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Extension of a valuation on a lattice
by

Przemyslaw Kranz (Poznan)

Abstract. In a recent paper [2], Fox and Morales give necessary and sufficient conditions in
order that a strongly additive (=_valuation) set function from a lattice of sets £ into a complete
metric group be uniquely extendable to the generated (o, 8)-lattice. It is shown in the present note
that the same conditions are valid in a more general setting, i.e., when L is an arbitrary lattice
and @ is a valuation on L with values in a sequentially complete Hausdorff topological group. The
proof is accomplished by means of the elimination of Pettis’ theorem ([3], Theorem 1.2), the basic
lemma in the proof of Fox and Morales.

1. Introduction. Let L be a lattice and G an Abelian topological group. A func-
tion v: L—G is called a valuation [1], [3] if

v(xvy)+o(xay) =v(x)+v(y).

It is easy to show that ([1], p. 75) and ([4], p. 239) that if L is a relatively comple-
mented lattice (or, in particular, a Boolean ring), then (1.1) is equivalent to

v(xvy) =vE)+v(@) for xAy=0.

We do not assume, however, that a null element belongs to L. A valuation v on

L is said to be (order) o-continuous (8-continuous) if, for every increasing (de-

creasing) sequence (x,) such that x,eL (n=1,..) with supx,eL (infx,eL),
- n n

we have v(x,)—v(supx,) (0(%,)—>v(infx,)).

v is (o, 8)-continuous if it is both o-continuous and é-continuous.

A lattice H is said to be o-continuous if it is (o, §)-complete (i.e. the limits
of both increasing and decreasing countable sequences of elements of H are in H)
and the following condition holds: y, x,e H (n=1,..), x, 4t x=>x,A ¥yt xAY;
and dually.

All lattices occurring in the present note are supposed to be contained in
a fixed o-continuous lattice H. The only lattice operations which will be considered
are restrictions of those on H. Accordingly we shall use the word lattice to mean
the subset of H closed with respect to the restrictions of the lattice operations on H.

Let v L—G be a (o, §)-continuous valuation. The aim of this note is to es-
tablish necessary and sufficient conditions for the unique extension of v to a con-
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tinuous valuation on the (o, §)-lattice generated by L. These conditions appear
to be the same as those given by G. Fox and P. Morales in Theorem 2.10 of [3]
for the lattice of subsets of a fixed set T.

2. Extension theorems. Let L be a lattice coritained in a ¢~continuous lattice H.
Further, let v be a valuation. The domain of v (always assumed to be a lattice) is
denoted by D(v). Let x € L; then the class {y: y € D(v), y<x}, if it is non-empty
and directed by 3>, defines the Moore-Smith sequence {v(3)}y<x,yen(y- Similarly
the class {y: y € D(v), y=x}, if non-empty, directed by <, defines the Moore-
Smith sequence {0(1)},5xyenwy- All lattices throughout this section are sublat-
tices of H.

2.1. DERNITION.. Let v, w be valuations:

(2) v is w-lower regular if, for every x & D(v), the set {ye D(w): y<x} is

non-empty, and  lim w(p) = v(x).
y<x,yeD(w)

(b) v is w-upper regular if, ‘for every x e D(v), the set {y e D(w): y=x} is .

non-empty, and lim  w() = v(x).
’ yZ=x,yeD(w)

2.2. LEMMA. We assume first that G is a complete metric group. Let v and w be
valuations, and let £>0 be arbitrary. If v is w-lower regular (w-upper regular) and
(x,) is a decreasing (increasing) D (v)-sequence, there exists a decreasing (increasing)
D(w)-sequence (y,) such that y,<x, (n=1,..) and |w(y,)—v(x,)| <e. Moreover,
if ze D(w).is such that z<infx, (z=supx,), then we may choose the sequence (y,) so

n n

as to satisfy the additional condition

z<infy, <infx,
n . n

(zzsupy,=supx,) .

Proof. Let £>0. On account of the properties of v and w, we can for everyn
and every x,€ D(v), find an s,& D(w) such that 5,<x,, and [w(s,)—v(x,)]<e.

