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where {*F,} forms a decreasing sequence of *closed sets, is said to be *resolvable
with respect to P.

*Fpu1—*F,, (n=1,2,..) have the Baire property by Theorem 6, then
a *regolvable set E with respect to the first category defined by (7) also have the
same property, since the class of sets having the Baire property is a ¢-algebra.
Hence we have

THEOREM 7. X has the Baire property if and only if X is *resolvable with respect
to the first category.

§ 6. The measurable set. We shall take the property to be of Lebesgue measure
zero as P. We denote by an *F, set the union of a countable family of *closed sets,
and by a *G, set the intersection of a countable family of *open sets. Then, by
Theorem 1, an *F, set is of the form F, set plusa nullset, and a *Gj; set is of the
form G; set minus a nullset. Evidently the inverse of each of these holds true. Hence
we obtain the following:

THEOREM 8. X is measurable if and only if X is the set both *F, and *Gj with
respect to Lebesgue measure zero.
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Topological completeness of first
countable Hausdorff spaces II *

by

H. H. Wicke and J. M. Worrell, Jr. (Athens, Ohio)

Abstract. This article continues the study of basic completeness, a concept introduced in part I.
1t analyzes basic completeness into more primitive components: pararegularity (a generalization
of regularity), monotonic completeness (a natural form of topological completeness), and base
closurewise of countable order (a form of uniform first countability). The analysis finds expression
in these theorems: 1. A space is basically complete if and only if it is 73, locally monotonically com-
plete, and has a base closurewise of countable order. 2. A space is basically complete if and only
if it is a pararegular monotonically complete T,-space having a base of countable order.

in addition there are results concerning pararegularity and monotonic completeness. It is
shown that a pararegular space which is psendo-m-complete (a modification of Oxtoby’s pseudo-
completeness) satisfies the Baire category theorem. The technique of primitive sequences exposited
in T is further elaborated and applications are made. A number of examples are given.

This paper analyzes the concept of basic completeness, introduced in [22],
into more primitive components: pararegularity, monotonic completeness, and
base closurewise of countable order. These isolate, respectively, features of regularity,
of completeness, and of uniform first countability. Each of them is discussed in
a separate section where examples are given and relations to other concepts are
established. A Baire category theorem is proved for pararegular spaces satisfying
a weak completeness condition. The final section presents some characterizations
of basic completeness in terms of these components.

The first section continues the development of the technique of primitive
sequences initiated in 1. Here some results are established in general form which
are used in the subsequent proofs and which are useful in other contexts as well.
This section may be regarded as a complement to Section 2 of L These two sections
begin a systematic presentation of a powerful technique for dealing with monotonic-
ally contracting sequences. In particular, they have application to spaces and con-
cepts whose definitions involve monotonically contracting sequences of open
coverings such as the spaces which are the subject of this investigation.

* This paper is a continuation of [22] which will be referred to herein as I. We use the notation,
definitions, and results of I throughout: references such as Lemma 1.2.1 are to Lemma 2.1.0f L.
This work was supported in part by the United States Atomic Energy Commission.
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L. Primitive sequences. A method, or technique, which we propose calling the
method of primitive sequences, has evolved from our work on base of countable
order theory. Some of the fundamental definitions and lemmas pertaining to the
application of the technique are given in I, where the use of the method is well
illustrated. For other applications see, e.g., [20, 21, 23]. The present section develops
the method further. Its contents are applied in this paper, but the results are phrased
in suffcient generality so as to be applicable in other situations as well. The reader
may wish to postpone reading the section until reference is made to its contents,

DeriNimion 1.1 If % is a set well-ordered by < and We ¥, then n(W, %", <)
denotes {xe W: If xe Ve, then W<V}. When the well-ordering < involved
is obvious from the context, or implicit, the notation n(W, %) will be used.

Lemma 1.1. Suppose M is a set and Wy, ..., W, are well-ordered coverings
of M. Let " denote the collection of all sets Wy r ... 0 W, such that W, e W, for
I<isn and (\{m(W;, W'): 1<i<n} n M # @. Let < denote the collection of
all pairs (V, V') € ¥"x " such that either (2) V = V' or (b) V £ V' and V = Win..
N W, V= Win..aW, and for the first i<n such that W, # W, W, pre-
cedes Wi in ;.

Then = is a well-ordering with field ¥, ¥ covers M, and M A n(V, ¥, )#0
Jor each Ve .

Proof.If Ve and V = (\ {W;: 1<i<n} = () {W;: 1<i<n}, then W, = W'
for all i<n. For there exist

xeN{n(W, #): I1<i<n} n M and ye() {n(W], ¥): ISigsn} A M,

Because x, y e ¥, it follows that for each i<n, W, does not precede W, and vice
versa. Therefore W; = W;. From this it readily follows that < is a well ordering
with field ¥". Because each x e M belongs to exactly one w(W,, #")) for each i<n,
it follows that xe V= (| {W;: 1<i<n}e?¥". Thus ¥ covers M. It is easily seen
that xe=n(V, ¥, X).

DEFINITION 1.2. A collection ¥~ obtained from well-ordered sets Wy, ..., W,

as in the statement of Lemma 1.1 and well-ordered by < will be said to be /exico-
graphically derived from W\, ..., W,.

