170 W. Hanf

- [3] R. D. Mayer and R. S. Pierce, Boolean algebras with ordered bases, Pacific J. Math. 10 (1960), pp. 925-942.
- [4] A. Mostowski and A. Tarski, Boolesche Ringe mit geordneter Basis, Fund. Math. 32 (1939), pp. 69-86.
- [5] D. Myers, Invarient uniformization, Fund. Math. this volume, pp. 65-72.
- [6] R. S. Pierce, Bases of countable Boolean algebras, J. Symb. Logic 38 (1973), pp. 212-214.

MATHEMATICS DEPARTMENT, UNIVERSITY OF HAWAII Honolulu, Hawaii

Accepté par la Rédaction le 28, 5, 1974

Extension of a valuation on a lattice

by

Przemysław Kranz (Poznań)

Abstract. In a recent paper [2], Fox and Morales give necessary and sufficient conditions in order that a strongly additive (= valuation) set function from a lattice of sets $\mathcal L$ into a complete metric group be uniquely extendable to the generated (σ, δ) -lattice. It is shown in the present note that the same conditions are valid in a more general setting, i.e., when L is an arbitrary lattice and v is a valuation on L with values in a sequentially complete Hausdorff topological group. The proof is accomplished by means of the elimination of Pettis' theorem ([3], Theorem 1.2), the basic lemma in the proof of Fox and Morales.

1. Introduction. Let L be a lattice and G an Abelian topological group. A function $v: L \rightarrow G$ is called a *valuation* [1], [3] if

$$v(x \lor y) + v(x \land y) = v(x) + v(y).$$

It is easy to show that ([1], p. 75) and ([4], p. 239) that if L is a relatively complemented lattice (or, in particular, a Boolean ring), then (1.1) is equivalent to

$$v(x \lor y) = v(x) + v(y)$$
 for $x \land y = 0$.

We do not assume, however, that a null element belongs to L. A valuation v on L is said to be (order) σ -continuous $(\delta$ -continuous) if, for every increasing (decreasing) sequence (x_n) such that $x_n \in L$ (n = 1, ...) with $\sup_n x_n \in L$ $(\inf_n x_n \in L)$, we have $v(x_n) \rightarrow v(\sup_n x_n)$ $(v(x_n) \rightarrow v(\inf_n x_n))$.

v is (σ, δ) -continuous if it is both σ -continuous and δ -continuous.

A lattice H is said to be σ -continuous if it is (σ, δ) -complete (i.e. the limits of both increasing and decreasing countable sequences of elements of H are in H) and the following condition holds: $y, x_n \in H$ $(n = 1, ...), x_n \uparrow x \Rightarrow x_n \land y \uparrow x \land y$; and dually.

All lattices occurring in the present note are supposed to be contained in a fixed σ -continuous lattice H. The only lattice operations which will be considered are restrictions of those on H. Accordingly we shall use the word lattice to mean the subset of H closed with respect to the restrictions of the lattice operations on H.

Let $v: L \rightarrow G$ be a (σ, δ) -continuous valuation. The aim of this note is to establish necessary and sufficient conditions for the unique extension of v to a contable.

tinuous valuation on the (σ, δ) -lattice generated by L. These conditions appear to be the same as those given by G. Fox and P. Morales in Theorem 2.10 of [3] for the lattice of subsets of a fixed set T.