Let y, = A 5, so that y, € D(W), p,<%,5 Vuib-
1

The proof that {y,} has the required properties is inductive. First we verify that
[v(xg) —w(sy A sy)|<e. Indeed, having assumed that |v(x;)—w(s)I<te (0 =1,..),
we get

[0(x2) = w(sy Aso)l = [0(x; Axy)—w(sy A Syl
= |o(x) +v(xs)—v(x; Vv x3)—Ww(s) —w(s)+1w(sy v
< o) =ws) +1o(e) —wls)] +o(x) —wlsy v s3)l
< de+ietie =g,
since Xy >S5y V8§, =8,

Further, assuming that
. n—1

[U(xn—l)““’(/i\ s)l<ie,
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we gct
o= w( A 5

n n n—1 n—1
= |o( /\xi)—'w( /\Si)l = [U(/\xi/\xn)—w(/\si/\sn){
n—1
]U(/\M)“I‘U(ln) U((/\XJVX,.)“W(/\ s)—wls)+ W((/\ SV S,
n—-1 -1 o

<[v( /\ x;)—w( /\ sl +[v(x) —wis,)l +IU(X.,-1)—W(( /\ Ivs)l,

but
n—1 n—1
Asi<x,-y  and (A S)VEEX, VX, = X,_y.
1 1

Therefore
n
oG —w( /I\‘Ti)l<8~
In the second case, choose s,& D(w) such that s,2x, and

Iw(s,)—vx) <de

n=1,..).

n
Let y, = \/ s;. A similar procedure to that used before shows that y, satisfies the
) .

condition of the lemma. If, in the respective cases, z e D(w) is such that z<infx,
n
(z>supx,,) then, taking y, = y,vz (¥, = y,AZ), we infer, by the (o, 6)-continuity

of H that z< 1nf Vo < 1n[ x, (z= sup VnZSUpPX,).

n
Henceforth vis a ﬁxed functlon of domain L.

2.3. LEMMA. Let v be a o-continuous valuation. Then the following are equivalent:
(a) for every xeL such that the set {yeL, x>y} is non-empty

lim wo(y) exists,
y<x,yel

(b) for every increasing sequence (x)=L
11mv(x,,) exists .

Moreover, If (a) (or (b)) holds, then for every increasing sequence (x,,)c:L
with supx, = x we have

" lim v(y) = llmv(xn)

y<x,yeL
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o0 .
Proof. (a) = (b). Let x = \/ x,; lim v(y) = g exists by (a). We shall show
1 y<€x,yeL

that limv(x,) = g. For a given ¢>0 there is 2 y € L, y<x such that y<y'<x, y' e L
n

implies [p()—v(NI<e, [p(¥)—gl<e.
Then, since

()=o) = lo(x, vy)+ox,Ap)— o) —v ()
< |o(x, vy)—oO+ (M —vix,AN)
we get
o) =gl <o) —~v()+ v (¥) -4l
<|p(x, v )= v @I+ o)~ vlx, AY)|+e.

Finally, as y<x,vy<x, it follows that |v(x,vy)—v(p)|<e and v(yAx,)—v(y
by the ¢-continuity of v.

(b) = (a). f lim o(y) does not exist, then for some £>0 and every ye L,
y<€x,yeL

there is a y' €L such that y<y'<x and |[v(y)—v(y’)|=e. (There exist y',y" €L
y<y, ¥'<x and [p(y")—0v(y)|>e. I, for instance, |[v(y)—v(y")<%e, then

o)~ 20" = PG)~v()+0()~o (")
= o) ~v(") = o) —v ()|
= o)~ (")~ pG) —v(¥)|=e—e = e.

We can construct inductively an increasing sequence (y,) in'L such that IU(J’,. -
—uv(y,)|>¢, contrary to (b).

Similarly we prove the dual lemma.

2.4. LEMMA. Let v be a §-continuous valuation. Then the following are equi-
valent:
(@) for every x €L such that the set {y e L, y2x} is non-empty

lim v(y) exists,
y2x,yeL

(b) for every decreasing sequence (x,)<=L

limw(x,) exists.
Moreover, if (a) (or (b)) holds, then for every decreasing sequence (x,)=L with

infx, = x, we have lim v(y) = llmv(x,,)
n yzx,yeL

2.5.. DEFINITION. Let v be a valuation. We say that v is monotonely convergent
if, for every monotone sequence (x,) in L, the sequence {v(x,)} converges.

