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Metacompactness and the class MOBI
by

J. Chaber (Warszawa)

i
Abstract. We construct examples of open compact mappings which are defined on metacom-
pact complete Moore spaces. The examples show that the range of such a mapping can be either
a Moore space which. is not metacompact or a regular nondevelopable space. This solves some pro-
blems connected with the class MOBI.

Let MOBI,; denote the minimal class of T, spaces containing all metric spaces
and closed under open compact mappings (see [1, Definition 5.4], and [10]).

1t is known that MOBI, contains hereditarily paracompact nonmetrizable
spaces [13, Example 2] (a similar example is constructed in [2]) and nondevelopable
nonmetacompact spaces [13, Bxample 3] (a similar example is constructed in [3]).

On the other hand, it is shown in [13, Theorem 2] implicitly (and independly
in [10]) that the paracompact members of MOBI; are metrizable.

The purpose of this note is to construct a space ¥ in MOBI,; which is neither
metacompact nor developable.

More exactly, we shall construct an example of an open compact mapping
of 4 completely regular metacompact developable Cech complete space X onto
a completely regular space ¥ which is not a p-space and contains a closed subset
which is not a G,-subset; moreover, ¥ has not a G,-diagonal (Examples 2.2 and 2.4).

From the results of the generalized base of countable order theory of
H. H. Wicke and J. M. Worrell, Jr,, it follows that ¥ is not §-refinable (see [6]
for simpler proofs and definitions); hence ¥ is neither metacompact nor subpara-
compact.

The example gives an answer to Problems 7.1,2,3,5,6 and, partially, to 12 Q)
from [10] (sec also Question 2 from [2]), and some questions from [3].

In the first section we present a general method of constructing open compact
mappings. This method is used in the second section to construct various spaces
in MOBI;.

We shall use the terminology and notation from [7].

(® It is easy to sec that Problem 7.1 is equivalent to the negation of Problem 7.5.
4*
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1. General constructions. To explain the idea of our construction we shall

first demonstrate a method of constructing open compact mappings which do not

preserve metacompactness. This method was used in Example 3 of [13].
ExaMpLE 1.1. Let ¥ be a T space such that the set 4 of the accumulation

points of ¥ is discrete. Let wd denote the Alexandroff compactification of A.
Consider the set

X = A v [(Y\N4) x 0A]

with the topology generated by the open subsets of the space (Y\4) x wA and by
the sets of the form

{a} v (U x {a]],

where a € A and U is a neighbourhood of « in Y.

It is easy to see that X is a completely. regular metacompact space and
a function f which is the identity on 4 and the projection on (¥\A4) x w4 is an open
compact mapping from X onto Y.

To get an example of an open compact mapping which does not preserve meta-
compactness it suffices to take as the space ¥ the space obtained from the Niemycki
plane by isolating each point of the upper half-plane.

Let us notice that if Y is regular and the set 4 is countable, then Y is para-
compact. On the other hand, if 4 is uncountable, then X is not first countable
(cf. Bxample 3 of [13]). It follows that in order to obtain nonmetacompact spaces
in MOBI; we have to modify the above construction.

TaeoreM 1.2. If Y is a Ty space with a point countable base (*) and the set A
of the accumulation points of Y is discrete, then there exists a metacompact completely
regular complete Moore space and an open compact mapping f from X onto Y.

Proof. Let B be a point countable base of ¥ such that each element of B
contains one point from A at most. For each isolated point y of Y let A(y) = 4 N
N St(y, B).

Each set A(y) is countable and discrete. Let wA(y) denote the Alexandroff
compactification of A(y) if A(y) is infinite, and let wA(y) = A(y) if A(y) is finite.

Consider the set

X¥=4v @ (yxod0)
er\A

with the topology gemerated by the open subsets of the space @ {y}x w4 ()
yeYNd4
and by the sets of the form

{ado U {0, 2},
yeUN\A4
where ae 4 and Ve®B is a neighborhood of a.