- 2. Extension theorems. Let L be a lattice contained in a σ -continuous lattice H. Further, let v be a valuation. The domain of v (always assumed to be a lattice) is denoted by D(v). Let $x \in L$; then the class $\{y: y \in D(v), y \leqslant x\}$, if it is non-empty and directed by \geqslant , defines the Moore–Smith sequence $\{v(y)\}_{y \leqslant x, y \in D(v)}$. Similarly the class $\{y: y \in D(v), y \geqslant x\}$, if non-empty, directed by \leqslant , defines the Moore–Smith sequence $\{v(y)\}_{y \geqslant x, y \in D(v)}$. All lattices throughout this section are sublattices of H.
 - 2.1. DEFINITION. Let v, w be valuations:
- (a) v is w-lower regular if, for every $x \in D(v)$, the set $\{y \in D(w): y \le x\}$ is non-empty, and $\lim_{y \le x, y \in D(w)} w(y) = v(x)$.
- (b) v is w-upper regular if, for every $x \in D(v)$, the set $\{y \in D(w): y \ge x\}$ is non-empty, and $\lim_{y \ge x, y \in D(w)} w(y) = v(x)$.
- 2.2. Lemma. We assume first that G is a complete metric group. Let v and w be valuations, and let $\varepsilon > 0$ be arbitrary. If v is w-lower regular (w-upper regular) and (x_n) is a decreasing (increasing) D(v)-sequence, there exists a decreasing (increasing) D(w)-sequence (y_n) such that $y_n \le x_n$ (n = 1, ...) and $|w(y_n) v(x_n)| < \varepsilon$. Moreover, if $z \in D(w)$ is such that $z \le \inf_n x_n$ $(z \ge \sup_n x_n)$, then we may choose the sequence (y_n) so as to satisfy the additional condition

$$z \leq \inf_{n} y_{n} \leq \inf_{n} x_{n} \quad (z \geqslant \sup_{n} y_{n} \geqslant \sup_{n} x_{n}).$$

Proof. Let s>0. On account of the properties of v and w, we can for every n and every $x_n \in D(v)$, find an $s_n \in D(w)$ such that $s_n \leq x_n$, and $|w(s_n) - v(x_n)| < \varepsilon$. Let $y_n = \bigwedge_{i=1}^n s_i$, so that $y_n \in D(w)$, $y_n \leq x_n$, $y_n \downarrow$.

The proof that $\{y_n\}$ has the required properties is inductive. First we verify that $|v(x_2)-w(s_1\wedge s_2)|<\varepsilon$. Indeed, having assumed that $|v(x_i)-w(s_i)|<\frac{1}{3}\varepsilon$ (i=1,...), we get

$$\begin{aligned} |v(x_2) - w(s_1 \wedge s_2)| &= |v(x_1 \wedge x_2) - w(s_1 \wedge s_2)| \\ &= |v(x_1) + v(x_2) - v(x_1 \vee x_2) - w(s_1) - w(s_2) + w(s_1 \vee s_2)| \\ &\leq |v(x_1) - w(s_1)| + |v(x_2) - w(s_2)| + |v(x_1) - w(s_1 \vee s_2)| \\ &\leq \frac{1}{4}\varepsilon + \frac{1}{4}\varepsilon = \varepsilon. \end{aligned}$$

since $x_1 \geqslant s_1 \lor s_2 \geqslant s_1$.

Further, assuming that

$$|v(x_{n-1})-w(\bigwedge_{i=1}^{n-1}s_{i})|<\frac{1}{3}\varepsilon,$$

we get

$$|v(x_{n}) - w(\bigwedge_{1}^{n} s_{i})|$$

$$= |v(\bigwedge_{1}^{n} x_{i}) - w(\bigwedge_{1}^{n} s_{i})| = |v(\bigwedge_{1}^{n-1} x_{i} \wedge x_{n}) - w(\bigwedge_{1}^{n-1} s_{i} \wedge s_{n})|$$

$$= |v(\bigwedge_{1}^{n-1} x_{i}) + v(x_{n}) - v((\bigwedge_{1}^{n-1} x_{i}) \vee x_{n}) - w(\bigwedge_{1}^{n-1} s_{i}) - w(s_{n}) + w((\bigwedge_{1}^{n-1} s_{i}) \vee s_{n})|$$

$$\leq |v(\bigwedge_{1}^{n-1} x_{i}) - w(\bigwedge_{1}^{n-1} s_{i})| + |v(x_{n}) - w(s_{n})| + |v(x_{n-1}) - w((\bigwedge_{1}^{n-1} s_{i}) \vee s_{n})|,$$

but

$$\bigwedge_{1}^{n-1} s_i \leqslant x_{n-1} \quad \text{and} \quad (\bigwedge_{1}^{n-1} s_i) \vee s_n \leqslant x_{n-1} \vee x_n = x_{n-1}.$$

Therefore

$$|v(x_n)-w(\bigwedge_{i=1}^n s_i)|<\varepsilon$$
.

