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Abstract. An Abelian category is developed to serve as the range for a homology theory, on
the category of compact metric spaces, that is constructive in the sense of Bishop. As an application
it is shown, constructively, that a compact subset of the plane has trivial homology if and only if its
complement is pathwise connected. Of classical interest is the fact that, in this theory, the homology
functors are continuous and exact.

In this paper we introduce an Abelian category € to serve as the range for
a homology theory on the category of compact metric spaces. The category ©
contains the category U of Abelian groups as a full exact subcategory, and the
homology functors take values in 2 on finite polyhedra. Moreover there is a re-
traction of € upon A that transforms the homology functors into Vietoris homology
functors. The theory satisfies all the Eilenberg-Steenrod axioms [3] and, in addition,
is continuous in the sense that the homology functors commute with countable
inverse limits. This contrasts with the Vietoris (or Cech) theory for which the ex-
actness axiom fails.

The category € is introduced to provide homology objects containing the
numerical information needed to develop a useful theory that is constructive in
the sense of Bishop [2]. As an example of the application of this theory we show
that a compact subspace K of the plane has trivial one-dimensional homology if
and only if given any two points & and b in the (metric) complement of K, we can
construct a path joining a to b that is bounded away from K. The Vietoris theory
cannot be used to obtain this result in a constructive way. To see why not, let X be

* . the result of removing a small open arc of unknown size from the unit circle. Then

we know that the one-dimensional Vietoris group is trivial since there can be no
1-cycles. But this knowledge provides no information concerning the size of the
gap, so we have no way of constructing a path joining the origin to a point outside
the circle that is bounded away from K, since we have no way to conmstruct the
bound.

The Vietoris groups can be considered as inverse limits of ¢-homology groups,
where the ¢-homology group of a space X is the homology group of the simplicial
complex whose vertices are the points of X and whose simplices are those finite
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subsets of X of diameter less than &. By passing to the limit we lose valuable in-
formation. In the example above what we need, from the constructive point of
view, is that for every £>0 there be a §>0 so that the image of the §-homology
group in the g-homology group is trivial. Thus we are led to consider the entire
system of s-homology groups, or at least a cofinal subsequence, as a homology
object. By suitably defining maps, and equality of maps, the objects become
homeomorphism invariants, and are trivial exactly under the circumstances de-
scribed above. The resulting homology theory carries more information than the
Vietoris theory even from a classical point of view, since it distinguishes between
a p-adic solenoid and a single point.

1. A category. We define a category © as follows. An object 4 of € js a family
of Abelian groups 4, indexed by the set Z* of positive integers, together with
homomorphisms Ay: A4,—»4;, defined for rzs, such that A4, = 4} if rzs>t.
If 4'and B are objects of C, then a map f: A—B is a family of homomorphisms
fi: A,~B; indexed by a subset D(f) of Z* xZ* such that

D) If seZ*, then (r, s) € D(f) for some r in Z*.

2) If (r,5)e D(f) and uz=r and v<s, then (u,v)e D(f) and f!= Bf: A%

We define equality of two maps f and g by setting f = g if for each s in Z*
there is an r in Z* such that f} = g°.

If g: C—A4 and f: A—B, then we define fg: C—B as follows. Let D(fy)
= D(g) o D(f) = {(r, 1): (v, s) € D(g) and (s, £) € D(f) for some s in Z*}. If (r, 1)
€ D(fg) set (f9); = f; g5. To see that this does not depend on s, suppose u>v are
possible choices for s. Then fy'g, = /7 Asgh = f7gs. To show that this composition
respects equality, suppose g = k. Then for each ¢ there is an s so that (s, ) € D(f),
and an r such that g; = h}. Hence (fg)] = f7 g5 = fiH, = (fh);. So for each ¢ there
is an r such that (fy); = (fh);, which means that fg = fh. Similarly, suppose f = k.
Then for each ¢ there is an s so that £ = k{, and an r such that (r, 5) € D(g). Hence
(f9), = g5 = kigy = (kg)i. Thus fg = kg.