In what follows, up to the statement of Theorem 2.10, » is assumed to be
monotonely convergent, ( , )-continuous valuation.
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By Lemma 2.3 v extends to the function v, on L,: v,(x) = lim wv(y); and,

<x,yeL
by Lemma 2.4, v extends to the function v; on Lj: v,(x) = Ii];n yv(y).
yzx,yeL
2.6. LEMMA. The extension v,(v;) is a monotonely convergent o-continous
(8- continuous) valuation.

Proof. We shall prove the lemma for v,; the other proof is analogous. That
v is a valuation is clear. Therefore we have to show that

@ if x, 1 %, %, €L, = v,06)0,(2),

) if x, ¥, x,eL, = {v,(x,)} converges.

To prove (a), for every n take y,eL, y,<x, such that y,<p<x, and yelL
=|v(y)—v,(x,)| <n"!. For every n there exists an increasing sequence 6

in L converging to x,. Put z; = \/ (4} v,) so that »,<z,<x;, z;€ L, z; } x. Then
k=1

[0(z) —Vo(%)| <m™' and hence, by Lemma 2.3, v(z,)—0v,(%), i.e., v,(x,)—v,(x).
To prove (b), let ¢>0 be arbitrary. On account of Lemma 2.2 there is a de-

creasing sequence (y,) in L such that [v(y,)—v,(x,)|<%e. Therefore {v,(x,)} is
a Cauchy sequence.

1

2.7. LemMA. (a) If v, is vs-lower regular, it is &-continuous.

(b) If v; is v,-upper regular, it is o-continuous. .

Proof. We shall demonstrate (a), (b) being similar. Let x, | x, x,, xe L and
let e>0 be arbitrary. There exists a y € L;, y<x such that y<y'<x and y' eL;
implies that |v,(y")—v,(x)| <}e. By Lemma 2.2 there exists a decreasing sequence
() in Ls such that |vs(y,) —v,(x,)] <3¢, and y<infy,<x. On account of Lemma 2.6

{v,(x,)} converges.
Therefore we have

llim v, (x,) — v, (x)] = [limv,(x,) —lim vy(y,) — v,(x) +lim v,(y,)]
< |limuy(y,) —v,(x)| +3e<e.

2.8. LEMMA. v, is vs-lower regular iff vs is v,-upper regular. ‘
Proof. We shall show that if v, is v;-lower regular, then v, is v,-upper regular.
Let xeL;. Since, on account of Lemma 2.7, v, is a &-continuous monotonely

convergent valuation, then lim v, (y) = u(x) exists (Lemma 2.4).
fr=x,yeLls

Take an arbitrary ¢>0. Then there is a yeL,, y=x such that y>y'>x and
Yy €L, implies [v,(y)—u(x), [v,(3)—v,(»)|<e. Let x, 4 x, x,€L. We have

[0(x,) = p () <o () = v, + [0s(P) = 1 (X)|
<[05( v 3) — 0 (M) + [0(0) = Do (en AV Fe

Since |v,(3)—v,(y A x,)| <& and v,(x,Vvy)->v,(y) (Lemma 2.7), we get v(x)—m(x)
But, on the other hand, v(x,)—v,(x) and so pu(x) = v,(x).
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In the sequel we say that a valuation is v-regular if it is both v,-lower regular
and vz-upper regular.

2.9. LeMMA. Let v, be vs-lower regular (or, equivalently, let vy be v -upper
regular). Let u be a (o, 6)-continuous monotonely convergent valuation, v-regular.

@) If u is an extension of vy, then u, is v-regular and J-continuous.

(b) If u is an extension of v,, then us is v-regular and o-continuous.

Proof. We prove (a); part (b) is similar. Let x € (D(4)),, and let ¢>0 be
arbitrary. Let w (x) = 1lim vy(y). There exists a y € Ls, y<x such that y<y'<x

y€x,9els
and )’ e L; implies |vs(y") — w, (x)] <&. By the definition of u,, there is a ze D(u)
such that [u(z)—u,(x)|<e and, since D(v) = L, we have Ly=D(u) by the hypoth-
eses, and so we may suppose that yXz.
Since u is v,-lower regular, there exists a telLs; such that y<i<z and
|v,(f)—u(2)| <e. Then

[108) = 2, (1 < w2 (3 = 0,0+ [0 (1) — )| + (2, ()] < 3s .