Lemma 1.2. Suppose that (#P);exy . » (D), N are primitive sequences of M in S.
For each i€ N let ¥'; be lexicographically derived from HE, ..., K Then (F Dien
is a primitive sequence of M in S. If (V});ey is a decreasing representative of (F Dien»
then for each j (1<j<n), there exists a decreasing representative (Hi),.y of (e
such that for each k € N, H},is the first element of #} that includes « term of ( Vf);-e N-

Proof. By Lemma 1.1 each 77, is a well-ordered collection of subsets of S
which covers M and M nn(V, %) # @ for all Ve v ;- Thus the first two con-
ditions of being a primitive sequence are satisfied. Suppose xe M, m<k, and ¥V
and V' are the first elements of ¥, and ¥+, respectively, that contain x. Then if
V’=7 N{w;: 1gjgn}, V' = N {W;: 1<j<n}, where each W;e #} and each
W;e Hl, then x e n(W;, #1) o n(W}, #}). Because each (o)) ;ey is a primitive
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sequence, W;cW;. Therefore ¥’ V. It follows that (¥ ),y is a primitive se-
quence of M in S. Suppose (V;);.y is @ decreasing representative of (¥7;);.y and
1<j<n. For each ie N there exists x € ¥, n M such that the first element of ]
that contains x includes V;. For

Vi= N {W.: 1<k<n} where Wye #} and (\ {n(W,, #}): 1<k<n} n M # 0.
By Lemma 1.2.2, the remainder of the conclusion follows.

DerINITION 1.3. If (#7;);cy 18 @ primitive sequence obtained from primitive
sequences (H#D)icns -r (#ien s in the statement of Lemma 1.2, we shall say
that (¥ )iey is the lexicographic refinement of (H#3})icny v r (D) ien-

Remark 1.1. Use of the definite article may be justified by checking that the
construction described results in a unique sequence.

The second part of the following simple lemma follows from Lemma 1.2 and
serves as an example of its use.

LeMMA 1.3. Suppose (#,),en is a primitive sequence of M in S and L<S. Then
(H# nen is a primitive sequence of LM in S. If ¥, ={LanHnM: He#,
and M L nn(H, #,) # O} for each n, then (¥ ),y i a primifive sequence of
L~ M in itself with the property that for any decreasing representative (V,),en of
(¥ Duen there is a decreasing representative (H)wen 0f (3€ Iney such that for each
ne N, the first element of #, that includes a term of (V,ney is H,.

Proof. The first conclusion follows directly from Definition I.2,1. The second
follows from Lemma 1.2 on considering the primitive sequence (#2),.y of L n M
in S defined by #2 = {L n M} for all ne N and taking HE =, for all ne N.

Suppose A is a well-ordered set and (#,),c4 is a family of well-ordered sets.
Define a relation < with field %" = (J {#,: x € A} by W<XW'if and only if either a)
W =W orb) W+ W’ and if « and «' are the first elements of 4 such that We #7,
and W'e % , then either (i) « precedes o’ or (ii) « = o’ and W precedes W' in #7,.
1t is well known [8], p. 102, that this procedure defines a well-ordering with field %
We will call this the natural well-ordering on W,

LemMMA 1.4. Suppose W is a well-ordered collection of subsets of a set S such
that 1) W covers M<S, and 2) if We W, then n(W, W) # @.

Suppose that for each W e " there exists a primitive sequence (A’ Msen of W in
itself. For each me N, let 3, denote the collection of all sets H such that for some
Wew, He AY and n(H, #7) 0 M o (W, W) + @. Consider #, under the
well-ordering induced by the natural well-ordering on ) (Y. wew.

Then (A )pey is @ primitive sequence of M in S such that each #,<=| A
We WY, If (H)uey is a decreasing representative of (3 ,),en, then there exists
We W and je N such that H,e JY for all nzj. '

Proof. Each #, is well-ordered and if x € M there exists a first We %" such
that x e W. There exists a first He #) such that x e H. Therefore He 3, and
(PD), of Definition 1.2.2 is satisfied for all ne N. Suppose He #, and W is the
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first element of % such that He #Y and n(H, #N "M a(W, %) # @. Let
xen(H, #YnM~az(W, %), If xeH'ea#, there exists a first W' e % such
that H' e 2#7 and n(H', #V) o M w(W', %) # @. Then x € W' since H' < W'.
Therefore W’ does not precede W. By the definition of natural ordering, H’ does
not precede H and thus x € n(H, o#,). Therefore (P2), of Definition 1.2.2 is satisfied
for all ne N.

Suppose xe M, j<n, and H and H' are the first clements of #; and o,
respectively that contain x. Let W and W' be the first elements of % such that
Heo#Y and H' ey and n(H, KN ANMAT(W, W) # 0 # n(H, Ay A
OMor(W,W). It is easy to see that x e w(W, W) o n(W’, #) and therefore
W = W'. Therefore H'cH, because (#) ).y is primitive. Therefore (P3), of
Definition 1.2.2 is satisfied for all n € N. Suppose (H,).y is a decreasing represent-
ative of (#;);cy. For each ie N, there exists a first W, e % such that H,e #¥"
Let W denote the first element of {W;: i e N}. There exists j such that W = W;.
Suppose nzj. Then H,cH;c W. Because H, n n(W,, W) # @, it follows that W
does not precede W,. Therefore W = W,,. :

Lemma 1.5. Suppose (B,)yen s a sequence of well-ordered bases for a topological
space X and for each Be\}{#,: ne N} there exists a primitive sequence P(B) of
B in itself such that the members of each P(B),; are open.

Then there exists a primitive sequence (3 )iy of X such that for each ne N:

0, #,=aB,.