In the second case, choose $s_n \in D(w)$ such that $s_n \ge x_n$ and

$$|w(s_n) - v(x_n)| < \frac{1}{3}\varepsilon$$
 $(n = 1, ...)$.

Let $y_n = \bigvee_{i=1}^{n} s_i$. A similar procedure to that used before shows that y_n satisfies the condition of the lemma. If, in the respective cases, $z \in D(w)$ is such that $z \leq \inf_{n} x_n$ ($z \geq \sup_{n} x_n$) then, taking $y'_n = y_n \vee z$ ($y'_n = y_n \wedge z$), we infer, by the (σ, δ) -continuity of H, that $z \leq \inf_{n} y'_n \leq \inf_{n} x_n$ ($z \geq \sup_{n} y'_n \geq \sup_{n} x_n$).

Henceforth v is a fixed function of domain L.

2.3. Lemma. Let v be a σ -continuous valuation. Then the following are equivalent:

(a) for every $x \in L$ such that the set $\{y \in L, x \ge y\}$ is non-empty

$$\lim_{y \leqslant x, y \in L} v(y) \quad exists \,,$$

(b) for every increasing sequence $(x_n) \subset L$

$$\lim v(x_n)$$
 exists.

Moreover, If (a) (or (b)) holds, then for every increasing sequence $(x_n) \subset L$ with $\sup x_n = x$ we have

$$\lim_{y \leqslant x, y \in L} v(y) = \lim_{n} v(x_n).$$

Proof. (a) \Rightarrow (b). Let $x = \bigvee_{1}^{\infty} x_n$; $\lim_{y \leqslant x, y \in L} v(y) = g$ exists by (a). We shall show that $\lim_{n} v(x_n) = g$. For a given $\varepsilon > 0$ there is a $y \in L$, $y \leqslant x$ such that $y \leqslant y' \leqslant x$, $y' \in L$ implies $|v(y) - v(y')| < \varepsilon$, $|v(y') - g| < \varepsilon$.

Then, since

$$|v(x_n) - v(y)| = |v(x_n \lor y) + v(x_n \land y) - v(y) - v(y)|$$

$$\leq |v(x_n \lor y) - v(y)| + |v(y) - v(x_n \land y)|,$$

we get

$$|v(x_n) - g| \le |v(x_n) - v(y)| + |v(y) - g|$$

$$< |v(x_n \lor y) - v(y)| + |v(y) - v(x_n \land y)| + \varepsilon.$$

Finally, as $y \le x_n \lor y \le x$, it follows that $|v(x_n \lor y) - v(y)| < \varepsilon$ and $v(y \land x_n) \rightarrow v(y)$ by the σ -continuity of v.

(b) \Rightarrow (a). If $\lim_{y \le x, y \in L} v(y)$ does not exist, then for some $\varepsilon > 0$ and every $y \in L$, there is a $y' \in L$ such that $y \le y' \le x$ and $|v(y) - v(y')| \ge \varepsilon$. (There exist $y', y'' \in L$ $y \le y'$, $y'' \le x$ and $|v(y'') - v(y')| \ge \varepsilon$. If, for instance, $|v(y) - v(y')| < \frac{1}{2}\varepsilon$, then

$$\begin{aligned} |v(y) - v(y'')| &= |v(y) - v(y') + v(y') - v(y'')| \\ &\geqslant ||v(y') - v(y'')| - |v(y) - v(y')|| \\ &= |v(y') - v(y'')| - |v(y) - v(y')| \geqslant \varepsilon - \frac{1}{2}\varepsilon = \frac{1}{2}\varepsilon . \end{aligned}$$

We can construct inductively an increasing sequence (y_n) in L such that $|v(y_{n-1}) - v(y_n)| \ge \varepsilon$, contrary to (b).

Similarly we prove the dual lemma.

