178 P. Kranz

have shown that (K., u.) € II, and so, by the maximality of X', K, = K'. Similarly
K; = K', and therefore K’ = L'. Then v’ = p’ is the required extension, and the
proof is complete.

1t is a well-known fact that every Hausdorff topological group is (homeomorphic
with) a subset of a product of metric groups, i.e., GeIIG;. Any function u: L—G
can be regarded as a function u: L—IIG;, that is, u = (u);er: L—=IIG; where
u;: L-»G; and w; = upr;. Since in our Theorem 2.10, the domain of each v; is L,
each v; extends uniquely, to v;: L'~G,, provided that G, is complete. Hence v’
= (v;)er is an extension of v. This proves the following

2.11. THEOREM. Let v be a (o, 8)-continuous valuation on a sublattice L of
a o-continuous lattice H, with values in a sequentially complete Hausdorff topological
group G. Then v extends uniquely to a (o, 8)- continuous valuation v’ on a (o, 6)-lattice
L’ generated by L if and only if the following conditions are satisfied:

(a) v is monotonely convergent,

(b) v, is vs-lower regular or (equivalently) vs is v,-upper regular.
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On a simply connected 1-dimensional continuum without
the fixed point property

by

‘John R. Martin * (Saskatoon, Sask.)

Abstract. The author answers a question of L. Tucker by giving an example of a simply con-
nected 1-dimensional continuum X without the fixed point property such that every retract of X has
the fixed point property with respect to onto maps and with respect to one-to-one maps.

Introduction. L. Tucker has asked if there exists a 1-dimensional continuum C
without the fixed point property such that every retract of C has the fixed point
property with respect to one-to-one maps. A similar question may be obtained
by replacing “one-to-one” by “onto” in the preceding question. In [4] the author
shows that an example of G. S. Young [5, p. 884] is a simply continuum satisfying
the one-to-one case. An example of a planar continuum which is not arcwise con-
nected is also given in [4] to answer the onto case. In this paper we give an example
of a simply connected I-dimensional continuum X which answers both questions
simultaneously. Our example is obtained by adding a countable number of
“sin(1/x) arcs” to Young’s example [5, p. 834).

1. Construction of the continuum X. Let C; be a continuum in the right balf
xy-plane joining the point (0, 3) to the interval I; = [—3, —1] of the y-axis,
C, being homeomorphic to the closure of the graph of y = sin(1/x), 0<x<1/x,
with I, corresponding to the limiting interval of the graph. Let Cy(l;) be the image
of C,(I,) under the rotation of the xy-plane about the origin 0 through an angle
of m. Let T=T, uT,u Ty be a triod consisting of the subintervals T, T, on
the y-axis joining the origin 0 to (0, —1), respectively (0, 1), and an arc 73 which
joins 0 to a = (0, 4) and whose interior lies below the xy-plane. Let 4 be a set
lying in the xp-plane homeomorphic to a half-open interval such that 4 (1) has
only its endpoint a = (0, 4) in common with C; U C, v T and (2) “converges”
to C; u C, in such a way that (a) there is a sequence of arcs S, Sy, Ss, ... filling
up 4 such that S;n S; =@ for j #i—1, i+1, and is-an endpoint ‘of each for j
=i—1, i+1, and (b) C; = limS,;_;, C; = limS,;. It may be assumed that C;

* The research for this article was supported in part by the National Research Council of
Canada (grant A 8205).
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and A have been constructed so that C, passes through (2, 0) and the intersection
of each S; with the set {(x, )] —1<y<1} is a vertical line segment with length 2
such that S,;_; passes through p,;_; = (2+1/j,0) and §,; passes through sz
= (—2—1[j,0). Let 4,;_; denote the curve whose equation is

1 ' T 1 1
= —sin| —————) for 24— <x<2+-,
T (j<j+1>(x—2)~1> 1T
ie. Ay, is a sin(1/x) curve with amplitude 1/(2j—1) and whose closure joins the
point p,;—y to the limiting interval in S,;4, whose length is 2/(2j—1) and whose
midpoint i8 p,;44. Let 4,; be the image of 4,;_; under the rotation of the xy-plane
fes)

about the origin 0 through an angle of n. Define X = C, v C, uTu d U (U 4.
i=1

Then clearly X is a simply connected 1-dimensional continuum.