(2, Ifj<n, x € X, and H and H' are the first elements of H; and A, respect-
ively, that contain x, then if x is in a proper open subset of H, then H' is a proper sub-
set_of H. )

() If (Hpiey is a decreasing representative of (#);ey such that w(H i ) 0
NR(Hjpq, #Hy41) # O for all jeN, then for each je N there exists a decreasing
representative (Gi)mey of P(H;) such that for each ke N, the set Gy is the first
element of P(H)), that includes a term of (H);cx-

Proof. Let oy = {He %,: n(H, #,) # @}. Suppose collections #, , ..., #,
exist satisfying (P1),,, (P2),, and (P3), of Definition 1.2.2 and conditions (1), and ),
above for I'<n<k, and (),:if x e X and Hj is the first element of 2, that contains x
for 1<j<k and Hj, is the first element of P(H}),, that contains x for 1<m<k—j
then H,cH;, ;< .. cHycH; for 1<j<n<k. We suppose that X is well
ordered by a relation <. Given a well ordering <, on X, define a well-order-
ing <; on X as in the proof of Lemma I.2.1 (taking M = X) and let X, denote
the resulting well-ordered set. Suppose x € X, and ¢ is a function on s(x) (the initial
segment of X determined by x) into &, . If there exists a first x'< rX such that
xet(x') let f(r) denote t(x'). Suppose no such x’ exists. For cach =1,k
let H; be the first element of ##; that contains x. Then sequences as described above
in (¥)y exist. Since x € H, for each j, 1<j<k, there exists a first element Hj gy -;
€ P(Hp+q-; containing x. If x is in a proper open subset of ¥ = N {Hj’kﬂ_j:
1< i<k}, then let £(f) denote the first element of %+ that contains x and is a ’proper
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subset of Y. Otherwise Y e %, and we let f(f) = Y. By the transfinite recursion
theorem [7], p. 70 there exists a function Uy: Xy, , such that Uy(x) = f(U,ls(x))
for all xe X;.

As in the proof of Lemma 1.2.1 it may be shown that a well-ordered collec-
tion ##,,, may be obtained from the range of U, satisfying conditions (PI);sy,
(P2)g41> (P3)gy; of Definition 1.2.2 and, conditions (1),; and (2),s,. We will
show that (%), is satisfied. Suppose that x € X, that H; is the first element of #;
that contains x for 1<j<k+1, and that Hj, is the first element of P(H)),, that
containg x for 1<m<k+1—j. If 1<j<n<k, then H,cH;,_ ;c .. cH; cH; by
the assumption (*),. Let y denote the first element of X, such that Uy (y) = Hyss-
Then y e n(Hyyq, #yeqr), by the definition of order on 5., given in the proof
of Lemma 1.2.1, and H; is the first element of 5, that contains y for 1 <j<k. There-
fore Hy.q = f(Uils(»)) is either the first element of %, which is a proper subset
of Y= {H,u+1-;; 1<j<k} and which contains x or else it is Y. It follows
that (#).4, is valid. Since 5, obviously satisfies the conditions (P1)y, (P2),, (P3);,
(D, (2, and (), it follows by induction that a primitive sequence (# ),y of X
exists satisfying (1), and (2), for each ne N. We shall show that condition (3) of
the lemma is satisfied. Suppose that (H,),.y is a decreasing representative of (# )yen
such that n(H,, #,) N nt(H, 1, Hyry) # @ for all neN. It is easy to see from
this condition and H,, < H, that H, is the first element of &, that includes H,, ;.
Furthermore, it j<n and H is the first element of #; that includes H, and
xen(H,, #,) then xen(H, #,;). Therefore for all ke N, condition (¥), will
apply to the sets H, ..., H,. It follows that if j,m € N, then there exists a first
H,, € P(H)),, that includes H;,,. Let G, denote Hj,, for all n e N. If x is the first
element of X;,,_, such that Uj,,_((x) = G,, then Hj, is the first element of P(H)),
that contains x and Hj, includes G,. Therefore Lemma 1.2.2 applies to (Gnen
and (P(Hj),,)neN. Tt follows that there exists a decreasing representative (Gpuen
of P(H,) with the property stated. :

2. Pararegularity. We have emphasized in part I that our main results are
obtained without the use of regularity. This emphasis is justified, in our opinion,
by the extent of the class of nonregular basically complete spaces and the nature
of the results concerning them. There is however, as is shown in § 3, a residue of
regularity present in basically complete spaces. We call the concept involved in this
residue pararegularity and devote this section to its explication. The idea permits
deeper analysis of basic completeness and has interest in itself as a natural weaken-
ing of regularity, Evidence for the latter claim is presented here; another resuit
proved later is a Baire category theorem for pararegular countably monotonically
complete spaces (Theorem 5.1). The concept also plays a significant role in some
characterization theorems of § 7.

The definition is very much in the spirit of this work; it involves monotonically
contracting sequences of open coverings and their decreasing representatives. The
techniques being exposited in these articles have been developed to handle just
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such situations. We proceed to define the concept, present some examples and
counterexamples, and prove some basic results concerning it.

In connection with the following definition, the phrase “a monotonically con-
tracting sequence of open coverings of U™ refers to the case of Definition 1.2.1
where U = M = S.

DerFmiTIoN 2.1. A space X is called pararegular if and only if for every open
Uc X there exists a monotonically contracting sequence (¢,),.y of open coverings
of U such that if (G)sey is & decreasing representative of (%,),.y, then
N {G,: neN}cU.

Every such sequence (%,),.y Wwill be called a pararegularizing sequence
(abbreviated by p-sequence) of U. The reference to U will be omitted when con-
textually clear.

Several of the theorems of this section and Section 3 either provide examples
of pararegular spaces or give methods of constructing them. We give some examples
below which, among other matters, compare pararegular spaces to regular spaces,
to semiregular spaces in the sense of M. H. Stone [17], and to completely Haus-
dorff [16] spaces (due to Uryson [19]). )

ExAMPLE 2.1. The well-known example of Aleksandrov and Uryson [2], p. 5
in which the underlying set is [0, 1] and the topology is generated by the union of
the usual topology # and the family of all sets U\{l/n: ne N} where UeJ, is
a basically complete nonregular space which is pararegular and completely Haus-

dorff but is not semiregular.
‘ ExaMPpLE 2.2. Example 4 of Iis another space with the properties listed above
in 2.1.