- 2.4. Lemma. Let v be a δ -continuous valuation. Then the following are equivalent:
 - (a) for every $x \in L$ such that the set $\{y \in L, y \ge x\}$ is non-empty

$$\lim_{y \geqslant x, y \in L} v(y) \quad exists,$$

(b) for every decreasing sequence $(x_n) \subset L$

$$\lim v(x_n)$$
 exists.

Moreover, if (a) (or (b)) holds, then for every decreasing sequence $(x_n) \subset L$ with $\inf x_n = x$, we have $\lim_{y \ge x, y \in L} v(y) = \lim_n v(x_n)$.

2.5. DEFINITION. Let v be a valuation. We say that v is monotonely convergent if, for every monotone sequence (x_n) in L, the sequence $\{v(x_n)\}$ converges.

In what follows, up to the statement of Theorem 2.10, v is assumed to be monotonely convergent, (,)-continuous valuation.

By Lemma 2.3 v extends to the function v_{σ} on L_{σ} : $v_{\sigma}(x) = \lim_{y \leq x, y \in L} v(y)$; and, by Lemma 2.4, v extends to the function v_{δ} on L_{δ} : $v_{\delta}(x) = \lim_{y \in x, y \in L} v(y)$.

2.6. Lemma. The extension $v_{\sigma}(v_{\delta})$ is a monotonely convergent σ -continuous (δ -continuous) valuation.

Proof. We shall prove the lemma for v_{σ} ; the other proof is analogous. That v is a valuation is clear. Therefore we have to show that

- (a) if $x_n \uparrow x$, $x_n \in L_{\sigma} \Rightarrow v_{\sigma}(x_n) \rightarrow v_{\sigma}(x)$,
- (b) if $x_n \downarrow x_n \in L_{\sigma} \Rightarrow \{v_{\sigma}(x_n)\}$ converges.

To prove (a), for every n take $y_n \in L$, $y_n \leqslant x_n$ such that $y_n \leqslant y \leqslant x_n$ and $y \in L$ $\Rightarrow |v(y) - v_\sigma(x_n)| < n^{-1}$. For every n there exists an increasing sequence $(y_n^i)_{i=1...}$ in L converging to x_n . Put $z_i = \bigvee_{k=1}^i (y_i^k \lor y_k)$ so that $y_i \leqslant z_i \leqslant x_i$, $z_i \in L$, $z_i \uparrow x$. Then $|v(z_m) - v_\sigma(x_m)| < m^{-1}$ and hence, by Lemma 2.3, $v(z_m) \to v_\sigma(x)$, i.e., $v_\sigma(x_m) \to v_\sigma(x)$.

To prove (b), let $\varepsilon > 0$ be arbitrary. On account of Lemma 2.2 there is a decreasing sequence (y_n) in L such that $|v(y_n) - v_\sigma(x_n)| < \frac{1}{3}\varepsilon$. Therefore $\{v_\sigma(x_n)\}$ is a Cauchy sequence.

- 2.7. Lemma. (a) If v_{σ} is v_{δ} -lower regular, it is δ -continuous.
- (b) If v_{δ} is v_{σ} -upper regular, it is σ -continuous.

Proof. We shall demonstrate (a), (b) being similar. Let $x_n \downarrow x$, x_n , $x \in L$ and let $\varepsilon > 0$ be arbitrary. There exists a $y \in L_\delta$, $y \leqslant x$ such that $y \leqslant y' \leqslant x$ and $y' \in L_\delta$ implies that $|v_\delta(y') - v_\sigma(x)| < \frac{1}{2}\varepsilon$. By Lemma 2.2 there exists a decreasing sequence (y_n) in L_δ such that $|v_\delta(y_n) - v_\sigma(x_n)| < \frac{1}{2}\varepsilon$, and $y \leqslant \inf_n y_n \leqslant x$. On account of Lemma 2.6 $\{v_\sigma(x_n)\}$ converges.

