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such that A(0) = 0 and A'(0) = Ins. Suppose that

A(x) = (Ins)x+ex* +esx®+ ... for  xe[0,1-5)

yields a solution of (35). A simple calculation shows that

Ins d —2lns
¢, = and ¢y = —5—.
27 s 5(s3~2)

Thus we get the existence of a positive b<1—s such that #">0 and 4"'<0 on
(0, b), i.e., h is convex but not 2-convex on (0, b). On account of Theorem 2, f pos-
sesses a convex but not 2-convex iteration group.
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Mappings outo circle-like continua
by

J. Krasinkiewicz (Warszawa)

Abstract. The main object of the present paper is to give a characterization of continua which
can be mapped onto non-planar circle-like curves. This result is then applied to show that certain:
classes of continua cannot be mapped onto such curves. These results extend several well-known
facts in this field.

The term compactum is used to mean a compact metric space. A connected
compactum is called a continuum. By a curve we mean a one-dimensional con-
tinvum. The terms map and mapping will be used interchangingly to mean a con-
tinuous function. A map f: X—7Y is said to be an e-mapping, >0, provided
diamf~(y)<e for every y e Y. Throughout the paper we denote by S the unit
circle in the complex plane and by I the unit interval [0, 1] of reals. A continuum
X is called circle-like (snake-like) if for every e>0 there exists an s-mapping of X
onto S (onto I, respectively). Clearly, any circle-like or snake-like continuum is
a curve. The above classes of curves have been extensively studied by several
authors. Known results show an important difference between the class of circle-
like curves which can be embedded in the plane and the others. This difference
will also be underlined by the results of this paper. Our main result gives a charac-
terization of continua which can be mapped onto non-planar circle-like curves.
This result solves a problem raised by Henderson in [7], and extends his result in
this direction. We obtain also generalizations of the results of Ingram [8]-

1. Some remarks on Abelian groups. Let G be an Abelian group. Denote by N
the set of natural numbers, N = {1, 2, ...}. We say thatg e G is divisible by a natu-
ral number », notation: nfg, if g = n-g’ for some g' € G. For every g e G we define

d(g) = sup{neN: n/g} .

Clearly, d(0) = co. If d(g)< co, then we say that g is finitely divisible; otherwise g is
called infinitely divisible. If every element of G different from the neutral element 0 is
finitely divisible, then we- simply say that G is finitely divisible. Notice that every
free Abelian group is finitely divisible.

1.1. If m,ne N are relatively prime, g € G, mfg and nfg, then m-nfg.
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1.2. Let g be an infinitely divisible element of an Abelian group G. Then there
exists a sequence p, py, ... of prime numbers (*) such that p,- ... p;lg for every j>1.

Proof (). There can be two cases: 1) there exists a sequence of prime numbers
Pi1»Pa, - such that p; # p; for i # j and p,|g for every n1. By L.1 this sequence
satisfies the conclusion of 1.2, 2) for some prime number p we have p"|g for every
nz=1. In this case the sequence p, p, ... satisfies the conclusion of 1.2.

A direct sequence G = {G,, hyn}s hym: Gp—G,,, of groups is called movable
if for every n>1 there exists an index ng=n such that for every m:n there exists
a homomorphism h: G,—G,, such that

(*) ' I1""0 = ll ° h""l .

1.3. Let G = {G,, M} be a direct sequence with limit G* such that G, = Z,
the group of integers, for every nz1. Then the following conditions are equivalent:
@) G is movable,
(i) =0 or Z,
(iif) G*® is finitely divisible,
(v) for every 11 there exists an index m=1 such that for every n>m we have
(D1,

Proof. (i)=>(ii). Suppose G % 0. We have to show that G°~Z. Let g 5 0

be an element of G*. Let 5,: G,—G® denote the natural projection. Hence
(1) nll = r’"l- ° hfl"l for 771271 *

There exist an index n and an element g, € G, such that

)] g =19,

Since g,g, # 0, by (1) and (2) we obtain £,,(g,) 0. Since g,9, = g, 1, we have
0 # h,.(9) = g, h,,(1); therefore :

3 hy(1) £ 0 for every m>n.

Let ny=n be chosen as in the definition of movability. We shall show that
4 . - hyn(1) = &1 for every m>n, .