We define a fixed point free map /2 X— X which is a composition of two dis-
continuous functions f; and f5. Let fi: X—»X be such that on G, U C, U T, U T,
it is a rotation in the xy-plane about O through an angle of «, and is the identity
otherwise. Let f,: X— X be a function that is a homeomorphism on 4 such that
for each i, S; is mapped on S;,,, that maps each 4; homeomorphically onto 4;,,
that is the identity on C; U C,, that maps T}, j =1, 2, homeomorphically onto
T; v T3, and maps T; homeomorphically onto S;. Then f = f,f, is continuous
and fixed point free.

2. Proof that every retract of X has the fixed point property with respect to
one-to-one maps and with respect to onto maps. To facilitate notation we write
= [a, oo) and if b, ¢ are points in 4 with b<c, then [b, c] shall denote the unique
subarc of 4 with endpoints b and ¢, and [b, oo) shall denote the unique infinite
subarc of 4 with initial point . :

(i) First we show that X has the fixed point property with respect to one-to-one
maps. Let h; X— X be a one-to-one map. Then % must preserve triods and hence
triple points. Thus 2(0) = p; for some i, or £(0) = 0. But if £(0) = p,, then h must
map T3 U A4 into one of () 4;, (b) C; v C, U T U [a, p;], or (c) [p;, w0). However
cases (a) and (b) cannot occur since infinitely many of the triple points p; would
be mapped by % onto points which are not triple points. Also case (c) cannot occur
since 7(C;) would not be connected if & were a one-to-one function preserving
triods. Hence h(0) =0 and thus % has a fixed point.

(if) Next we show that X has the fixed point property with respect to onto
maps. Suppose k: X—X is an onto map with no fixed points. Let ¢, = (2, 0) and
g2 =(=2,0), ie. g, = limp,;_, and g, = limp,;. Let U, be a neighborhood
of i(g,) disjoint from ¢, such that U, intersects at most two sets of the form A 2im1n
Since X is locally connected at g, there exists a connected neighborhood Vi of g
such that ¥y n Uy = @ and k(F;) lies in a single component K, of U,. Hence for
all but finitely many i, s(4,;-,)<K;. A similar argument holds for h(g,), q, and
sets of the form 4,;. Since & is onto it follows that k(g,) = g, and h(q,) = q, for
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otherwise infinitely many 4; would not be covered. Then for infinitely many i,

F(pai-1) # B(pzie1)s imh(pyi_y) = g, and h([py;_y, pi4q]) contains the unique

arc in X with endpoints i(p,;_,) and h(p,;+,). Thus it follows that A(C; U C,)
=C,0C,.

Let §=h(T3 U A) N (T; 0 AU(U4)). Let e be a homeomorphism from
=1 -

T3 U A onto thé non-negative real numbers. Since § can contain no A4; there exists

-a retraction r: S—h(T5 U A) n (T3 U A) defined by

Ih (x). if

r(h(x)) = o : h(x)eT, 0 4,

h(x)e 4; .

Define a map H from  into the real numbers R by H(x) = erh(x)—e(x) for all x
in S. Since /1 does not have the fixed point property we claim that either H(x)>0
for all x in S or H(x)<O0 for all x in S. For otherwise, since S is arcwise connected
there is a point ¢ in S such that H(c) = 0 and hence rh(c) = ¢. I h() e T U 4,
then h(c) = ¢. Hence h(c) e Int4; for some i and thus ¢ = p;. Since Cl4; has the
fixed point property, h cannot map Cl4; into itself. Regard A4; as a directed arc
with initial point p;, and let @; be the first point in A4; such that h(¢;) = p;. It then
follows that there is a point in 4; between p; and «; which is fixed under A. Since
h is onto and has no fixed points an infinite subarc of 4; must lie in h(4;) for some
i>1. Hence h(p;..,) € Cl4;. Thus H(p;,,) € Cl4;. Thus H(p;.,)<0 and therefore
H(x)<0 for all x in S. If & does not map C; v C, U Ty U T, into itself, since
H(x)<0 for all x in'S and A(C; U C;) = C, U C, it follows that there is a point
in Int(7; v T,) which is a fixed point under A. Therefore & must map Cy U C, U
u T, u T, into itself. But it easy to show that C; v C, U Ty U T, has the fixed
point property and therefore  has a fixed point which is a contradiction.