ExaMPLE 2.3. The unnumbered éxample following Example 4 of I is a T
nonpararegular space which has A-bases locally.

ExAMPLE 2.4. The space of Example 88 of [16] is a completely Hausdorff
semiregular space which is not pararegular.

EXAMPLE 2.5. The space of Example 100 of [16] is a basically complete (and
therefore pararegular) semiregular Hausdorff space which is not completely Hausdorff.

Additional examples are given in §§ 3, 4, and 5.

We list the following theorems concerning pararegularity and give the proofs
_at the end of the section. The theorems show that pararegularity has many of the
properties of regularity. A relation to basic completeness is given in § 3.

THEOREM 2.1. Every regular space is pararegular.
THEOREM 2.2. If a space is pararegular, then all of its subspaces are pararegular.

TueoreM 2.3. If X is a space having a base each element of which has a pZ;Z-
regularizing sequence, then X is pararegular.

TaeOREM 2.4. Every pararegular space is essentially T;.

THEOREM 2.5. Every pararegular Ty-space is Hausdorff.
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THEOREM 2.6. The Cartesian product space of any family of pararegular spaces
is pararegular.

THEOREM 2.7. The fopological sum of any disjoint family of pararegular spaces
is parar egular.

Lemma 2.1. If X is a space, then an open Uc X has a pararegularizing sequence
in X if and only if it has a primitive sequence (#});.y in itself of collections of open
sets such that if (H,) ;. y is a decreasing representative of (# );en» then \{H;:ieN}<U.

Proof. A proof may easily be obtained with the use of the definitions and
Lemmas 1.2.1, 1.2.2, and 1.2.3.

DEFINITION 2.2. A primitive sequence of U in itself with the property described
in Lemma 2.1 will be called a primitive pararegularizing sequence (abbreviated
primitive p-sequence) (of U).

Proof of 2.1. Suppose X is regular and U is open in X. For each ie N let
%, = {V=U: Vis open and VoU}. If (G)iey is a decreasing representative of
(ff,)ieN, then N {G;: ieN}=U.

Proof of 2.2. Suppose X is pararegular and Y= X. If U is open in Y, then
there exists V= X such that U= ¥ n V. The set ¥ has a primitive p-sequence
(#3)ien - Form a primitive sequence (¥",),cy of U in itself as in Lemma 1.3, taking
Y=L and V= M. If (V);.y is a decreasing representative of (¥",),.y. then there
exists a decreasing representative (Hy);.y Of (3#));cy such that for each ne N the
first ele ment of ##; that includes a term of (¥;) is H;. Because VY Vj N Yand
N{7Vi:jeNie {HX je N}V, it follows that n {7y ]eNlcU Lemma 2.1
implies that U has a p-sequence in Y.

Proof of 2.3. Suppose Z is a base for a space X such that each element of #
has a p-sequence. Suppose UcX is open. Let #"' = {Be%: B<U} be well-
ordered and let #° denote {We#': n(W,#’) # &} with the well-ordering
induced by that of #"". Then % is a collection of subsets of U covering U and
each W e # has a primitive p-sequence (#7);.y by Lemma 2.1. By Lemma 1.4,
there ex ists a primitive sequence (3#,),y of U in itself satisfying the conclusion of
the lemma. If (H,),y is a decreasing representative of (#,),.y there exists je N
and W e ¥ such that H,e#" for all n>j. Therefore ) {H,: ne NycW. It
follows from Lemma 2.1 that U has a p-sequence.

Proof of 2.4. Suppose X is a pararegular space and x,y e X. Suppose
ze Lx} n {y} and we {x}. The set X\{3} has a p-sequence (&,)ney. If w & {y} there
exists a decreasing representative (G,),en 0f (%,)pey such that we () {G,, ne N}
Therefore x e[ {G,:neN} and it follows that z &) {G,:neN}cX\ {}. There-
fore we{yJ Similarly, {y;c{x}

Proof of 2.5. Suppose X is T, and pararegular. Suppose x,y € X and there
exists an open set U containing x but not y. The set U has a p-sequence (4,)" . x
which has a decreasing representative (G,),ey Withx e (}{G,: n € N}. Because y ¢ U,
2 — Fundamenta Mathematicae, T. XCI
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there exists m such that y ¢ G,,. Therefore G,, and X\G,, are disjoint open sets
containing x and y respectively.

Proof of 2.6. Suppose (X,)ge is a family of pararegular spaces. Let X denote
the product with the topology introduced by Tychonoff [5], p. 73. Cons.ider. a basic
open set {Uy,, s Uy = () {p;l(Ua,): 1<igk} (where p, is the prOJectlon_ map
of X onto X,). Bach U, is open in X,, and therefore has a p-sequence (¥)cy-
For each n e N, let @, denote the collection {(G,,, ..., Gy >: G, € G, for 1<i <k}
Suppose (V,)sey i5 a decreasing representative of (#);.y. EachV, = {Ghys vons Gyde
Because V. <V, it follows that G:;"ch:j for all ne N and 1<j<k. Therefore
N{G.: ne N}=U,, for 1<j<k. But ¥, = (G, ..., G,> and

NV, ne N} =<N{G: neN}, ., N {Gh: ne NP S(Upys s Un -
Therefore the last-named set has a p-sequence. The proof may be completed by
applying Theorem 2.3.