We conclude that wy(x) = u,(x); this proves that u, is v,-lower regular.
To show the v,-upper regularity of u,, note that there is an element he L,

such that x <A (this follows from the fact that x & (D(w)),, i.e., x = \/ h,, h, € D), .
1

but, since u is v,-lower regular, every element of D () is majorizéd by some element

of L,). Therefore lim wv,(y) = w,(x) exists. Hence there exists an element y
yZx,yeLe

in L,, y=x, such that y>y >x and »' € L, implies [v,(y) —w,(x)| <e. Let x, 1 x,
x, € D(u). Then there is an increasing sequence (y,) in L, such that |v,(y,)—u(x,)| <&
and y=supy,=>x. We then have

"

[w2(x) =45 ()| < |w2(x) — vy (sup )| + [v,(5Up p,) —14,(x)]
<g+|limo,(y,)—limo(x,)| <2e

and hence w,(x) = u,(x). To prove the §-continuity of u,, let x, | x, x,, x € D(u,).

Since u, is vs-lower regular, there exists an element y e L; such that y<x and

y<y'<x and y" e L; imply |v;(»")~u,(x)| <e. By Lemma 2.2 there exists a decreas-

ing sequence (y,) in L, such that |v;(y,) —u,(x,)| <é and y<infy,<x. We thus have
N n

|1lm ua‘(xn) - uo'(x)l < |111Tl uﬂ(xn) ~lim ‘Ud(yn)r + Illm Do’(yn) - urr(x)l
n n n n

<e+|v,(infp,)—u,(x)] <2¢. . '

This completes the proof.” ”
Applying Lemma 2.9 to u = v;, we get the following

CorOLLARY. Let v, be v;-lower regular or (equivalently) let vs be v ~upper
regular. Then vy, is v-regular and §-continuous.
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2,10.. THEOREM: Let v be a (o, 6)-continuous valuation on a sublattice I of
a o-continuous lattice H, with values in a complete metric Abelian group G. Then v
extends uniquely to a (o, 8)- continuous valuation v’ on a (o, 8)-lattice L' generated
by L if and only if the following conditions are satisfied:

(a) v is monotonely convergent,

(b) v, is vs-lower regular or (equivalently) vy is v,-upper regular.

Proof of necessity. Since o' is (o, 8)-continuous on L', it is monotonely
convergent, and so is its restriction v. Let xeL, and let lim o,(y) = pu(x).
) ySx,yels
Take an arbitrary ¢>0. Then there is a z €L, z<x, such that z<r<x and telLs

imply [05()—p(¥)], 1958 —v,()| <c. Let y, 1 x, , L. Then

[0 = 1< [0 (1) = v5(2)] + [05(Z) — ()]
<1vs(ys v 2) = 05(2)| + |05(2) — vs(Vu A 2)] + e

But [0,(,v2) = 05(2)| <& and vs(z)=v)(y,A2) = v'(z2)—v(y, AZ)—>0, and therefore
v(y)—p(x), so that u(x) = v,(x).
Proof of sufficiency. Let  be a set of all ordered pairs (X, p), where K is
a lattice, Ly; = K< L' and u: K—G is an extension of v,; with the following properties:
(@ p is a (e, 6)-continuous monotonely convergent and v-regular valuation,
(i) p is the only (o, 6)-continuous valuation extending v,; on K.
We partially order Q in the usual manner:

Ky, )2 (Ky, 1) < K,oK,  and  p, extends Uy o

By Lemma 2.6, the hypothesis and the corollary of 2.9, we have (Lyss Vgs) =0.
Let IT be any non-empty linearly ordered subset of Q. Then K, = |J {K: (K, W)e IT}
is a lattice such that L,;cK,<L’. The function Ho: Ko—G is well defined if we
write po(x) = u(x), where (K, p) is any element of I7 such that x € K.

