

38

such that h(0) = 0 and $h'(0) = \ln s$. Suppose that

$$h(x) = (\ln s)x + c_2x^2 + c_3x^3 + \dots$$
 for $x \in [0, 1-s)$

yields a solution of (35). A simple calculation shows that

$$c_2 = \frac{\ln s}{s^2 - s}$$
 and $c_3 = \frac{-2\ln s}{s(s^3 - s)}$.

Thus we get the existence of a positive b<1-s such that h''>0 and h'''<0 on (0, b), i.e., h is convex but not 2-convex on (0, b). On account of Theorem 2, f possesses a convex but not 2-convex iteration group.

References

- [1] J. Aczél, J. Kalmar and J. Mikusiński, Sur l'équation de translation, Studia Math. 12 (1951), pp. 112-116.
- [2] Z. Ciesielski, Some properties of convex functions of higher orders, Ann. Polon. Math. 7 (1959), pp. 1-7.
- [3] M. Kuczma, A survey of the theory of functional equations, Univ. Beograd, Publ. Elektrotehn. Fakulteta, Ser. Mat. Fiz. 130 (1964).
- [4] Functional Equations in Single Variable, Warszawa 1968.
- [5] and A. Smajdor, Fractional iteration in the class of convex functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (9) (1968), pp. 717-720.
- [6] T. Popoviciu, Sur quelques proprietés des fonctions d'une ou de deux variables réelles, Mathematica 8 (1934), pp. 1-85.
- [7] R. T. Rockafellar, Convex Analysis, Princeton, New Jersey 1970.
- [8] A. Smajdor, Regular iteration of functions with multiplier 1, Fund. Math. 59 (1966), pp. 65-69.
- [9] On convex iteration groups, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), pp. 325-328.
- [10] Note on the existence of convex iteration groups, Fund. Math. 87 (1975), pp. 213-218.
- [11] On some special iteration groups, ibid. 82 (1973), pp. 61-68.

Accepté par la Rédaction le 17, 5, 1974

Mappings onto circle-like continua

by

J. Krasinkiewicz (Warszawa)

Abstract. The main object of the present paper is to give a characterization of continua which can be mapped onto non-planar circle-like curves. This result is then applied to show that certain classes of continua cannot be mapped onto such curves. These results extend several well-known facts in this field.

The term compactum is used to mean a compact metric space. A connected compactum is called a continuum. By a curve we mean a one-dimensional continuum. The terms map and mapping will be used interchangingly to mean a continuous function. A map $f\colon X\to Y$ is said to be an ε -mapping, $\varepsilon>0$, provided $\operatorname{diam} f^{-1}(y)<\varepsilon$ for every $y\in Y$. Throughout the paper we denote by S the unit circle in the complex plane and by I the unit interval [0,1] of reals. A continuum X is called circle-like (snake-like) if for every $\varepsilon>0$ there exists an ε -mapping of X onto S (onto I, respectively). Clearly, any circle-like or snake-like continuum is a curve. The above classes of curves have been extensively studied by several authors. Known results show an important difference between the class of circle-like curves which can be embedded in the plane and the others. This difference will also be underlined by the results of this paper. Our main result gives a characterization of continua which can be mapped onto non-planar circle-like curves. This result solves a problem raised by Henderson in [7], and extends his result in this direction. We obtain also generalizations of the results of Ingram [8].

1. Some remarks on Abelian groups. Let G be an Abelian group. Denote by N the set of natural numbers, $N = \{1, 2, ...\}$. We say that $g \in G$ is *divisible* by a natural number n, notation: n/g, if $g = n \cdot g'$ for some $g' \in G$. For every $g \in G$ we define

$$d(g) = \sup\{n \in N \colon n/g\} \ .$$

Clearly, $d(0) = \infty$. If $d(g) < \infty$, then we say that g is *finitely divisible*; otherwise g is called *infinitely divisible*. If every element of G different from the neutral element 0 is finitely divisible, then we simply say that G is finitely divisible. Notice that every free Abelian group is finitely divisible.

1.1. If $m, n \in \mathbb{N}$ are relatively prime, $g \in G$, m/g and n/g, then $m \cdot n/g$.

1.2. Let a be an infinitely divisible element of an Abelian group G. Then there exists a sequence p_1, p_2, \dots of prime numbers (1) such that $p_1 \cdot \dots \cdot p_i/g$ for every $i \ge 1$.