Proof of 2.7. Suppose that (X,),.4 is a family of disjoint pararegular spaces.
Let X denote their topological sum [5], p. 70. If U is open in X, then each U n X,
is open in X,. Therefore each U n X, has a p-sequence (%7);.y. For each ie N,
let 4; = {G: Ge %} and a € 4}. If (Gy);y is 2 decreasing representative_of (A
then there exists o€ 4 such that G;e %% for all ie N. Therefore () {Gi*: ie N}
cUn X, I G X,, then G¥= = G*. Tt follows that (%);.y is a p-sequence for U.

3. Pararegularity and basic completeness. This section contains theorems relating
the concepts of the title and also a characterization of basic completeness.

TaeoreM 3.1. If X is basically complete, then X is pararegular.

COROLLARY 3.1. Every T, first countable scattered space is pararegular.

Remark. Example 2.3 shows that a T;-space having A-bases locally is not
necessarily pararegular.

THEOREM 3.2. If X is pararegular and has a ).-base, then X has A-bases locally.

TrEOREM 3.3. If X is a T,-space having a A-base, then X is basically complete
if and only if X is pararegular.

THEOREM 3.4. If X is a Ty-space then X is basically complete if and only if every
open Uc X has a monotonically contracting sequence (9,),cy of open coverings such
that every decreasing representative (G,)yen 0f (9, \{@D,cny converges to some x e U
and {x} = N{G,: neN}

Proof of 3.1. Suppose X is basically complete and U< X is open. Then there
exists a sequence (%,);.y of bases for U satisfying (A) of Theorem I1.3.2 with X re-
placed by U. Each member of each ¢, is open in X. If (G));.y is a decreasing repre-
sentative of (%;\{@));cy there exists x € U such that {G;: ie N} converges to x.
If y # x there exist disjoint open sets ¥ and W such that x € ¥ and y € W. Therefore
G,V for some ne N and thus y ¢ G,. Thus () {G,: ne N} = {x}<U; therefore U
has a p-sequence.

Corollary 3.1 is.immediate from Theorem 3.1 and Theorem 1.3.8.
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Proof of 3.2. Suppose X is pararegular and has a A-base. By Theorem 1.3.2
there is a sequence (%,);.y of bases for X satisfying (A). Suppose U is open in X.
Then U has a primitive p-sequence (#));.y by Lemma 2.1. For each i, let
7; = {Ge%;: GeU}. Then (¥});.y is monotonically contracting. By Lemma 1.2.1
a primitive sequence (¥7));.y may be derived from (¥f);.y such that each ¥ R
By Lemma 1.2 the lexicographic refinement (#%,);cy of (% Dien and (77);en exists.
It (Upien is a decreasing representative of (% ,\{@});cy, then there exist decregsing
representatives (V7);ey and (W), y such that for each i € N the first elements of ¥,
and %; that include a term of (Up).y are ¥; and W, respectively. There exists
xe(V\{V;: ie N}. Because xe W, for all ieN, it follows that xe U. Clearly,
xe{U;:ieNLItye N {U;:ie N} and Wis open and y & W, then there exists V;
such that V;=W. It follows that there exists U, V;<W. Thus {U;: ie N} con-
verges to y. Therefore, with the use of Lemma 1.2.3, a 1-base for U may be obtained
from (%);cy. (Theorem 1.3.3 shows that the construction results in a A-base.)
Thus X has A-bases locally.

Proof of 3.3. This is immediate from the definition of basically complete and
the two preceding theorems.

Proof of 3.4. The necessity follows readily from Theorem 1.3.2 and the prop-
erty of being a Hausdorff space. If X is a space satisfying the given condition,
then X is pararegular and therefore T5. Since the condition obviously implies that
each open subset of X has a A-base (by Theorem 1.3.3), it follows that X has A-bases
locally.

4. Monotonic completeness. The purpose of this section is to discuss a simple
and natural idea of topological completeness which is used later to analyze basic
completeness. The underlying idea is called monotonic completeness; some modifica-
tions are also discussed. A countable version for metric spaces was used in [1, 18]
and forerunners of it are to be found in Cantor’s work [3]. Metrizable countably
monotonically complete spaces are metrically topologically complete [18].

DermrTION 4.1. A base # for a space is said to be (countably) monotonically
complete [20] if and only if the closures of the elements of every (countable) mon-
otonic subcollection of # have a point in common. If a space has such a base it is
called a (countably) monotonically complete space. If a space has a base & such that
each element of 4 is (countably) monotonically complete the space is called a locally
(countably) monotonically complete space.

We use the terms locally (countably) compact space to mean a space each point
of which belongs to an open set with a (countably) compact closure. Countable com-
pactness and compactness are used as in [16]; we do not assume 7.

The proofs of the following four theorems are left to the reader.

THEOREM 4.1. A locally (countably) compact space is (countably) monotonically
complete. ’

THEOREM 4.2. 4 space having a .-base (A-bases locally) is monotonically complete
o%


Artur


20 H. H. Wicke and J. M. Worrell, Jr.

(locally monotonically compleie). Therefore every basically complete space is locally
monotonically complete.

TugoreMm 4.3. A regular (countably) monotonically complete space is locally
(countably) monotonically complete. '

De Groot introduced the following concept in two different forms ([4], remark
on p. 763). The second form is used here because the spaces considered in this paper
are not assumed to be regular.

DERINITION 4.2 [4]. A space is said to be (countably) subcompact if it has
2 base 4 such that the closures of the elements of any (countable) filter base included
in # have a point in common.

In [6] the following concept, stronger than subcompactness, is defined.

DEENITION 4.3 [6]. A space is said to be basis compact if it has a base A such
that the closures of the elements of every subcollection of # with the finite inter-
section property have a point in common.

The example of Theorem 9 of [15] shows that there are subcompact Moore
spaces which are not basis compact. Theorem 7.3 below shows that subcompactness

and countable monotonic completeness are equivalent for pararegular spaces having -

bases of countable order.

