
1l 10, = (k(fo—/1)),5 thus the maps k,(fy) and k,(f1) are homotopic.
To prove that the maps N,(f,) and N,(f;) are homotopic it is sufficient to show
that' 4,(D,(X))= D, ((Y). This easily follows from the formula

m—1
L(igs -ovs iye 1) F (@G, oo, mGN) + 3 i
k=0

m—1

=1(n(0), ..., n()+ (= (i), ..., n(i,,,_l))-l-kzon(ik) (mod2),

which holds for each automorphism =: [n]-[n] in 4,.
Theorem 4 and the formula | |, = | o *z, imply
COROLLARY 7. The functor | |,: (4%, Set)—»Top preserves homotopy.

To prove a similar statement for | |, we need a lemma.
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LeEMMA 8. There exists such a natural transformation o of functors that the
diagrams )

X1 14,110, — s | X 4,17],
A

y4
JellXlaN\ s3]
X,

0 = 0,1 are commutative, where is, J5 denote the appropriate imbeddings.

» Proof. At first we consider the case X = 4,[n]. Then it is easy to see that there
exists an isomorphism 4,[2n+1] & 4,[n] x4,[11 which maps Itzns17 onto
g = (91, 9g2), where g,: [2n+1]-[n], 920 Rn+11-[1] satisty g,() 4 (n+ Dgs() = i
for all 7e[2n+1]. We denote b; = 1§1.(7) for all ie [2n+1] and define

o(d[n) (toag+ ... +1,a,,t) = (1= (tobo + ... +1,b)+1(toby sy + o A+ 1,bsy 1)

where ay, ..., a, denote vertices of [4nlla = 4,, 1,14, ..., 1, belong to the unit
interval and #y+ ... +¢, = 1. For an arbitrary object X in (4%, Set) we extend
the definition of o as follows. Let x, e X,; then o(X) is the only map such that

o (X)(

Xy

oX1) = [, x1|,0 0(4,[n]) .

THEOREM 9. The functor | |,: (4¥, Set)=Top preserves G-homotopy.

Proof. Let i: Xx A,[l1]-+Y bea map which joins f, and f; ; then |f], = |h o iy,
= |hlyo|isla = 1Mly00(X)oj; for §=0,1; consequently [A], o o(X) joins |fpl,
and [fil,.

THEOREM 10. Let fo, fi: X—Y be maps in the category (4%, Set) and suppose
that the maps *z(f,), *z(f,) are t-homotopic. Then the maps *z(fo)la, 1*2(f)l,
are homotopic.

Proof. We know that [*z(X)], = |X|,; thus we can represent |*z(X)|, as
2

a cokernel of a pair of maps | ][] 4, =L 4,.x,» Where &: [m]—[n] runs over
& Xn H Xn

maps in 4, x, runs over X,, 4, . = 4,, Ay, =4, and Lo w,,. = wy, 0 lel,
oWy = Woby. Let ve L] 4, o —[*2(X)|, be a natural map.

Relations (15')-(17") correspond to all pairs of adjacent (n+ 1)-dimensional
simplexes of z-tiriangulation of a prism 4,x 4,. Using those relations, we show
that for each x,e X, there exists a unique map H, : A,xd4,-|*z2Y], such that
HyoTyii(in, ooy fyey; 8) = |f;im“_,;m_‘;,,,,,(x,,)laA In fact, using for example (16),

we get (abbreviation: /# = Migyensimesr W= Ty ime 1,130

lﬁ(xn)lﬂ o Iﬁjl:r = Iﬁ(..?\‘") o A [ej]lu = |‘].i/i(x:r)l:l = ldm+1hl(xn)|n = |E((xn)'a ° !Em+1|a
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and similarly for (15"), (17'). Thus the maps 1h(x,)], induce H, . By (14) it follows
that the maps H, induce such a map H: [X | x4,=]*2(Y)|, that Ho (vX1)o
o Wony X 1)= Hy,. In fact, we have (abbreviation: A" = Iy it yism)

a9 lp‘ola

Hx o (‘Biol X 1) ° Tn(iéa ey i):t—l;é) = Hx" ° Tn-i—l(i()a [ im—l :5) o Isol = [h(‘x”)

Taoh (el = 1 (i)l

1

= Hdio("") ° Tn(i(,)v e in’l‘*z;(s);
thus for any & holds H,, o (je| x1) = Hyy,. If we put H' =[] Hy: L bz, x4,
—|*z(Y)|,, then
H' o (Ax 1) (Wigy X 1) = H' 0 (W gy x 1) o (le] 3 1) = Hy, (lelx 1) = My,
H'o (W(rvx;3x1|) X 1) =H'o (.” X 1)(W(U,X-'n) X 1)’

I

thus H' induces H. It is easy to see that H joins [*z(fo)l, and [*z(f1)l.
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