Proof (2). There can be two cases: 1) there exists a sequence of prime numbers p_1, p_2, \dots such that $p_i \neq p_i$ for $i \neq j$ and $p_n \mid g$ for every $n \geq 1$. By 1.1 this sequence satisfies the conclusion of 1.2, 2) for some prime number p we have $p^n|q$ for every $n \ge 1$. In this case the sequence p, p, ... satisfies the conclusion of 1.2.

A direct sequence $G = \{G_n, h_{nm}\}, h_{nm}: G_n \rightarrow G_m$, of groups is called movable if for every $n \ge 1$ there exists an index $n_0 \ge n$ such that for every $m \ge n$ there exists a homomorphism h: $G_m \rightarrow G_{no}$ such that

$$h_{nno} = h \circ h_{nm}.$$

- 1.3. Let $G = \{G_n, h_{nm}\}$ be a direct sequence with limit G^{∞} such that $G_n = Z$, the group of integers, for every $n \ge 1$. Then the following conditions are equivalent:
 - (i) G is movable.
 - (ii) $G^{\infty} \approx 0$ or Z.
 - (iii) G^{∞} is finitely divisible,
- (iv) for every $l \ge 1$ there exists an index $m \ge l$ such that for every n > m we have $|h_{mn}(1)| \leq 1$.

Proof. (i) \Rightarrow (ii). Suppose $G^{\infty} \neq 0$. We have to show that $G^{\infty} \approx \mathbb{Z}$. Let $g \neq 0$ be an element of G^{∞} . Let $\eta_n: G_n \to G^{\infty}$ denote the natural projection. Hence

(1)
$$\eta_n = \eta_m \circ h_{nm} \quad \text{for} \quad m \geqslant n .$$

There exist an index n and an element $g_n \in G_n$ such that

$$(2) g = \eta_n(g_n).$$

Since $g, g_n \neq 0$, by (1) and (2) we obtain $h_{nm}(g_n) \neq 0$. Since $g, g_n = g_n \cdot 1$, we have $0 \neq h_{nm}(g) = g_n \cdot h_{nm}(1)$; therefore

(3)
$$h_{nm}(1) \neq 0$$
 for every $m \geqslant n$.

Let $n_0 \ge n$ be chosen as in the definition of movability. We shall show that

$$(4) h_{n_0m}(1) = \pm 1 \text{for every } m > n_0.$$

Indeed, let h: $G_m \rightarrow G_{n_0}$ be a homomorphism satisfying (*). Since $h_{nm} = h_{n_0m} \circ h_{n_0n_2}$ by (*) we obtain

$$h_{nn_0}(1) = h \circ h_{nom} \circ h_{nn_0}(1) = h(1) \cdot h_{nom}(1) \cdot h_{nn_0}(1)$$
.

Since $n_0 \ge n$, the last equality and condition (3) imply

$$h_{n_0m}(1) \cdot h(1) = 1$$
.

But $h_{n_0m}(1)$ and h(1) are integers, and hence $h_{n_0m}(1) = +1$.

It follows from condition (4) that for every $m > n_0$ the function h_{nom} is an isomorphism between G_{n_0} and G_m . Therefore $G^{\infty} \approx G_{n_0} = Z$, which proves the implication.

Implication (ii)⇒(iii) is obvious.

(iii) => (iv). Suppose condition (iv) does not hold. Hence there exists an increasing sequence of natural numbers $n_1 < n_2 < n_3 < ...$ such that

(5)
$$|h_{n_{in_{i+1}}}(1)| > 1$$
 for every $i \ge 1$.

Now we show that

(6)
$$g = \eta_{n_1}(1) \neq 0,$$

where η_n is the projection defined at the beginning of the proof. Suppose g=0; then there exists an index $n>n_1$ such that $h_{n+n}(1)=0$. Let $n_i>n$. Then we have

$$h_{n_1n_i}(1) = h_{nn_i} \circ h_{n_1n}(1) = 0$$
,

contrary to (5).

Hence to finish the proof we need only to show that for every natural number kthere exists an $l \ge k$ such that l/g. By (5) there exists an index j > 1 such that $|h_{n_1n_j}(1)| > k$. Put $l = |h_{n_1n_j}(1)|$. Then we have by (1) and (6),

$$g = \eta_{n_1}(1) = \eta_{n_j} \circ h_{n_1 n_j}(1) = l \cdot [(\operatorname{sign} h_{n_1 n_j}(1)) \cdot \eta_{n_j}(1)].$$

This implies that g is infinitely divisible, contrary to (iii).