Therefore we have

$$\begin{aligned} |\lim_{n} v_{\sigma}(x_{n}) - v_{\sigma}(x)| &= |\lim_{n} v_{\sigma}(x_{n}) - \lim_{n} v_{\delta}(y_{n}) - v_{\sigma}(x) + \lim_{n} v_{\delta}(y_{n})| \\ &\leq |\lim_{n} v_{\delta}(y_{n}) - v_{\sigma}(x)| + \frac{1}{2}\varepsilon < \varepsilon .\end{aligned}$$

2.8. Lemma. v_{σ} is v_{δ} -lower regular iff v_{δ} is v_{σ} -upper regular.

Proof. We shall show that if v_{σ} is v_{δ} -lower regular, then v_{δ} is v_{σ} -upper regular. Let $x \in L_{\delta}$. Since, on account of Lemma 2.7, v_{σ} is a δ -continuous monotonely convergent valuation, then $\lim_{\mathbf{p} \geqslant x, y \in L_{\delta}} v_{\sigma}(y) = \mu(x)$ exists (Lemma 2.4).

Take an arbitrary $\varepsilon > 0$. Then there is a $y \in L_{\sigma}$, $y \geqslant x$ such that $y \geqslant y' \geqslant x$ and $y' \in L_{\sigma}$ implies $|v_{\sigma}(y') - \mu(x)|$, $|v_{\sigma}(y') - v_{\sigma}(y)| < \varepsilon$. Let $x_n \downarrow x$, $x_n \in L$. We have

$$|v(x_n) - \mu(x)| \le |v(x_n) - v_{\sigma}(y)| + |v_{\sigma}(y) - \mu(x)|$$

$$< |v_{\sigma}(x_n \lor y) - v_{\sigma}(y)| + |v_{\sigma}(y) - v_{\sigma}(x_n \land y)| + \varepsilon.$$

Since $|v_{\sigma}(y) - v_{\sigma}(y \wedge x_n)| < \varepsilon$ and $v_{\sigma}(x_n \vee y) \rightarrow v_{\sigma}(y)$ (Lemma 2.7), we get $v(x_n) \rightarrow \mu(x)$. But, on the other hand, $v(x_n) \rightarrow v_{\sigma}(x)$ and so $\mu(x) = v_{\sigma}(x)$.

In the sequel we say that a valuation is v-regular if it is both v_{σ} -lower regular and v_{δ} -upper regular.

- 2.9. Lemma. Let v_{σ} be v_{δ} -lower regular (or, equivalently, let v_{δ} be v_{σ} -upper regular). Let u be a (σ, δ) -continuous monotonely convergent valuation, v-regular.
 - (a) If u is an extension of v_{δ} , then u_{σ} is v-regular and δ -continuous.
 - (b) If u is an extension of v_{σ} , then u_{δ} is v-regular and σ -continuous.

Proof. We prove (a); part (b) is similar. Let $x \in (D(u))_{\sigma}$, and let $\varepsilon > 0$ be arbitrary. Let $w_1(x) = \lim_{y \le x, y \in L_{\sigma}} w_{\delta}(y)$. There exists a $y \in L_{\delta}$, $y \le x$ such that $y \le y' \le x$ and $y' \in L_{\delta}$ implies $|v_{\delta}(y') - w_1(x)| < \varepsilon$. By the definition of u_{σ} , there is a $z \in D(u)$ such that $|u(z) - u_{\sigma}(x)| < \varepsilon$ and, since D(v) = L, we have $L_{\delta} \subset D(u)$ by the hypotheses, and so we may suppose that $y \le z$.

Since u is v_{σ} -lower regular, there exists a $t \in L_{\delta}$ such that $y \leqslant t \leqslant z$ and $|v_{\sigma}(t)-u(z)| < \varepsilon$. Then

$$|w_1(x) - u_{\sigma}(x)| \le |w_1(x) - v_{\sigma}(t)| + |v_{\sigma}(t) - u(z)| + |u(z) - u_{\sigma}(x)| < 3\varepsilon$$
.

We conclude that $w_1(x) = u_{\sigma}(x)$; this proves that u_{σ} is v_{δ} -lower regular.