Indeed, let h: G,,—~G,, be a homomorphism satisfying (*). Since &
by (*) we obtain

um T hnum ° hnnu’

hnnu(l) =ho hnum @ l’)xnn(l) = h(l)'huom(l)'hmro(-l) .
Since ny=mn, the last equality and condition (3) imply
, | Fagn(D)h(1) = 1.
]_S_EI_t huom(1) and A(1) are integers, and hence Puom() = 1.

() Recall that 1 is not considered as prime.
(*) This simple proof is due to Professor J. Mioduszewski.
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1t follows from condition (4) that for every m>n, the function #,,, is an iso-
morphism between G,, and G,,. Therefore G"’,':"G,,‘J = Z, which proves the impli-
cation.

Implication (ii)=-(iii) is obvious.

(iii)=(iv). Suppose condition (iv) does not hold. Hence there exists an in-
creasing sequence of natural numbers n; <n,<n;<... such that

(5 [Py (DI>1 for every iz1.
Now we show that
(6) g = 17111(1) #0,

where g, is the projection defined at the beginning of the proof. Suppose g = 0;
then there exists an index n>n; such that h,,(1) = 0. Let n;>n. Then we have

hnl;li(l) = ]17”11 ohnw(l) = O 2
contrary to (5).
Hence to finish the proof we need only to show that for every natural number k
there exists an Iz% such that Jjg. By (5) there exists an index j>1 such that
Ay, (D> k. Put I = Wy (|- Then we have by (1) and (6),

g = nru(l) i ITh hnnu(l) = l.[(Signhnlni(l))'n"l(l)] i

This implies that ¢ is infinitely divisible, contrary to (iii).

(iv)=(i). Let n be a given natural number. If there exists an index k>n su.ch
that ,,(1) = 0, then put n, = k. Otherwise |i,,(1)]>0 for every kzn and by (iv)
there exists an index mg=n such that

(7) for every m>n, we have B, (1] = 1.

We have to prove that for m>n there is a homomorphism /: G,—G,, such that
() is fulfilled. If m<n,, it suffices to set h = Pyuo- Assume m>n. If Iz-,,,,n(l) =0,
put & = 0, the null-homomorphism. If Pme(1) # 0, then condition (7) is fulfilled.
Hence ,,,, is an isomorphism. So there is a homomorp}.lism h such t_hat hohyym
= lg,. It is easy to check that in both cases condition (%) is fulfilled. This completes
the proof.

L4, If each factor of a movable direct sequence of groups G = {Gy, By} B8
finitely divisible, then the limit G* is also finitely divisible.

Proof. Suppose, to the contrary, that some element g 0 of G is infinitely
divisible. For the natural projections ,: G,—»G® we have

1) iy = ol fOr every 1<n<m.
There exist an index n and an element g, of G, such that

2 M(gn) = ¢ -
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Let n, be chosen as in the definition of movability. Since g # 0, by (1) and (2) we
have h,,q(g,) # 0. Since G,, is finitely divisible there exists a natural number k such
that

(3) if Izk, then A,,(g,) is not divisible by /.

By our assumption there exist an integer />k and an element ¢'e G* such that
.g = I-¢’. There exist an index r and an element g, € G, such that 5,(g,) = ¢'. Since
n(-g,) = I-g' = g, by (2) there is an index m>n,r such that ’

(4) hnm(gn) == hrm(l' gr) .

Let h: G,—G,, be a homomorphism satisfying (*). So by (%) and (4), h,,(9,)
= hoh,,(g,) = hoh,(lg) = I-hoh,,(g,), which contradicts (3). This completes
the proof. (Let us note that the proof is valid for arbitrary movable systems.)