THEOREM 4.4. Every (countably) subcompact space is (countably) monotonically
complete; therefore all basis compact spaces are monotonically complete.

ExAMPLE 4.1. The domain of Example 2 of [20] is a monotonically complete
metacompact developable completely Hausdorff space which is not pararegular
and not locally monotonically complete and consequently not basically complete.
It is basis compact.

EXAMPLE 4.2. The so-called Michael line [11] in which the reals are given a top-
ology generated by the union of the usual topology with {{x}: x is irrational} i
locally monotonically complete; in fact, it is basis compact, but it is not basmally
complete. The subset of the rational numbers is closed but it is not countably mon-
otonically complete and thus a fortiori not basis compact. Thus (countable) mon-
otonic completeness is not hereditary with respect to closed subspaces.

EXAMELE 4.3, The example of Theorem 8 of [15] is a Moore space which is not
a subspace of any regular monotonically complete space having a base of countable
order.

ExAMPLE 4.4. The example of Theorem 9 of [15] is a monotonically complete
Moore space (therefore a subcompact Moore space) which is not a complete Moore
space. This contrasts interestingly with the situation in metrizable spaces, when one
considers that a metrizable space complete in Moore’s sense is metrically topologically
complete. (Note that basis compact Moore spaces are complete Moore spaces.)

A way in which the concept of monotonic completéness generalizes the concept
of compactness is brought out by comparison with the concept of perfect com-
pactness [13]. A space X is called perfectly compact if for every monotonic collec-

- sufficient conditions that a space be a Baire space (i.e.,
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tion .# of nonempty subsets of X the closures of the elements of .# have a point
in common. The equivalence of this concept with compactness is  well
known: [2, 9, 12]. It is clear that (countable) monotonic completeness is a weakening
of (countable) perfect compactness.

R. L. Moore proved that closed subspaces of Moore spaces are compact if
and only if they are countably compact [13]. If “Moore spaces” is replaced by ‘’spaces
having bases of countable order” in the phrase following “that” in the preceding
sentence, the resulting statement is not a theorem as the example of the countable
ordinals with the order topology shows. However, if monotonic completeness is
considered in place of compactness, the following analogue is obtained.

THEOREM 4.5. 4 space having a base of countable order is monotonically complete
if and only if it is countably monotonically complete.

Proof. Suppose X is countably monotonically complete and has a base of
countable order. By Theorem 1.3.4 it has a countably monotonically complete base #
‘of countable order. We may assume @ ¢ #. Suppose .# is a monotonic subcollection
of #. If some member of ./ is a subset of all elements of .# then the closures of the
elements of 4 have a point in common. If no such member of .# exists, then A4 is
perfectly decreasing. By induction there exists a sequence (M,);.y such that each
M;e # and M;., is a proper subset of M;. Suppose 4 € .#. If no M;<A, then
Ac M, for all ie M. Since 4 # @, and # is a base of countable order, it follows
that some M;<d4. But then M;c M., which is a contradiction. Therefore for each
Ae . # there exists M;=A. By countable monotonic completeness, there exists

xe(Y{M;: ie N}. Therefore xe 4 for all 4e.# and X is thus monotonically

complete.

THEOREM 4.6. The Cartesian product space of any family of (locally) (countably)
monotonically complete spaces is (locally) (countably) monotonically complete.
THEOREM 4.7. The topolegical sum of any disjoint family of (locally) (countably)
mozzotonically complete spaces is (locally) (countably) monotonically complete.
7 The proofs of the preceding two theorems are straightforward.i

5. A Baire category theorem. J. C. Oxtoby has made a penetrating contribu-
tion [14] to the theory of Baire category. Theorem 5.1 of [14] gives quite general
that the intersection of
a countable family of dense open sets is dense). It follows easily from this theorem
that a regular countably monotonically complete space is a Baire space. We repeat
Oxtoby’s definitions here, give some examples, and show that, with a suitable modi-
fication of his completeness concept, a Baire category theorem holds for pararegular
spaces.

DrrFINITION 5.1 [14]. A pseudo-base for a space is a collection of nonempty
open sets such that any nonempty open set includes some member of the collection.
A space is guasi-regular if every nonempty open set includes the closure of some
nonempty open set. A space is pseudo-complete if it is quasi-regular and has a se-
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quence (#,),ey of pseudo-bases such that if (B,)sey 18 a decreasing representative
of (B,)en such that B,,,cB, for all ne N, then ({B,: n eN} # O

In {14], among other interesting results, Oxtoby proves that every pseudo-
complete space is a Baire space.

In order to deal with pararegular spaces which arenot quasi-regular the following
modification of Oxtoby’s completeness condition seems appropriate.

DEFINITION 5.2. A space is said to be pseudo-m-complete if it has a sequence
(@,),cn of pseudo-bases such that if (B,),.y is a decreasing representative of (%,)yen.
then () {B,: ne N} # @.

Clearly a pseudo-m-complete space which is quasi-regular is pseudo-complete.
Every countably monotonically complete space is pseudo-m-complete as is every
locally countably compact space.

EXAMPLE 5.1. A locally monotonically complete Hausdorff pararegular space
which is not quasi-regular. Let S denote the simple extension [10] of the real numbers R
by the irrationals; i.e., let § = R and give S the topology o generated by the union
of the usual topology 4 and the set whose only element is the set P of irrational
numbers. Then X is not quasi-regular because P is open but P does not include the
closure of any nonempty open set. If U is open in S then US = U®. From this it is
easy to see that S is monotonically complete. It may also be seen that S is locally
monotonically complete. The space S is pararegular. If B is an open interval in the
usual topology, let %, = {U e a: U* < B} for each & N. Then (%,),.y is a p-sequence.
Consider an open set B n P where B is an open interval in . Let (r;);.y be a one-one
sequence whose range is Q. For each n, let %, ={Ueos: UcBnP and
{ri, ., r} nU% = B}. Then each %, covers B n P and the sequence (¥,),cy I8
a p-sequence for U. This space does not have a base of countable order because of
Theorem 7.2 below and the fact that the rationals are a closed subspace of S.