If fand g are two maps from 4 to B we let D(f+g) = D(f) n D(g) and define
(f+9): = f;+45. This operation clearly respects equality and turns the set of maps
from 4 to B into an Abelian group. It is also clear that composition distributes
over this addition on both sides. Thus € is a pre-additive category [4]. If 4 and B
are objects, define (A®B), = 4,®B, and (4@ B); = A,@B.. The obvious injection
and projection maps make A@®B a direct sum of 4 and B. Hence € is an additive
category. We proceed to the construction of kernels and cokernels.

THEOREM 1. Let f: A—B. Define K by K, () ketfS, where the intersection is

(]

understood to be limited to those t such that (s, {) € D(f), and let K be the restriction
of 4 to K. Let k: K—4 be the natural injection. Then k is a kernel of f, and we write
K = kerf.

Pljo of. C{early Sk = 0. Suppose g: C—4 and fg = 0. We must show that
there is a unique map i: C—K such that ki =g. Let D(j) = {(, ) e D(g):
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img.cK,}, and let i; be the map induced by g5 from C, to K;. We must show that

for each s there is an r such that (r, s) € D(3). Since fg = 0, for each s we can find »

such that (fg) = 0 and (r, s) € D(g). Then if ¢<s and (s, f) € D(f) we have (fg);

= B(fy)s = 0, so f{gs = (fg); = 0. Thus (r, 5) € D(i). It is clear that g = ki. Now

suppose j: C—K and g = kj. Then for each s there is an r such that gy = k; Js -

Hence (r, s) € D(i), so g; = kii;, which implies that jg = i;. Thus j =i
THEOREM 2. Let g: C—A. Define K by K, = AJ(\)imgy), where the union is

=

rzs
understood to be restricted to those r such that (r, s) € D(g), and let K; be the map
from K, to K, induced by A;. Let k: A—K be the natural projection. Then k' is a co-
kernel of g, and we write K = cokerg.
Proof. Clearly kg = 0. Suppose f: A—B and fg = 0. We must show that
there is a unique map i: K—B so that f = ik. Let

D(i) = {(s, He D(f): Uimgi=kerf},

rzs

and let if be the map induced by f{ from K, to B,. We must show that for each #
there is an s such that (s, £) € D(i). Since fg = 0, for éach ¢ we can find an s such
that (fg)f =0 and (s, £) e D(f). Then if r>s and (r,s)e D(g) we have (fg);
= (fg)iCF =0, so f7g} = (fg)i = 0. Thus (s, ) € D). It is clear that f = ik. Now
suppose j: K—Band f = jk. Then for each ¢ there isan s such that f = Jiks. Hence
(s, D) e D(i) so f = i;k; which implies that” ji=10.Thus j=1.

To show that € is Abelian we must verify that the kernels and cokernels fit
together right.

TrroreM 3. Let f: A—B. Then the natural map g from cokerkerf fo kercokerf
is an isomorphism.
- Proof. We have
(cokerkerf), = A,/(kerf), = 4,/ kerfS,

and
(kercokerf), = Uimfy .

r=s

Also D(g) = D(f) and g/ is induced by f;. Define h: kercokerf— cokerkerf as
follows. Let D(h) = {(s, £): s=t}. If ye(kercokerf),, then y = f3(x) for some
res and x in A,. Let A(y) = Ayx)+ (kerf), € Aj(kerf), = (cokerkerf),. The
homomorphism 7} is well defined, for if y = 0 then f{(x) = 0 so

A(x) e N kerfy = (kerf), .
t<s
To show that % is the inverse of g note that if ¥ = x + (kerf), € (cokerkerf),, then

(hg)®) = Hg{(R) = hfi(x) = A)+ (kerf); .
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Hence hg is equal to the identity map on cokerkerf. Similarly, if y = fi(x)
& (kercokerf),, then
ghi0) = gih(y) = gi(Ax)+(kerf),) = £ Aix) = £7(x) = B{(»).

Hence gh is equal to the identity map on kercokerf.

We now show how to construct inverse limits of countable systems in €.

TueoreM 4. Let A(j) be an object of € for j=0,1,2, ..., and fi: A{)—~A(j)
a family of maps, defined when izj, such that fl is the identity and f} = fi fiif
izjzk. Then we can construct an inverse limit A(00), with maps f;°: A(c0)—A(})),
Jor this system.