2. Bruschlinsky’s theorem and its consequences. Consider the unit circle S as
an Abelian group with multiplication of complex numbers with module one as a group
operation in S. Let X be a compactum and let f,g: X—S. As usual we
define f-g: X—S by the formula f*g(x) = f(x)-g(x) for every x e X. It is evident
that if fo~g and f'~g’, then ff'~g-¢'. In this way the above operation induces
a group operation in the set of homotopy classes of maps from X into S. This set
with the induced group operation is denoted by =*(X) and is called the Bruschlinsky
groyp of X. If ¥ is a compactum, then H*(Y) is used in this paper to denote the
first Cech cohomology group of ¥ with integers Z as the coefficient group. If fis
a map from X into ¥, then by f* we denote the induced homomorphism
J*: H(Y)~H'(X). By y we will denote a generator of the group H(S)~Z. Let
‘aern'(X) be an element with a representative f, i.e., « = [f]. To the map f: X—S,
corresponds the element f*(y) € H*(X) and it is easy to check that this element does
not depend on the choice of a particular map f representing . In this way we obtain
a function y: #'(X)—H'(X) defined by x([f]) = f*(3). An important fact about ¥ 1s
contained in the following Bruschlinsky theorem:

2.1. The function y: a'(X)—~H"(X) is an isomorphism [4, p. 226].

We say that a compactum X is coniractible with respect to S, notation: crs,
if every map f from X into S is null-homotopic, f~0. By 2.1 we obtain the following
known corollary

2.2. 4 compactum X is crS iff HY(X) = 0.

If f: §—Sis a map, then the degree of £, notation: degf; is defined as the unique
number such that f*(y) = (degf)-y. From now on by P, we will denote a map
from S into itself defined by p,(2) = 2", nx1. It is well known that degp, = n
{[5], p. 306), and p, is a covering map. Now we shall prove the following proposition:

2.3. Let f be a mapping of a compactum X into S. Let g = S*(y) and suppose
that ¢ = n-§ for some nz1 and §e HY(X). Then there exists a map f: X—8 such
that f¥(y) = § and f = p,of.
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Proof. By the Bruschlinsky theorem there exists a mapping k: X—S such
that k*(y) = §. Since pj(y) = n-y, we have

Buo k) = k@) =nj=g.

Again by 2.1 we see that p,okf. Let h: X' x - be a homotopy joining these maps,
that is: A(x, 0) = p,ok(x) and h(x, 1) = f(x) for every x e X. Since p, is a covering
map, it has the homotopy lifting property [16, p. 67]. Hence there exists a map
it XxI-S such that & = p,oh and fi(x,0) = k(x). Setting

F&) = hx, 1),

we obtain the required map. Indeed, f = p, o 7 and since i is a homotopy joining k
and f, we have F¥(3) = k*(y) = §.

2.4, If X is a compactum, the group H (X)) is torsion-free (comp. [11, p. 409]).

Proof. Suppose § € H(X), § # 0 and n-§ = 0 for some n>1. Let f: X—S
be a constant map, say f(X) = (so). Then f*(y) = 0 and by 2.3 there exists a map
J: X—8 such that f*(y) = § and f = p,of. Hence F(X)=p; (s,). Since the fiber
P (s,) consists of # points, we infer in particular that f(X) is a proper subset of S,
and therefore f~0. Thus § = f*(y) = 0, contrary to our assumption.

The following proposition is an immedijate consequence of 2.3 and the defi-
nition of the symbol d(-) (see § 1).

for xe X,

2.5. If f is a mapping of a compactum X into S, then

d(7*()) = suplne N: \/ f=pyof}.
Ji x5
2.6. Let X be a compactum and let n , n,, ... be a sequence of natural numbers
such that for some g, € H'(X) we have :

@ nyhy . cmlge  for every j=1.

Then there exists a sequence of maps {f;: X—S} such that f%(y) = go and f; = pu,°fir1
Jor every iz1.

Proof. Observe that by (1) and 2.4 there exists a sequence g5, ¢, -.. of elements
of H'(X) such that

95 = My Giey Jor 20,

By 2.1 there exists a map f : X—S such that f3*(y) = ¢o. Hence applying 2.3 inﬁnit.ely
many times, we can construct all the other maps f; with the required properties.

2.7. Let X be a continuum and let f+ X—S be a map such that f40. Suppose X can
be represented as the union, X = A U B, of its two proper subcontinua A and Blsuch
that f, = flA~0xf|B = f5. Then f*(y) is a finitely divisible element of H'(X),
ie., d(f*()<oo.
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. Proof. Let R be the real line and let ¢p: R~ S be defined by ¢ (#) = *™". Since )
is a covering map, iE has the homotopy lifting property. Hence there exist two
maps fu: A—R and f: B>R such that f; = ¢ of, and fz = ¢ o fz. Put

I = max(diam f4(4), diamfy(B)).
Choose a natural number m so large that
€3] ifm<%.