(iii) Now we show that every proper retract ¥ of X has the fixed point
property with respect to one-to-one maps and with respect to onto maps. First
we consider the case for a proper retract ¥ which contains 4. Since X is an arcwise
connected continuum every retract of X must be an arcwise connected continuum.
We note that Y must contain all but finitely many of the 4;. For otherwise, sup-
pose r: X— Y is a retraction such that for infinitely many i, 4; is not a subset of Y.
But then for infinitely many i we have r(4;)>[p;, pi+.] and therefore r could not
be continuous at the points g, = (2, 0) and ¢, = (-2, 0). The remaining argument
for the case of proper retracts containing 4 is completely analogous to that used
for X itself in (i) and (ii).

The second case we consider is that of a retract ¥ of X lying in C; u C, U T.
Now Y cannot contain a neighborhood N of I; (or I). For otherwise, infinitely
many subarcs of 4 would be retracted onto the non-locally connected space N which
is impossible. Consequently, ¥ must be a point, arc, or triod and hence has the
fixed point property. Of course any dendrite D in X is an absolute retract for the
class of compact metric spaces and hence has the fixed point property [2, p. 138]
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Evidently, an arcwise continuum Y consisting of a compact subarc of 4 and
finitely many 4, is a retract of X (i.e. ¥ consists of finitely many “sin(1/x) circles”
each intersecting a common subarc of 4 in an arc which contains their respective

Jimit intervals). The sin(1/x) circle has the fixed point property [1, p. 123] and

a tedious but elementary argument can be used to show that ¥ has the fixed point
property. If D is a dendrite in X such that Dn ¥ consists of a single point, then
D U ¥ must have the fixed point property [1, p. 121]. Hence retracts of X which
are obtained from Y in this manner also have the fixed point property and this
completes (iii).

ProbLEM 1. The following question posed in [4] still remains open. Namely,
can a planar example be found?

ProsLEM 2. In [3] J. M. Eysko gives an example of a contractible continuum
of dimension 3 which does not have the fixed point property for homeomorphisms.
Does there exist a simply connected l-dimensional continuum which does not
have the fixed point property with respect to homeomorphisms?
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Rings in which every proper right ideal is maximal
by

Jiang Luh (Raleigh, N.C.)

Abstract. We study the structure of rings in which every proper right ideal is maximal. We
gencralize some results of Perticani for non-commutative rings.

Recently, Perticani [2] has studied the structure of commutative rings with
a unit element in which every proper ideal is maximal. In this paper we shall follow
his line to discuss some generalizations for non-commutative rings.

A right ideal (or an ideal) of a ring R is said to be proper if it is different from (0)
and R. Throughout this paper R will denote a ring (not necessarily commutative)
with R? = R s (0) in which every proper right ideal is maximal. We shall prove
that R must be one and only one of the following types:

(1) R is a division ring;

(2) R is isomorphic to a 2x2 matrix ring over a division ring;

(3) R is isomorphic to the direct sum of two division rings;

(4) R is a left pseudo field over a division ring in the sense of Thierrin [3];

(5) Ris a right pseudo field over a Galois field GF(p) in the sense of Thierrin;

(6) R is a local ring (i.e., with unit and unique maximal ideal I) such that R/T
is a division ring and I* = (0). :

« Finally we shall show that in a ring 4 with A% = A4 # (0), every proper right
ideal is almost maximal if and only if every proper right ideal is maximal. Thus,
this paper also provides a further classification for rings in which every proper
right ideal is almost maximal given by Koh [, Prop. 5.28].

‘We begin with

. LemMA 1. R has at most two proper ideals.

Proof. Suppose that I, J, K are distinct proper ideals in R. Then I, J, K are
maximal right ideals and I+J = R. 1t K~ I # (0), then K n I would be a maximal
right ideal contained properly in K, a contradiction. Hence K n I = (0) and KI
= (0). Similarly, KJ = (0). It follows that KR = K(I+J)SKI+KJ = (0) and
K< R, the left annihilator of R. Since R' # R is an ideal containing K, R* = K.
Using a 'similar argument, we can show that R'= I This contradicts the fact
that I # K.
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