Proof. Choose an ascending sequence of positive integers p(i) so that p(i)zi
and (p(D).p@i—1)) € D(f)) if i>j. Define A(0) by setting 4,(c0) = Apry(r). Let
the map Ay(co): 4,(c0) -4 (c0) be defined for rzs by Ay(oo) = (f;)zgg This works

because (p(r), p(s)) € D(f;) if r>s. Define f°: 4(c0)—»A()) as follows. Let
D(fi*) = {(r,9): j<r and (p(,s) e D(f)}

and define (f7°);: 4,(00)~> 4,() by ("), = (FI®.

Suppose B is an object of € and g;: B—A(j) are maps satisfying fig, = 4;
for izj. We must exhibit a map g,,: B—A4 (o) such thatf{°g,, = g;forj =0, 1,2, ...
First we show that g, is unique by proving that for each j there is an r such that
Yo)i = @pe- I f7°90 = g; then forsome r and s we have IDrn@ads = @hep-
But (fi%p = DR = 45(e0) s0 (g = A3(0)(g.); = (9.);. To define g,
we let

D(gw) = {(r7 S): (r,p(s‘)) & -D(gv)}
and let

(goo); = (gs):v(,\‘): Br—’Ap(s)(S) = AS(OO) -

2. A homology theory. The category & of compact metric pairs is defined
as follows. An object of & is a pair (X, 4) where X is a compact metric space and
A is a compact subspace of X. A map f: (X, 4)~ (Y, B) is a (uniformly) continu-
ous function f: X—+Y such that f(4)<B.

To each compact metric pair'(X, 4) and positive number ¢ we associate a1 sim-
plicial complex X, and a subcomplex 4, of X,. The vertices of the complex X, are
the points of X, and the simplices are those finite families of vertices whose diameters
are less than &, while A4, is the subcomplex of X, whose simplices lie in 4. Let e(r)
be a sequence of positive numbers decreasing to 0. If # is a nonnegative integer,
then we denote the nth homology group of the pair (Xyqy, Ay) by H(X, 4),.
If 75 we have a natural map from H,(X, A), to H(X, A),. Thus, for every pair
(X, 4) in &, we have associated an object H,(X, A) in @ It is easy to see that the
object H,(X, A4) is, up to isomorphism, independent of the sequence &.

It f maps (X, 4) into (¥, B), and o is a modulus of continuity for £, then f

induces homomorphisms H,(X, 4),~H,(Y, B), whenever e(N<w(es)). Tt is easily
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verified that this gives a map f., from H,(X, 4) to H,(Y, B) in the category €, and
that in fact we have constructed a functor from & to € for each . Moreover, the
boundary operators 8,: H,(X, 4),~H,_(4), constitute a boundary operator
0: H,,(X, -A) _)I{n—l(A)'

THEOREM 5. The boundary operator 0: H,(X, 4)—H,_,(4) is nawral; that is,
if f (X, A= (Y, B), then 0fs,= fo,—10: H(X, A)—H,_(B). Moreover, the sequence

2 8

H, (X, &) > H(4)» H(X)—> H(X, A) = H,_(A) is exact for each n.

Proof. To see that @ is natural, let <x,, ..., x,> be an n-simplex of diameter
less than ¢(r) in X. If (r, 5) € D(f,,), then

(@adiX0s s X = Do)y vy K = BLITX)s woes ST
= T (= DS 0)s vy fO)s oo S5
= (ﬁn-l}ZZ ('l)i<x0a s Xy oy XD
= o= D00 s %> = (fonm 1 005 we0r -

Exactness of the long sequence follows easily from the exactness of the correspond-
ing sequences with subscripts r, and the characterization of kernels and cokernels
in the category C.

We now show that the excision axiom is satisfied in this theory.

THEOREM 6. Let (X, A) be a compact metric pair. Let ¥ be a compact subset
of X such that Y ~ A is compact (this latter condition is superfluous classically).
Suppose that there is a 5>0 such that for each x in X either xe Y or every point
within 6 of x is in A. Then the homomorphism H,(Y, Y 0 4)— H(X, A) induced
by the inclusion (Y, Y n A)=(X, 4) is an isomorphism for each n.