Suppose, to the contrary, that g = f*(y) is infinitely divisible. Then there exist
a natural number n and an element § e H*(X) such that

2) g=ng and nxm.
By 2.3 there exists a map f: X—S such that
® f=p,of and J*G)=g.

Since p,,is a covering map and f is a lifting of f, we infer that k, = f/4~0 :f/B =k

By thf same argument as at the beginning of the proof, there exist maps & ,: A—:;é
and kg: B—>R such that k, = @ ok, and ky = ¢ o kp. Let p,: R>R beAéieﬁned
by §,(f) = n-z. Observe that ¢ o §, = p, o @; hence we have ’ '

@o(Buok) =puopoky=p,oky=f.

It ff)llows that §, o k, imd f 4 are two liftings of 7. Since 4 is connected, there exists

;:1 1ntege~r c sNuch that §, o k4(¢) = f(x)+cforevery x e 4 [11, p. 406]. In particular,
e sets fi, o k4(A4) and f,(4) are congruent. Tn the same way we prove that p, « kz(B)

and f5(B) are congruent sets. It follows that "

- (4) max(diam:p, o k,(4), diamp, o ky(B)) = 1.

Since for every subset M of R we h iam p, = i )
oimee for ¢ we have diam p,(M) = n-diam M, by (1), (2) and (4)

(5 diamky(4)<} and diamEy(B)<}.

Since 4 and B intersect, there is a point z, € f(4) n F(B)<S. Since F(A) = @ o feu(A)
and f({%) = @ o kp(B), by (5) we infer that —z,'¢ (1) U J(B). Hence we Obtﬂi:I in
tl.lrn. JX) = f(4d) O f(B) # S, f~0 and finally f#() = 0. On the other hand
since f4:0, we have g = f*(y) # 0 by the Bruschlinsky theorem. Hence by (2) wé

, ar (3) f ( E] R .
see that g # 0 and by we ]flclve V) % 0 COlltlﬂly to the previous COIlCll]510U

3. Movable compacta. If X e ANR, the i i
. s n X is homotopically dominated b
a polyhedron P. It follows that H Y(X) is a direct summand of A Y(P). Since H 1(PB;

is a finitely generated torsion f j i
ha ree group (see 2.4) and thus is a free group; we conclude

icm

©
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3.1. If X is an ANR-set, then H'(X) is a free group. In particular, H'(X) is
Sfinitely divisible.

An inverse sequence X = {X,,f,,} is called an ANR-sequence if X, e ANR
for every nz1. X is called movable if for every number n>1 there exists a number
n'>n such that for every mzn there exists a mapping f: X, — X, such that
Fuw=fum of. We say that X is associated with a compactum X if X¥=invlimX.
The compactum X is called movable if there exists a movable ANR-sequence asso-
ciated with X [13]. Tt is known that every ANR-sequence associated with a movable
compactum is movable [13]. The notion of movability was introduced by K. Bor-
suk [2].

Now we shall prove the following proposition:

3.2, If X is a movable compactum, then H Y(X) is finitely divisible.

Proof. By the classical result of Freudenthal [6] there exists an ANR-sequence
X ={X ' fam} associated with X. By the continuity of the Cech cohomology we
may assume that H*(X) = dirlim {H*(X,), f;%.}. Since Xis movable, the sequence X
is movable [13]. This implies that the direct sequence of groups {HYX,). fum} 1s
movable. Hence 3.2 follows from 3.1 and L.4.

By a result of K. Borsuk [2] all plane compacta are movable:*Combining this
result with 3.2, we obtain :
3.3. If X is a plane compactum, then H YX) is finitely divisible.

4. Main results. In this section we give a characterization of continua which can
be mapped onto non-planar circle-like curves. First we establish the following result:

4.1. Let X be a circle-like continuum and let X = {X,, f,.} be an inverse sequence
associated with X such that X, = S for every nz1 (see [12] for the existence of such
sequence). The following conditions are equivalent:

(i) X can be embedded in the plane (into a 2-manifold),
(i) HY(X)=0 or Z,

(iii) HY(X) is finitely divisible,

(iv) X is movable,

(v) for every [=1 there exists an n=l such that |degfo,l <1 for every m>n.