EXAMPLE 5.2. A pararegular pseudo-m-complete space which is not quasi-regular
and not monotonically complete. Let R denote the real numbers and Q the rationals.
For each ne N let S, = Sx{n}, and let L = U_‘{S,,: ne N} v Q, where S is as in
Example 5.1. Generate a topology by giving each S, the product topology and
for xe Q take as neighborhood base the collection of all sets

Vix,n) = U{B(x, 1/n) x {m}: n<m and me N} U (B(x, 1/n) n Q),

where B(x, r) = {ye R: |x—y|<r}. That this space is not monotonically complete
may be seen by an argument based on one which shows that Q is not monotonically
complete. '

The next example shows that monotonic completeness cannot be replaced by
pseudo-m-completeness in the characterization theorems of § 7.

EXAMPLE 5.3. A metrizable pseudo-m-complete space which is not metrically
topologically complete. Such an example may be obtained as a subspace of Example 1.2
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of [5], p. 107 (a modification of an example in [2]). Let D; = {(x, y): ¥ = i and
xe @ n 0,11}, for i = 0,1. Let Z = Dy U D,. For ze D, let a neighborhood base
at z be {{z}} and for z e D, let such a base consist of all sets

{x,»ez: 0O<|x—z</n} U;{z} R

where z = (z, 0). Then Z is metrizable, but is not metrically topologically complete
because a homeomorph of Q is a closed subspace of Z. It is pseudo-m-complete
since the set D, is a dense subspace each of whose points is isolated; therefore

- {{z}: ze D} is a monotonically complete pseudo-base.

The following theorem shows that the spaces of Example 5.1-5.2 are Baire spaces
although they do not satisfy Oxtoby’s conditions.

THEOREM 5.1. A pararegular pseudo-m-complete space is a Baire space.

Proof. Suppose X is a nonempty pararegular space and (%,),.y is a sequence
of pseudo-bases satisfying the condition of Definition 5.2 such that @ &4, for
all ne N. Suppose (E));.y is @ sequence of dense open subsets of X and Uc X is,
open and nonempty. Let (%,),.y and (%.),.y denote p-sequences for U and E;,
respectively. Because E; n U # @ there exists G, €%, and G;; €%} such that
Gy n Gy # . Since #; is a pseudo-base, there exists B, e, such that
BicGy nGyy. Let Gy = X = By = G, for all i e N. Suppose sequences (B;); <i<k»
(GDi<icks and (G,)igjsk—-n+1, Where 1<n<k, have been defined satisfying for
each i<k these conditions:

(1); B;e%#,;, Gie%,;, and G,;e¥; for 1<n<i and 1<j<i—n+1.

(2); G;=Gi-y.

(3) G,;=G,5-1, 1<n<i and 1gj<i—n+1.

4); B;=B; 1 0 G, n (N{G,;: 1<r<i, rts = i+1}).

There exists x, € B, N Eyy (. Thereexist G,y €%y and G, e G for 1<r<k+1
and r+s = k+2 such that x, € B, N Gy NV {Gs: 1<r<k+1, r+5 = k+2} and
G,.c G, for 1<r<k, r4s = k+2. There exists By, ; € By, such that (4),,
is satisfied. Thus conditions (1),,-(4)+, are satisfied. By induction, sequences
{GYien and (G, sen, for all ¥ € N, exist satisfying (1),- (4), for all k € N. By the pseudo-
m-completeness of X, there exists xe () {B,: ke N}. By the conditions (1);-(4),,
xeV{G,: ke N}cU and xe(\{G,;: se N}cE, for each re N. This concludes
the proof.

If in the definition of pararegularity the monotonically contracting sequence
{9 ,)uey is replaced by a sequence of pseudo-bases then a generalization of quasi-
regularity is obtained; i.e., for each open Uc X there is a sequence (%,),y of pseudo-
bases for U such that if (B,);y is a decreasing representative, then () {B;: ie N} =U.
It is straightforward to verify that a pseudo-m-complete space with this property
is a Baire space.

Theorem 5.1 above and Oxtoby’s Theorem 5.1 of [14] each apply to situations
not covered by the other as is shown by Example 5.2 and the following example.

EXAMPLE 5.4. A T; quasi-regular space having A-bases locally which is not
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pararegular. Take as a base for a topology on N the collection of all sets which
are of the form {21} for ne N or of the form {2n+1} U {meN: m>p>2n+1}
for ne N and p € N. This space is not pararegular since it is Ty but not T,. Every
nonempty open set includes a set of the form {2n} so it is quasi-regular. The space
has A-bases locally and is therefore pseudo-complete.

6. Bases closuxewise of countable order. The concept introduced here is a strength-
ening of that of a base of countable order. It incorporates a regularity like condition
in its definition. In this connection see Theorem 6.4.

DEFINITION 6.1. A collection # of subsets of a space X is called a base closure-
wise of countable order if and only if it is a base for X and if x e X and " is a per-
fectly decreasing subcollection of # such that the closure of each element of " con-
tains x, then any open set containing x includes a member of X"

Examples 2.3 and 5.4 are T;-spaces which have 4-bases locally (and therefore
have bases of countable order) but do not have bases closurewise of countable order.
This follows from the fact that a T,-space having a base closurewise of countable
order is T,. Note also that a T,-space having a 1-base has a base closurewise of count-
able order. We list here three theorems which follow readily by means of techniques
used in I, [23], and above.