Proof. We shall construct the inverse map g. Let D(g) = {(r, s): e(r)<o
and s<r}. Define ¢i: H(X, A),~H(Y, Y n 4), as follows. Each n-simplex of
diameter less than &(r) is either contained in 4 or contained in Y. Let

g;(; kjo)) = Zlkjdj

where J = I U I’ so that if j e /, then o,< ¥, while if j e I, then o;& 4. This is inde-
pendent of the choice of I since the ambiguous simplices are in ¥ n 4. It is clear
that g is the inverse map.

Next we show that the homotopy axiom is satisfied.

THEOREM 7. If two maps between compact metric pairs are homotopic, then they
induce equal maps on homology.

Proof. It suffices to show that the two maps from X to X'xI defined by f(x)
= (x,0) and g(x) = (x, 1) induce equal maps from H,(X, 4) to H(XxI, AxI).
So it suffices to show that f and g induce equal homomorphisms from H,(X, 4),
to H,(Xx I, Ax1I), for each positive integer r. Choose a positive integer k so that
1/k<e(r) and define fj: X—>Xx1I by fi(x) = (x, j/k) for 0<j<k. It suffices to show
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that f; and f., induce equal homomorphisms on homology for 0<j<k~—1. But
this follows from the fact that the induced simplicial maps are contiguous.

Finally we show that homology commutes with countable inverse limits.

TuroreM 8. Let (X;, A) be a compact metric pair for i=0,1,2, .., and
S, A)— (X;, ) a family of maps, defined when i2j, such that fis the identity
and fi = fif} if izjzk. Let (X,, 4,) be the inverse limit of this system and
2 (X, A) = (X, A)) the associated maps. If for each j and 6>0 there is an i so,
that every point of f{(X) is within & of some point of f{*(X,,), and every point of
fi4) is within & of some point of f{°(A), then H(X,, Ay) is isomorphic to
lim H,(X;, 4,). .

Proof. Let L =limH,(X;, 4;) as constructed in the proof of Theorem 4.
The maps f;* induce a unique map ¢: H,(X,,, 4,,)—~L. We shall show that ¢ is
an isomorphism by constructing an inverse map . Let p(r) be the ascending se-
quence of positive integers associated with the inverse limit L. Let DY) = {(r, 5):
for some s<j<r, if y, z€ X,, and d(f7°(0), f7°(2)) <3e(p(r—1)), then d(p, 2) <}e(s),
and for each x in X, or A, there is a y in X, or A, respectively such that d(f,*(y),
FiG))<e(p(r—1)) if 1<j}. That D() is a suitable domain follows from the fact
that the metric on X, comes from the product metric on ITX, and the hypotheses.
Note that since (p(r), p(r—1)) e D(f}) we have ¢(p(r)<w(e(p(r—1))) where
o} is the modulus of continuity for f;. To define ; let g: (X,, 4,) = (X4, Ay) be
a function (an operation in the sense of Bishop) such that d(f>(g(x)), (%))
<(p(r—1) if t<j. Then ¥y L, = H(X,, 4,) > H(Xp, Ay), is defined by
setting  Wi((Xo, o5 %) = g (%0), e, gD, I d(x,3)<e(p() for x,yeX,,
then d(f}(x), £i0))<e(p(r—1)) so d(f}* (g(x)), £ (9 () <3e(p(r—1)), whereupon
d(g(x), g(»))<ie(s)<e(s), so Y, does indeed map into H,(X,),. This observation
also shows that Y5 is independent of the choice of g (that is, the operation V/; is
a function) since the elements {(g(x,), ..., g(x,))> are homologous in H,(X., 4w)s
for different choices of g.