In the case HXX) = 0, X is spake-like [15,p. 324] and it is either indecomposable
or the union of two of ifs proper indecomposable subcontinua [9] M.

Proof. The equaivalence (i)<>(ii) was established by Mc Cord [15, p. 323].
By the continuity of Gech cohomology [5, p. 2611 we may identify H 1(X) with the
limit of the direct sequence G = {H (X)), fx}. It X is movable, then X is movable
and this in turn implies that G is movable. Thus Proposition 1.3 implies all the other

equivalences.
4.2, If a circle-like continuum is not movable, it is indecomposable (comp. [8]).

() Added in proof. The second fact has first been obtained by C, E. Burgess in his paper:
Chainable continua and indecomposability, Pacific . Math. 9 (1959), pp. 653-660.
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Proof. Let X be a non-movable circle-like continuum. By 4.1 there exists an
infinitely divisible element g # 0 of H(X). By the Bruschlinsky theorem there is
a map f: X—S such that f*(y) = ¢g. Suppose X can be represented in the form
X = 4 v B, where 4 and B are proper subcontinua of X. Then 4 and B are snake-
like and therefore f/4~0=~f/B. Since g # 0, f40. Using 2.7, we see that ¢ is finitely
divisible, a contradiction.

Remark. If a continuum X is the limit of an inverse sequence of the form

Py Pny

SeSe—...,
where n; is a prime number for every i1, then X is called a solenoid. Since n;> 1,
we see by 4.1 and 4.2 that solenoids are non-movable [2], indecomposable, circle-like
curves not embeddable in the plane. Using the notion of shape (see [1] and [14]),
we can easily see that every non-planar circle-like curve has the shape of a solenoid.

We say (following Mazurkiewicz and Knaster, Fund. Math. 21 (1933),
Pp. 85-90) that a continuum X is A-connected if every two points of X can be joined
by a hereditarily decomposable subcontinuum of X. Let us note that

4.3. No A-connected continuum X can be mapped onto an indecomposable con-
tinuum Y.

Proof. Suppose f(X) = Y and let a, b € ¥ be two points from distinct compo-
sants of ¥ (see [11, p. 208] for the notion of a composant). Let f(a") = a, f(b") = b
and let Cbe a subcontinuum of X joining ' and &'. Then f(C) = ¥ because Y is
irreducible between a and b, According to [11, p.208] there exists an indecompos-
able subcontinuum of C. Hence X is not A-connected, contrary to our assumption.

Combining 4.1, 4.2 and 4.3 we obtain

4.4. No A-connected continuum can be mapped onto any non-planar circle-like
continuum. In particular, the same conclusion holds for every hereditarily decomposable
or arcwise connected continuum.

4.5. If X is a compactum such that H*(X) contains an infinitely divisible:element
g # 0, then X can be mapped onto some non-planar circle-like curve.

Proof. According to 1.2 there exists a sequence of natural numbers » 15 Hay o

such that n; 7, ... "ny/g and »

@ m;>1  for every j=1.

Applying 2.6, we obtain a sequence of maps {f;: X-S} such that
@ : 9=rt®,

3) Ji=Dn o firr  for every j=1.

Since g # 0, the Bruschlinsky theorem and (2) imply £, 40. Hence by (3) we sec
that no map f; is homotopic to a constant map. In particular, we obtain

(9)  f; is a mapping onto § for every j=1.
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Let Y be the limit of the inverse sequence
Pny Pny
SeSe..
Hence Y is a circle-like continuum. Moreover, because of 4.1(v) and (1), ¥ cannot.
be embedded in the plane. Using (3), we see that the maps f; induce a map f: X~ Y.
Finally, condition (4) implies that fis onto Y, which completes the proof.

Before we state our next result, let us recall the following facts established
in [10].

4.6. One-dimensional image of a snake-like curve is movable.

4.7. Let Y = invlim{Y,, Qun}, where ¥, = S for every nz1. Let m,: Y=Y,
denote the projection. Suppose f is a map of a contimuum X onto Y such that =, o f~0
for every n=1. Then Y can be represented as the image of a snake-like curve.