THEOREM 6.1. If a Ty-space X is the union of open subspaces each having a base
closurewise of countable order then every subspace of X has a base closurewise of
countable order.

THEOREM 6.2. A space X is essentially Ty and has a base closurewise of countable
order if and only if there exists a sequence (%,),.y of bases for X such that if xe X
and (G,),ey s a decreasing representative of (%,)nen Such that if xe ) {G,: ne N}
then (G,), .y -converges to x.

THEOREM 6.3. If a space X has a base closurewise of countable order, then any
base for X includes a base closurewise of countable order.

THEOREM 6.4, If X is pararegular and has a base of countable order, then X has
a base closurewise of countable order.

Proof. There exists a sequence (#,),cy Of bases for X such that if (B,),ey is
a decreasing representative of (4,),ey and x e () {B,: ne N}, then {B,: ne N}is
a base at x. This follows from Theorem 2 of [23]. By pararegularity and Lemma 2.1
each Bel) {#,: ne N} has a primitive p~sequence P(B). Consider the bases 4, as
well-ordered and obtain with the use of Lemma 1.5 a primitive scquence (J#);en
of X with the properties in the statement of the lemma. From (#;);.5 2 sequence
(%,)ney 2s described in Lemma 1.2.3 may be obtained. Bach o ,<#,. Therefore
if (H),ey is a decreasing representative of (#,),ey and xe ({H,: ne N} then
{H,: ne N} is a base at x. It follows readily from this and the construction in
Lemma 1.2.3 that each term of (%,),.y is a base for X. Suppose (G,),.n 18 2 decreas-
ing representative of (#%,),.y and xe () {G,: ne N}. By Lemma 1.2.3 there exists
a decreasing representative (H,),.y 0of (37,),en Such that for each n the first element

Topological completeness of first countable Hausdorff’ spaces II 25

of o, that includes a term of (G,),ey 15 H,. Suppose x& n(H,.i, #ysr1)- I
xen(H, #,), then Ho> H, ., . Because H,,, includes a term of (G,),.n, it follows.
that H does not precede H,. Therefore xen(H,, #,), because H,>H,.,. By
Lemma 1.5 there exists a decreasing representative (G;);.x of P(H;) such that for
each ne N, G;, is the first element of P(H}), that includes a term of (H); 5. Because
N{G,: neN}yc\{H,: neN} and N{H,: ne N}=(\{G,,: ne N}cH, (because
P(H)) is a primitive p-sequence), it follows that x e ( {H;: je N}. If U is open and
x € U, then there exists some H,=U. But H, includes some G;. Thus, by Theorem 6.2,
X has a base closurewise of countable order.

A proof of the following theorem may be obtained from the proof of
Theorem 6.4. .

THEOREM 6.5. Suppose (& ,)pen is a sequence of well-ordered bases for q pararegular
space X. There exists a primitive sequence (3 ), oy of X in itself such that each H# ,,< %,
and if (H),en 15 a decreasing representative of (# ,)sen such that n(H,, #,) N
AN T(Hyy 1, #nrr) # B for all neN, then (\{H,: neN} = {H,: ne N}.

The following theorem may be obtained directly from the method used to-
prove Theorem 2 of [20].

THEOREM 6.6. If X is an essentially T, -space having a base closurewise of count--
able order and Y is an essentially Ty open continuous uniformly monotonically com-
plete image of X, then Y has a base of countable order. If Y is pararegular, then it
has a base closurewise of countable order.

THEOREM 6.7. A wmonotonically complete base closurewise of countable order
is a A-base.

7. Some characterizations of basic completeness.

THEOREM 7.1. A space is basically complete if and only if it is T, locally:
monotonically complete, and has a base closurewise of countable order.

Proof. The necessity of the conditions follows from Theorem 4.2 and the
fact that a T,-space having a A-base has a base closurewise of countable order.

If X satisfies the condition and U is open in X, then U is the union of open
subspaces having monotonically complete bases closurewise of countable order
by Theorems 6.1 and 6.3. Hence U has a A-base by Theorems 6.6 and 1.3.1. There-
fore X has A-bases locally. Tt is easy to see that X is T%.

TuroreM 7.2. A space is basically complete if and only if it is a pararegular
monotonically complete Ty-space having a base of countable order.

Proof. The necessity follows from Theorems 3.1, 4.2, and the definitions in-
volved. If X is a pararegular To-space, then X is T, and by Theorem 6.4, X has
a base closurewise of countable order. Therefore X has a A-base by Theorem 6.6.

"By Theorem 3.2, X has A-bases locally.

TuEOREM 7.3. Suppose X is a pararegular Ty-space having a base of countable-
order. Then the following conditions are equivalent:
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(2) X is countably monotonically complete.

(b) X is monotonically complete.

(©) X is subcompact.

(d) X is basically complete.

Proof. (a) implies (b) by Theorem 4.5, (b) implies (d) by Theorem 7.2 and
clearly (d) implies (). Also (c) implies (b). Suppose (d) holds. Then X has a mon-
otonically complete base & closurewise of countable order. Suppose # <& is a filter
base. Bither some member of & is a subset of every member of & or there is a per-
fectly decreasing monotonic subcollection ¥ . There exists xe ) {C: Ce¥}.
Suppose U is open and x & U. Then there exists C e % such that C<U since & is
closurewise of countable order. If 4 e & then 4 n C # @. Therefore x & 4. Hence
(\{4: AeF} # . Thus X is subcompact. Therefore (d) implies (c).

CoroLLARY (De Groot [4]). In a metrizable space the following conditions are
equivalent:

(a) countable subcompactness,

(b) subcompactness,

(c) metric topological completeness.
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