To see that @ is equal to the identity, for given ¢ choose s and r so that (s, £)

~ €D(p) and (r, ) € D(Y). Then

(P:l//;(<x07 L] xn>) = (pts(<g (xo): ey d (xn)>) = <f!wg (x())! "':.f;(n\c/ (x‘u)>

whic‘h is ‘homologous in L, to {f{(xo), ..., /(x> = LI({xg, ..., x,0). To see that
Yo is equal to the identity, for given s choose r and g so that (r, ) e D)) and
(g, r) € D(p). Then

Vipiz0, s 2) = VT C0)s o F2EDY) = () s AN

But d(f°gf(z), f7(z) = d(fngﬁw(zi)af;frm(zl))<8(P(r'_1)) so d(gf(z), 7))
<e(s)/3. Hence 9£:*(z0)s -5 9,°(z,)) is homologous to {zg, ..., 2,> in H,( X, A,
80 Yo is equal to the identity on H,(X,, 4.). ‘

- Note 'that the last hypothesis of Theorem 8 is superfluous frdm the éléssical
point of view.:For if this condition failed then, for Y, = 4, or ¥; = X, the sets

i
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B, = (xe ¥ d(ff(x).f°(¥,)=6 and x; = fX(x,) for all i<k} would be non-
empty and compact for all k>j. But B;2B;,,2 ... so the intersection would be
nonempty. However any point in () B, is in Y, a contradiction. In the most
important case, when flx) = X; and fj(Ai) = A;, the condition is clearly met,
even constructively. ‘

3. Some observations. If G is an Abelian group, then we can identity G with
the object F(G) in € such that F(G), = G for all r and F(G); is the identity homo-
morphism for all s<r. It is clear that under this identification the category 2 of
Abelian groups is imbedded as a full exact subcategory of €. On the other hand,
if A4 is an object of €, then we may construct the Abelian group L(4) = lim4,.
It is easy to verily that L is a functor from € to 9 and that LF is the identity functor
on . I we follow the homology functors of the preceding section by the functor L
we obtain the Victoris homology functors. Thus, not surprisingly, the former
functors carry at least as much information as the latter.

To see that this homology distinguishes spaces that Vietoris homology does
not, consider the unit circle C in the complex plane and the map f: C— C defined

by f(z) = z* Let K be the inverse limit of the system ... -LC—J;C—QC. Then, by
Theorem 8, we have H(K) =lim H,(C) so H(K), is an infinite cyclic group and
H(K); is multiplication by a positive power of 2 for r>s. Thus H(K) is nontrivial,
but the one-dimensional Vietoris homology group is lim H, (K), (in the category 2)
which is trivial. .

© The groups H,(X, A), are presented as very large sets with lots of elements
identified. In general these groups will not be discrete, that is, given two elements x
and y, we may not be able to decide if x = y. However we can find an object ¥'in €
so that ¥, is a finitely generated discrete group for each r, and H,(X, 4) = V.
The groups ¥, are the homology groups of pairs of finite abstract simplicial com-
plexes which approximate (X, 4). Following Bishop we say that (¥, B) is a &-ap-
proximation to a compact metric pair (X, A) if ¥ and B are finite sets, (Y, B)S(X, 4)
and for each x in X or A there is a y in ¥ or B respectively such that d(x, ¥)<8.
A compact metric pair has a §-approximation for each §>0.

THEOREM 9. Let (X, A) be a compact metric pair. Then we can find a sequence
{60} of positive numbers that is strictly decreasing to zero, and an () —e(r+1))-
approximation (Y., B,) to (X, A) for each r, so that if x,y € Y, then d(x, y) # &()-
Let V= H,Y,, B), and define Vi for r>s by Vi{xg, .., %) = {Zos s Z
where d(x,, z;) <} (.9 () —e(s+1)), and z; € B, if x, € B, Then V, is afinitely generated
discrete group for euch r and H(X, 4) = V. _

Proof. Let ¢(1) = 1. Suppose we have constructed (1), ..., e(r) and (Yy, By),-..
s (Yoo i, Buoy). Choose e(r-+1)<}e(r) and let (¥, B,) be a §-approximation
to (X, 4) for some 6<-%(c(r)—~s(r+l)). Choose &(r) between &(r+1)+25 and 8@
so that &'(r) # d(x,y) if x, y € Y,. Redefine &(r) to be &'(#). Note that (Y,, B,.) is
still an $(e(r)—&(r + 1)) -approximation-to (X, 4). This procedure gives the desired
sequence {&(}
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Define a homomorphism g H,(X, A),—V, for r>s5 by ¥i(Cxo, ..., x,)
= {29, .-, z,y Where z;€ ¥, and d(x;, z)<}(e()~ e(s+1)), and z,¢ B, if x,e B,.
The homomoxphism r; is well defined since d(z;, z)<d(z;, x) + d(z;, x) + d(x;, x;)
<e(s)—e(s+1)+e(r)<e(s), which shows both that diam(zy, ..., 2,) <&(s) and that
different choices of the z; give homologous simplices. The inclusion (Y, B,)
(X, A) gives a natural homomorphism ¢f: V,— H(X, A), for s>t Clearly Ve
= @ythyr,, for r>s. It is now readily verified that ¥ is an object of €, and that
the maps ¢ and  are inverses of each other, showing that #,(X) = V. Since V, is
the nth homology group of a finite simplicial complex relative to a finite subcomplex,
V. is finitely generated and discrete (see [3; p. 135 {f]).