To show the v_{σ} -upper regularity of u_{σ} , note that there is an element $h \in L_{\sigma}$ such that $x \leqslant h$ (this follows from the fact that $x \in (D(u))_{\sigma}$, i.e., $x = \bigvee_{1}^{\infty} h_{n}$, $h_{n} \in D(u)$, but, since u is v_{σ} -lower regular, every element of D(u) is majorized by some element of L_{σ}). Therefore $\lim_{y \geqslant x, y \in L_{\sigma}} v_{\sigma}(y) = w_{2}(x)$ exists. Hence there exists an element y in L_{σ} , $y \geqslant x$, such that $y \geqslant y' \geqslant x$ and $y' \in L_{\sigma}$ implies $|v_{\sigma}(y') - w_{2}(x)| < \varepsilon$. Let $x_{n} \uparrow x$, $x_{n} \in D(u)$. Then there is an increasing sequence (y_{n}) in L_{σ} such that $|v_{\sigma}(y_{n}) - u(x_{n})| < \varepsilon$ and $y \geqslant \sup y_{n} \geqslant x$. We then have

$$|w_2(x) - u_{\sigma}(x)| \leq |w_2(x) - v_{\sigma}(\sup_{n} y_n)| + |v_{\sigma}(\sup_{n} y_n) - u_{\sigma}(x)|$$
$$< \varepsilon + |\lim_{n} v_{\sigma}(y_n) - \lim_{n} v(x_n)| < 2\varepsilon$$

and hence $w_2(x) = u_{\sigma}(x)$. To prove the δ -continuity of u_{σ} , let $x_n \downarrow x$, x_n , $x \in D(u_{\sigma})$. Since u_{σ} is v_{δ} -lower regular, there exists an element $y \in L_{\delta}$ such that $y \leqslant x$ and $y \leqslant y' \leqslant x$ and $y' \in L_{\delta}$ imply $|v_{\delta}(y') - u_{\sigma}(x)| < \varepsilon$. By Lemma 2.2 there exists a decreasing sequence (y_n) in L_{δ} such that $|v_{\delta}(y_n) - u_{\sigma}(x_n)| < \varepsilon$ and $y \leqslant \inf y_n \leqslant x$. We thus have

$$\begin{aligned} |\lim_n u_{\sigma}(x_n) - u_{\sigma}(x)| &\leq |\lim_n u_{\sigma}(x_n) - \lim_n v_{\sigma}(y_n)| + |\lim_n v_{\sigma}(y_n) - u_{\sigma}(x)| \\ &< \varepsilon + |v_{\sigma}(\inf y_n) - u_{\sigma}(x)| < 2\varepsilon \ . \end{aligned}$$

This completes the proof.

Applying Lemma 2.9 to $u = v_{\delta}$, we get the following

COROLLARY. Let v_{σ} be v_{δ} -lower regular or (equivalently) let v_{δ} be v_{σ} -upper regular. Then $v_{\delta\sigma}$ is v-regular and δ -continuous.

2.10. THEOREM. Let v be a (σ, δ) -continuous valuation on a sublattice L of a σ -continuous lattice H, with values in a complete metric Abelian group G. Then v extends uniquely to a (σ, δ) -continuous valuation v' on a (σ, δ) -lattice L' generated by L if and only if the following conditions are satisfied:

- (a) v is monotonely convergent,
- (b) v_{σ} is v_{δ} -lower regular or (equivalently) v_{δ} is v_{σ} -upper regular.

Proof of necessity. Since v' is (σ, δ) -continuous on L', it is monotonely convergent, and so is its restriction v. Let $x \in L_{\sigma}$ and let $\lim_{\gamma \le r} v_{\sigma}(y) = \mu(x)$.