We shall verify (i) and (i) for p,. Clearly, u, is a v-regular valuation. Let x, be
a decreasing sequence in K,, and, let e>0 be arbitrary. Because u, is v,-lower
regular, Lemma 2.2 implies the existence of a decreasing sequence (y,) in L; such
that |vs(y,) — o(x,)| <&, and therefore {uo(x)} is Cauchy. Further, if x, ¢ x, x& K,
then there exists a z e Ly, z<x, such that z<z'<x and z’ € L; imply |v5(z") — o ()]
<& According to Lemma 2.2, we may assume that z<infy,<x, and therefore

n

we conclude that [lim se(x,) — p1o(x)[ <2¢. From similar considerations for increasing
n

sequences in K, we deduce that p, is monotonely convergent and (¢, 8)-continuous.
To verify (i) for 41, note that every (o, 8)-continuous valuation extending v,; on K,
coincides with the restriction of u, to K, for every (X, w) e IT. Application of the
Zorn-Kuratowski lemma yields therefore the existence of a maximal element (K’, p')
in Q. From Lemma 2.6 we see that y), is a c-continuous monotonely convergent
valuation. By the hypotheses and Lemma 2.9 p) is v-regular and §-continuous.
By Lemma 2.3 p, is the only (o, 8)-continuous valuation extending p’ on K. We
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have shown that (K., u.) € II, and so, by the maximality of X', K, = K'. Similarly
K; = K', and therefore K’ = L'. Then v’ = p’ is the required extension, and the
proof is complete.

1t is a well-known fact that every Hausdorff topological group is (homeomorphic
with) a subset of a product of metric groups, i.e., GeIIG;. Any function u: L—G
can be regarded as a function u: L—IIG;, that is, u = (u);er: L—=IIG; where
u;: L-»G; and w; = upr;. Since in our Theorem 2.10, the domain of each v; is L,
each v; extends uniquely, to v;: L'~G,, provided that G, is complete. Hence v’
= (v;)er is an extension of v. This proves the following

2.11. THEOREM. Let v be a (o, 8)-continuous valuation on a sublattice L of
a o-continuous lattice H, with values in a sequentially complete Hausdorff topological
group G. Then v extends uniquely to a (o, 8)- continuous valuation v’ on a (o, 6)-lattice
L’ generated by L if and only if the following conditions are satisfied:

(a) v is monotonely convergent,

(b) v, is vs-lower regular or (equivalently) vs is v,-upper regular.
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On a simply connected 1-dimensional continuum without
the fixed point property

by

‘John R. Martin * (Saskatoon, Sask.)

Abstract. The author answers a question of L. Tucker by giving an example of a simply con-
nected 1-dimensional continuum X without the fixed point property such that every retract of X has
the fixed point property with respect to onto maps and with respect to one-to-one maps.

Introduction. L. Tucker has asked if there exists a 1-dimensional continuum C
without the fixed point property such that every retract of C has the fixed point
property with respect to one-to-one maps. A similar question may be obtained
by replacing “one-to-one” by “onto” in the preceding question. In [4] the author
shows that an example of G. S. Young [5, p. 884] is a simply continuum satisfying
the one-to-one case. An example of a planar continuum which is not arcwise con-
nected is also given in [4] to answer the onto case. In this paper we give an example
of a simply connected I-dimensional continuum X which answers both questions
simultaneously. Our example is obtained by adding a countable number of
“sin(1/x) arcs” to Young’s example [5, p. 834).

1. Construction of the continuum X. Let C; be a continuum in the right balf
xy-plane joining the point (0, 3) to the interval I; = [—3, —1] of the y-axis,
C, being homeomorphic to the closure of the graph of y = sin(1/x), 0<x<1/x,
with I, corresponding to the limiting interval of the graph. Let Cy(l;) be the image
of C,(I,) under the rotation of the xy-plane about the origin 0 through an angle
of m. Let T=T, uT,u Ty be a triod consisting of the subintervals T, T, on
the y-axis joining the origin 0 to (0, —1), respectively (0, 1), and an arc 73 which
joins 0 to a = (0, 4) and whose interior lies below the xy-plane. Let 4 be a set
lying in the xp-plane homeomorphic to a half-open interval such that 4 (1) has
only its endpoint a = (0, 4) in common with C; U C, v T and (2) “converges”
to C; u C, in such a way that (a) there is a sequence of arcs S, Sy, Ss, ... filling
up 4 such that S;n S; =@ for j #i—1, i+1, and is-an endpoint ‘of each for j
=i—1, i+1, and (b) C; = limS,;_;, C; = limS,;. It may be assumed that C;

* The research for this article was supported in part by the National Research Council of
Canada (grant A 8205).
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