(*) It is easy to- see that this condition is necessary.
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One can easily check that the space X and a function f which is the identity
on A and maps wA(y) onto y have the desired properties,

Let us notice that the space X in the above constructions is normal if and only
if Y is metacompact.

In the next section we shall construct various examples of completely regular
spaces which satisfy the assumptions of Theorem 1.2, and therefore belong to the
class MOB]H.

The following remark will be our main tool:

Remark 1.3. Let Z be a completely regular first countable space such that
the sct A of the accumulation points of Z is discrete. Let Z* denote the set of all
pairs (z, ), where z€Z\A4 and ¢ is a countable subset of 4 (3).

Consider the set ¥ = 4 U Z* with the topology generated by all subsets of Z*
and by the sets of the form

{@} v {z,0)eZ" aeq and ze U},

where ae A and U is a neighbourhood of ¢ in Z.

The space Y is completely regular and satisfies the assumptions of Theorem 1.2.
Moreover,

(a) Y is metacompact ifl Z is metacompact,

(b) Ais Gy in Y iff 4 is G; in Z,

(c) if 4 is Gy in Z, then Y is Cech complete iff Z is Cech complete,

(d) if A4 is not Gy in Z, then Y is not a p-space and does not have a G;-diagonal.

The proofs of these facts are easy and therefore omitted (*).

2. Examples. In this section we shall construct various completely regular
first countable spaces with discrete sets of accumulation points. Next, we shall
use the modification described in Remark 1.3 in order to obtain spaces in MOBI,y .

ExameLe 2.1. A complete Moore space in MOBI;y which is not metacompact.

Let Z, be the space obtained from the Niemycki plane by isolating each point
of the upper half-plane. )

Consider the space Y, obtained from Z; by the modification described in
Remark 1.3. From Remark 1.3 and Theorem 1.2 it follows that ¥; has the desired
properties.

ExampLE 2.2. A space in MOBIy; which is not a p-space does not have
a Gy-diagonal, and contains a closed subset which is not a G,-set.

(®) "This idea is taken from [12]. It is easy to observe that the constructions in 1.1 and 1.2 are
based on the same method. . ;

(*) The proof of (d) is based on characterizations from [11] and [5]. For the proofs of (b)
and (d) in a special case see the exposition of Example 2.4.
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Let V be the set of countable ordinals, and let A be a maximal family of
monotonically increasing functions from the set N of natural numbers into ¥ such
that if a, a' € 4, then the set a(N) n a'(N) is finite.

Consider the set Z, = 4 U V with the topology generated by all subsets of ¥
and by the sets of the form

{&y va({ne N: -nzk}),

where ae 4 and keN.

The space Z, is completely regular first countable and the set 4 of the ac-
cumulation points of Z, is not a G,-subset of Z, (see [6, Example 2.9]).

Again, using Remark 1.3 and Theorem 1.2, we can construct a space Y, with
the desired properties.

Let us recall that such a space cannot be 0-refinable [6, Theorems 2.8 .

and 3. 2]

ExAMPLE 2.3. A Moore space in MOBI;; which is neither metacompact nor
complete (°).

We shall use the notation introduced in Example 2.2.

Let Zy = A (FxN) be a topological space such that V"X N is an open and
discrete subset of Z, and the neighbourhoods of ¢ € 4 are of the form

{a} U la({ne N:nzk})x{neN: nzk}l,

where ke N.

The space Z; is completely regular first countable and the set 4 is Gy in Zs.
Hence Z, is a Moore space. Using the fact that 4 is not G; in Z,, one can easily
prove (see [8, Theorem 9]) that Z, is not Cech complete.

From the maximality of A it follows that Z; is not metacompact.

To construct a space Y; with the desired properties it suffices to use Remark 1.3
and Theorem 1.2. _

Finally we shall construct an example of a space in MOBI;; which has the
same properties as the space described in Example 2.2 and is screenable (%), Since
countably 0-refinable screenable spaces are 0-refinable, it follows that this space
is neither countably metacompact nor countably subparacompact,

ExamprE 2.4. Let Q denote the set of rational numbers and P the set of ir-

rational numbers.