4. An application. We shall use the preceding homology theory to prove
constructively a special case of Alexander duality in the plane, namely that the
homology of a compact set X in the plane E? is trivial if and only if the complement
of X is connected. First we observe that the latter condition entails a certain uni-
formity.

LemMa. Let X be a compact subset of E* such that if d(a, X)>0 and d(b, X)>0,
then a and b can be joined by a path that is bounded away from X. Then for each ¢>0
there is a 6>0 such that if d(a, X)>¢ and d(b, X)>¢ then a and b can be joined
by a path that is bounded away from X by 4.

Proof. Let C be a circle containing X and bounded away from X by 2e. Let
Y be an je-approximation to the inside of C. Let ¥ = 4 U B where d(y, X)>}e
ifyedand d(y, X)<}eif y e B. Choose >0 so that all points in 4 may be joined
by paths that are bounded away from X by . Clearly @ and b can be joined by
straight line segments that are bounded by § away from X to points in 4. Hence
a and b can be joined by a path that is bounded away from X by &.

By ~X we mean the metric complement of X in E?, that is, ~X = {a e E*:
d(a, X)>0}. Classically ~X is just the complement of X; constructively, if we
know that ae ~ X then we have a lower bound on d(a, X).

TueoreM 10. Let X be a compact subset of E* such that ~ X is pathwise con-
nected. Then H,(X) = 0. V

Proof. We must show that for each s there is an r such that the homomorphism
H,(X),~ H{(X), is trivial. Let ¢ = Je(s) and let § be as in the lemma. Choose r so
that e(r) <d. It suffices to show that if xy, ..., x, are distinct points of X such that

n
d(X;—1,x;)<e(r) for i = 1,...,n and d(x,,xo) <e(r), then o = (x,, x>+ PRETIED
=1

is homologous to zero in H,(X),. Let a<e(#) be the supremum of d(x,, xo) and
the d(x;_y,x;) for i =1,..,n Then we may assume that if x; and x; are not
adjacent, then d(x;, x)>« since otherwise d(x;,, x;)<&(r) so ¢ is homologous to
the sum of two smaller cycles in H,(X),. Thus Xg, ..., X, describes a simple closed
polygon P'in E2.
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To show that ¢ is homologous to zero in H,(X), we triangulate the inside of
the polygon P and construct a two-chain 7 in E* whose simplices have diameters
less than ¢(r) such that dr = o. If v; is a vertex of t inside P, then there is a point
w; in X such that d(w;, v;) <3e(s), for otherwise there would be a point a inside P
such that d(a, X)>}&(s). But such an @ could not be joined to any point & outside
of P by a path that was bounded by § away from X, since the distance between
successive vertices of P is less than e(r)<d.

Let ©' be the two-chain constructed from 7 by replacing the v’s by the w's.
Then the simplices of ©* have diameter less than g(s) and 81’ = ¢. Hence ¢ is ho-
mologous to zero in H,(X),.

Our proof of the converse of Theorem 10 uses a construction from [1].

THEOREM 11. Let X be a compact subset of E* such that H,(X) = 0. Then ~X
is pathwise connected.

Proof. Suppose a is a point of E? such that d(e, X)>0. Choose s such that
d(a, X)>e(s) and choose r such that the homomorphism H,(X),— H,(X), is
trivial. We shall show that & can be connected to “infinity” by a path that is bounded
away from X.