Take an arbitrary $\varepsilon > 0$. Then there is a $z \in L_{\delta}$, $z \leqslant x$, such that $z \leqslant t \leqslant x$ and $t \in L_{\delta}$ imply $|v_{\delta}(t) - \mu(x)|$, $|v_{\delta}(t) - v_{\sigma}(z)| < \varepsilon$. Let $y_n \uparrow x$, $y_n \in L$. Then

$$\begin{aligned} |v(y_n) - \mu(x)| &\leq |v(y_n) - v_{\delta}(z)| + |v_{\delta}(z) - \mu(x)| \\ &\leq |v_{\delta}(y_n \vee z) - v_{\delta}(z)| + |v_{\delta}(z) - v_{\delta}(y_n \wedge z)| + \varepsilon. \end{aligned}$$

But $|v_{\delta}(y_n \vee z) - v_{\delta}(z)| < \varepsilon$ and $v_{\delta}(z) - v_{\delta}(y_n \wedge z) = v'(z) - v'(y_n \wedge z) \to 0$, and therefore $v(y_n) \to \mu(x)$, so that $\mu(x) = v_{\sigma}(x)$.

Proof of sufficiency. Let Ω be a set of all ordered pairs (K, μ) , where K is a lattice, $L_{\sigma\delta} \subset K \subset L'$ and $\mu: K \to G$ is an extension of $v_{\sigma\delta}$ with the following properties:

- (i) μ is a (σ, δ) -continuous monotonely convergent and ν -regular valuation,
- (ii) μ is the only (σ, δ) -continuous valuation extending $v_{\sigma\delta}$ on K.

We partially order Ω in the usual manner:

$$(K_2, \mu_2) \geqslant (K_1, \mu_1) \Leftrightarrow K_2 \supset K_1$$
 and μ_2 extends μ_1 .

By Lemma 2.6, the hypothesis and the corollary of 2.9, we have $(L_{\sigma\delta}, v_{\sigma\delta}) \subset \Omega$. Let Π be any non-empty linearly ordered subset of Ω . Then $K_0 = \bigcup \{K: (K, \mu) \in \Pi\}$ is a lattice such that $L_{\sigma\delta} \subset K_0 \subset L'$. The function $\mu_0: K_0 \to G$ is well defined if we write $\mu_0(x) = \mu(x)$, where (K, μ) is any element of Π such that $x \in K$.

We shall verify (i) and (ii) for μ_0 . Clearly, μ_0 is a v-regular valuation. Let x_n be a decreasing sequence in K_0 , and, let $\varepsilon > 0$ be arbitrary. Because μ_0 is v_σ -lower regular, Lemma 2.2 implies the existence of a decreasing sequence (y_n) in L_δ such that $|v_\delta(y_n) - \mu_0(x_n)| < \varepsilon$, and therefore $\{\mu_0(x)\}$ is Cauchy. Further, if $x_n \downarrow x$, $x \in K_0$, then there exists a $z \in L_\delta$, $z \le x$, such that $z \le z' \le x$ and $z' \in L_\delta$ imply $|v_\delta(z') - \mu_0(x)| < \varepsilon$. According to Lemma 2.2, we may assume that $z \le \inf y_n \le x$, and therefore we conclude that $|\lim \mu_0(x_n) - \mu_0(x)| < 2\varepsilon$. From similar considerations for increasing

sequences in K_0 we deduce that μ_0 is monotonely convergent and (σ, δ) -continuous. To verify (ii) for μ_0 note that every (σ, δ) -continuous valuation extending $v_{\sigma\delta}$ on K_0 coincides with the restriction of μ_0 to K, for every $(K, \mu) \in \Pi$. Application of the Zorn-Kuratowski lemma yields therefore the existence of a maximal element (K', μ') in Ω . From Lemma 2.6 we see that μ'_{σ} is a σ -continuous monotonely convergent valuation. By the hypotheses and Lemma 2.9 μ'_{σ} is v-regular and δ -continuous. By Lemma 2.3 μ'_{σ} is the only (σ, δ) -continuous valuation extending μ' on K'_{σ} . We

^{2 --} Fundamenta Mathematicae T. XCI

178 P. Kranz

have shown that $(K'_{\sigma}, \mu'_{\sigma}) \in \Pi$, and so, by the maximality of K', $K'_{\sigma} = K'$. Similarly $K'_{\delta} = K'$, and therefore K' = L'. Then $v' = \mu'$ is the required extension, and the proof is complete.