(%) The example is not very surprising. We present it here to complete the list of modifications.
The idea of this modification is taken from [8, Theorem 9].

(*) This example shows that in Theorem 2.8 of [6] 8-refinability cannot be replaced by screena-
bility.
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For each ge Q'let A(g) be a maximal family of one-to-one functions from
the set N of natural numbers into P such that

(1) aeA(g) implies |a(n)—g|<l/n for ne N,
(2) a,d ed(g) implies a(N) n a'(N) is finite.

Put A = {4(¢): g€ O} and consider the set Z, = 4 U P with the topology
generated by all subsets of P and by the sets of the form

Ula. k) = {a} v a({ne N: nzk}),
whete ¢ A4 and keN.

The space Z, is completely regular first countable and each A(g) is 2 Gs-set
in Z,. We shall show that 4 is not a G,-set in Z, ().

w

Suppose that 4 is a Gs-set in Z,. It follows that P = | B,, where each B, is

k=1

closed in Z,. Since P is not an Fy-subset of the reals, there exist a k and a rational
number ¢ such that ¢ is an accumulation point of B, in the topology of the real
line. Hence there exists a function a from N into B, satisfying (1). From the maxim-
ality of 4(q) it follows that the closure of B, in Z, contains a point from A (g). The
contradiction shows that 4 is not a Gj-set in Z, (5).

We shall modify the space Z, in order to obtain a space ¥, with the desired
properties. ‘

Let P* be the set of all ordered pairs (p, @) such that p e P, quA and, for each
ge Q, ¢ contains at most one element of 4(g)k

Let ¥, = A U P* be a topological space such that P* is open and discrete
in Y, and the neighbourhoods of a point ae 4 are of the form

U'la, k) = {a} v {(p,p) e P*: acp and pe Ua, k)} .

The space Y, is completely regular, satisfies the assumptions of Theorem 1.2,
and has a o-disjoint base.
To show that A4 is not a Gj-set in Y, assume that 4 = {G;: /e N} and

=U {U*(a,k(a,D): ac 4},

where k(a, ! and k(a, [+ 1)=k(a, ) for each ae A and /e N.

(") 'The space Z, contains a discrete countable family of closed Gs-sets such that the union of
this family is not a Gg-set. Hence Z, is not normal. Moreover, it is easy to see (cf. [9, Problem 5.1])
that Z, and the subspaces A(q)w P of Z, are not normal.

(*) The space Z, is a locally compact nondevelopable space with a Gs-diagonal (the last fact
is an easy consequence of condition (1)). A similar space is constructed in [4]. Another example of
a space having the same properties as Z, can be obtained by means of a construction from Theorem §
of [81 '
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From the fact that 4 is not a Gs-subset of Z, we infer that there exist a p,
and elements a; of A4 such that

po € N{U(ay, keay, 1)): 1e N} .

Let ¢o = {a;: Ie N}. Since
A(g) =101U {Ula,D): ae A}

and I<k(a, D), A(g) n g is finite for ge Q. Therefore, we can define the set ¢,
of all @€ @) such that, for a certain ge @, {a,: m=I} 0 A(g) = {a)}.

It is easy to see that (po, o) € P* and (pq, @o) € (V{Gy: Ie N}. Hence we
have proved that 4 is not a Gj-set in Y. ‘ '

Moreover, if U = U*(a, k(a, 1)), (Po> @) € P, (Pos @o) € {U': leN}
and there exists a g € Q such that ¢, N 4(g) is empty, then the uncountable closed
discrete subset {(p,, @) € P*: @S¢} is contained in the intersection of the family
{UF: 1e N}. This, together with the fact that 4 is not a G,-subset of Y, implies
that Y, neither is a p-space nor has a G;-diagonal ®).

The remark following the proof of Theorem 1.2 suggests the following problem:

ProBLEM. Is each space in MOBI, metacompact?
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