Tessellate the inside of a Jarge circle containing X with regular hexagons of
diameter h<$s(r) so that a lies at the center of a hexagon H,. Choose & so that
Eh<e(s)~d(a, X). Let L be the set of line segments joining centers of adjacent
hexagons. Partition L into two subsets Ly and L, such that if 1e L, then d(4, X)
<2h, and it AeL, then d(A, X)>h. Let A be the set of hexagons whose centers
are connected to a by a sequence of segments in L, and let B be the set of hexagons
that are not in 4. We shall show that if H, is a hexagon on the rim of the tessel-
lation, then H,e 4, so a can be joined to the rim by a polygonal path that is
bounded away from X.

Let b be the center of H, and suppose by way of contradiction that Hj € B.
Connect b to a by a sequence of segments from L and let H, be the first hexagon
in A that this sequence enters. Let H,, be the hexagon from which H, was first
entered. Then the edge E between H, and H,, separates a hexagon in 4 from one
in B, and it is readily seen that E lies on a unique simple closed polygon P com-
prised of such edges. Since the sides of P are edges of hexagons in A we have
d(P, X)>4h. Since b is outside P, we must have ¢ inside P,

Tf p; is o vertex of P we can find a point x; in X such that d(p;, x) <+h since
piis on an edge that separates a hexagon in A from a hexagon in B and hence is
crossed by a segment in L. Let Y be the (closure of the) space consisting of the
hexagons in B. Then X< Y. Now P determines a cycle o in Hy(Y), that is homolo-
gous in H(Y), to the cycle 7 in H,(X), obtained from ¢ by replacing each p; by x;.
By hypothesis t is homologous to zero in H,(X), so to get our contradiction we
need only show that o is not homologous to zero in H,(Y),. But a is inside P and
d(a, P)>d(a, X)—4£h>e(s). Thus the disc of radius &(s) about a is bounded away
from Y and inside P so o cannot be homologous to zero in Hy(Y)s.
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An annulus theorem for suspension spheres
by

Ronald H. Rosen (Ann Arbor, Mich.)

Abstract. A space X is called a suspension (n—1)-sphere if S (X), the suspension of X, is homeo-
morphic to S". Kirby has shown [3] that any orientation preserving self homeomorphism of S" is
stable for 3= 5. The author shows that Kirby’s result implies the following. If #>5 and X'is a suspen-
sion (n—1)~sphere, then for any two embeddings fi: X—S", i = 1, 2, so that f(X) and f(X) are
disjoint and bicollared in S then M, the closed region in S" bounded by fi(X) and f(X), is home-
omorphic to XX I.

1. Introduction. If X; and X, are compact metric generalized manifolds then
we shall say that X, and X, are h-cobordant if there exists a compact metric
space M so that (i) M is a generalized manifold with boundary (as in [5]); (i) there
is a homeomorphism f from the disjoint union X;+X, onto 4M, the boundary
of M; (iii) the restrictions f; = f|X; induce isomorphisms between the homotopy
groups of X; and those of M, i = 1, 2. In addition, for the objects we shall consider
it will be necessary to impose two further conditions: (iv) IntM = M—0M is
a manifold and (v) @M is collared in M, that is there is a homeomorphism £ from
aM %[0, 1) onto an open set in M so that for each x e dM, f(x, 0) = x.

When conditions (i)-(v) are satisfied we call M an h-cobordism between X,
and X,. This terminology was suggested to the author by L. C. Siebenmann.

It should be noted that conditions (iv) and (v) require X;x R to be a manifold.
Thus X, X, and M are generalized manifolds with respect to homology and co-
homology over any coefficient domain. If X'x R is a manifold then X x I is an
h-cobordism between X x {0} and Xx{1}.

For any space X, S(X) = S%X will be the suspension of X, C(X)= IAED ¢
will be the cone over X and OC(X) = C(X)—X will be the open cone over X.
1t S(X) & S, that is S(X) and S” are homeomorphic, we call X a suspension
(n—"1)-sphere.

Consider the proposition

(HCB,): If X, and X, are suspension {(n—1)-spheres then up to homeomorphism
there is exactly one h-cobordism M between Xy and X,.

The purpose of this mote is to show that (HCB,) is true for nz>5. A fairly
elementary prool is given for n6; the case for n = 5 was originally proved by us
6 — Fundamenta Mathematicae T, XCI
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