It is a well-known fact that every Hausdorff topological group is (homeomorphic with) a subset of a product of metric groups, i.e., $G \subset \Pi G_i$. Any function $u \colon L \to G$ can be regarded as a function $u \colon L \to \Pi G_i$, that is, $u = (u_i)_{i \in I} \colon L \to \Pi G_i$ where $u_i \colon L \to G_i$ and $u_i = upr_i$. Since in our Theorem 2.10, the domain of each v_i is L, each v_i extends uniquely, to $v_i' \colon L' \to G_i$, provided that G_i is complete. Hence $v' = (v_i')_{i \in I}$ is an extension of v. This proves the following

- 2.11. THEOREM. Let v be a (σ, δ) -continuous valuation on a sublattice L of a σ -continuous lattice H, with values in a sequentially complete Hausdorff topological group G. Then v extends uniquely to a (σ, δ) -continuous valuation v' on a (σ, δ) -lattice L' generated by L if and only if the following conditions are satisfied:
 - (a) v is monotonely convergent,
 - (b) v_{σ} is v_{δ} -lower regular or (equivalently) v_{δ} is v_{σ} -upper regular.

References

- [1] G. Birkhoff, Lattice Theory, New York 1948.
- [2] G. Fox and P. Morales, Strongly additive functions on lattices, Fund. Math. 78 (1973), pp. 99-106.
- [3] B. J. Pettis, On the extension of measures, Ann. of Math. 54 (1951), pp. 186-197.
- [4] M. Smiley, A note on measure functions in a lattice, Bull. Amer. Math. Soc. 46 (1940), pp. 239-241.

Accepté par la Rédaction le 3. 6. 1974

On a simply connected 1-dimensional continuum without the fixed point property

by

John R. Martin * (Saskatoon, Sask.)

Abstract. The author answers a question of L. Tucker by giving an example of a simply connected 1-dimensional continuum X without the fixed point property such that every retract of X has the fixed point property with respect to onto maps and with respect to one-to-one maps.

Introduction. L. Tucker has asked if there exists a 1-dimensional continuum C without the fixed point property such that every retract of C has the fixed point property with respect to one-to-one maps. A similar question may be obtained by replacing "one-to-one" by "onto" in the preceding question. In [4] the author shows that an example of C S. Young [5, p. 884] is a simply continuum satisfying the one-to-one case. An example of a planar continuum which is not arcwise connected is also given in [4] to answer the onto case. In this paper we give an example of a simply connected 1-dimensional continuum C which answers both questions simultaneously. Our example is obtained by adding a countable number of " $\sin(1/x)$ arcs" to Young's example [5, p. 884).

1. Construction of the continuum X. Let C_1 be a continuum in the right half xy-plane joining the point (0,3) to the interval $I_1 = [-3,-1]$ of the y-axis, C_1 being homeomorphic to the closure of the graph of $y = \sin(1/x)$, $0 < x \le 1/\pi$, with I_1 corresponding to the limiting interval of the graph. Let $C_2(I_2)$ be the image of $C_1(I_1)$ under the rotation of the xy-plane about the origin 0 through an angle of π . Let $T = T_1 \cup T_2 \cup T_3$ be a triod consisting of the subintervals T_1, T_2 on the y-axis joining the origin 0 to (0,-1), respectively (0,1), and an arc T_3 which joins 0 to a = (0,4) and whose interior lies below the xy-plane. Let A be a set lying in the xy-plane homeomorphic to a half-open interval such that A (1) has only its endpoint a = (0,4) in common with $C_1 \cup C_2 \cup T$ and (2) "converges" to $C_1 \cup C_2$ in such a way that (a) there is a sequence of arcs S_1, S_2, S_3, \ldots filling up A such that $S_i \cap S_j = \emptyset$ for $j \neq i-1$, i+1, and is an endpoint of each for j = i-1, i+1, and (b) $C_1 = \lim S_{2j-1}, C_2 = \lim S_{2j}$. It may be assumed that C_1

2*

^{*} The research for this article was supported in part by the National Research Council of Canada (grant A 8205).