Now we are ready to prove the following theorem:

4.8. If a continuum X can be mapped onto a non-planar circle-like curve, then:
HY(X) contains an infinitely divisible element g # 0.

Proof. Let ¥ be a non-planar circle-like curve and let f be a map of X onto Y.
We may regard Y as the limit of an inverse sequence Y = {¥,, ¢,.,} such that
Y, = S for every nx1 [12]. Let f, = m,of, where m,: Y=Y, is the projection..
Hence we have

(1) fn = Qum °fm

Using 4.1(v) we see that there exists an index I, such that for every n3> 1, there exists.
m>n such that |deg®,,|>1. Hence there exists an increasing sequence of natural
numbers k, <k, <... such that |[degy,,,,|>1 for every i>1. Choosing if necessary
a subsequence of Y we may assume that

for every mzn.

) n; = |deg@;4q)>1 for every iz1.

We claim that £, 40 for some n1. Indeed, otherwise by 4.7 we could obtain Y as.
the image of a snake-like curve, and by 4.6 the continuun} Y would be moval?le
because dim ¥ = 1, contrary to our assumption and 4.1. Without loss of general.tty'
we may assume that f; 20. By the Bruschlinsky theorem g = FE@) # 0. To finish
the proof we need only to show that for every Jk>1 there exists an Iz k such that J/g.
By condition (2) there exists a j>1 such that I =ny .. m=k. Hence by (1) we:
have in succession
g =fF@ = (fl’J,j+1 °fj+1)*(3’) =ffio (P?,jn o w0 0F2(7)
=fj*+1(degfl7j, JHLT e -deg@s5°)
= I-[sign(deg @y, j+1° - -deg@12) f%:1 0],

which completes the proof.
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Combining 4.3 and 4.6, we obtain the following theorem characterizing continua
which cannot be mapped onto non-planar circle-like curves.

4.9 (Y. Continuum X cannot be mapped onto any non-planar circle-like curve
iff H(X) is finitely divisible.

This result provides an answer to a problem of G. W. Henderson [7].

5. Final conclusions. By 3.2, 3.3 and 4.8 we obtain

5.1. No movable continuum can be mapped onto a non-planar circle-like curve.
In particular, the same holds for plane continua [8] and continua with trivial shape {‘[10]‘

Combining 4.4 with 4.5, we obtain

5.2. If X is a A-connected continuum, then H*(X) is finitely divisible.

Hence ‘the same conclusion holds for hereditarily decomposable and arcwise
-connected continua.

" As a particular case of 4.9 we have by 2.2 the following proposition:

5.3. If X'is a cr S continuum, then X cannot be mapped onto a non-planar circle-
like continuum.

The Case-Chamberlin curve [3] is crS. Hence 5.3 implies;

5.4 ([10]). The Case-Chamberlin curve cannot be mapped onto any non-planar
circle-like curve. .

Let X be a connected and simply connected ANR-set. Then the fundamental
group m;(X) of X is trivial. Hence, by the lifting theorem [16, p. 76], for every map
f: XS there exists a map ¢: X—R such that f(x) = ¢*"™, In particular, f=0,
ie, X is crS.

Now we show that

5.5. If a continuum' X is the limit of an inverse sequence {X,, f,,} of connected
and simply connected ANR-sets, then X is crS.

Hence by 5.3 it cannot be mapped onto a non-planar circle-like curve [7].

Proof. Let f: X—§ and let n,: X=X, be the projection. According to [12]
there exist an index n and a map ¢: X,~S such that f~g o n,. Hence f~0 because
g=~0, which completes the proof.

Remark. If a continuum X is fundamentally dominated (see [1] for the defi-
nition) by a continuum ¥, then H(X) is isomorphic to a subgroup of H'(Y) [14].
Hence if H*(Y)is finitely divisible, then so is A LX), Thus if ¥ cannot be mapped
onto a non-planar circle-like curve, the same holds for X, '

The author would like to express his thanks to the reviewer for his valuable
suggestions.

() After submitting the paper to the editors I received from Prof. J..T. Rogers, Jr.
a preprint of his paper. A cohomological characterization of pre-images of non-planar circle-like
continua, to appear in Proc. Amer. Math. Soc., in which he obtained an equivalent result.
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