(iv) \Rightarrow (i). Let n be a given natural number. If there exists an index k>n such that $h_{nk}(1) = 0$, then put $n_0 = k$. Otherwise $|h_{nk}(1)| > 0$ for every $k \ge n$ and by (iv) there exists an index $n_0 \ge n$ such that

(7) for every $m > n_0$ we have $|h_{n_0m}(1)| = 1$.

We have to prove that for $m \ge n$ there is a homomorphism $h: G_m \to G_{no}$ such that (*) is fulfilled. If $m \le n_0$, it suffices to set $h = h_{mn_0}$. Assume $m > n_0$. If $h_{nn_0}(1) = 0$, put h=0, the null-homomorphism. If $h_{nn_0}(1) \neq 0$, then condition (7) is fulfilled. Hence h_{nom} is an isomorphism. So there is a homomorphism h such that $h \circ h_{nom}$ $=1_{G_{n_0}}$. It is easy to check that in both cases condition (*) is fulfilled. This completes the proof.

1.4. If each factor of a movable direct sequence of groups $G = \{G_n, h_{nm}\}$ is finitely divisible, then the limit G^{∞} is also finitely divisible.

Proof. Suppose, to the contrary, that some element $g \neq 0$ of G^{∞} is infinitely divisible. For the natural projections η_n : $G_n \rightarrow G^{\infty}$ we have

(1)
$$\eta_n = \eta_m \circ h_{nm} \quad \text{for every } 1 \leqslant n \leqslant m.$$

There exist an index n and an element g_n of G_n such that

$$\eta_n(g_n) = g.$$

⁽¹⁾ Recall that 1 is not considered as prime.

⁽²⁾ This simple proof is due to Professor J. Mioduszewski.

Let n_0 be chosen as in the definition of movability. Since $g \neq 0$, by (1) and (2) we have $h_{nn}(g_n) \neq 0$. Since G_{nn} is finitely divisible there exists a natural number k such that

(3) if $l \ge k$, then $h_{nn}(q_n)$ is not divisible by l.

By our assumption there exist an integer $l \ge k$ and an element $g' \in G^{\infty}$ such that $q = l \cdot q'$. There exist an index r and an element $q_r \in G_r$ such that $\eta_r(q_r) = q'$. Since $n_r(l \cdot q_r) = l \cdot q' = q$, by (2) there is an index $m \ge n$, r such that

$$(4) h_{nm}(g_n) = h_{rm}(l \cdot g_r).$$

Let h: $G_m \to G_{no}$ be a homomorphism satisfying (*). So by (*) and (4), $h_{nno}(g_n)$ $=h\circ h_{nm}(g_n)=h\circ h_{rm}(l\cdot g_r)=l\cdot h\circ h_{rm}(g_r),$ which contradicts (3). This completes the proof. (Let us note that the proof is valid for arbitrary movable systems.)

- 2. Bruschlinsky's theorem and its consequences. Consider the unit circle S as an Abelian group with multiplication of complex numbers with module one as a group operation in S. Let X be a compactum and let $f, q: X \rightarrow S$. As usual we define $f \cdot g \colon X \to S$ by the formula $f \cdot g(x) = f(x) \cdot g(x)$ for every $x \in X$. It is evident that if $f \simeq g$ and $f' \simeq g'$, then $f \cdot f' \simeq g \cdot g'$. In this way the above operation induces a group operation in the set of homotopy classes of maps from X into S. This set with the induced group operation is denoted by $\pi^1(X)$ and is called the Bruschlinsky group of X. If Y is a compactum, then $H^1(Y)$ is used in this paper to denote the first Čech cohomology group of Y with integers Z as the coefficient group. If f is a map from X into Y, then by f^* we denote the induced homomorphism $f^*: H^1(Y) \to H^1(X)$. By γ we will denote a generator of the group $H^1(S) \approx Z$. Let $a \in \pi^1(X)$ be an element with a representative f, i.e., a = [f]. To the map $f: X \to S$, corresponds the element $f^*(\gamma) \in H^1(X)$ and it is easy to check that this element does not depend on the choice of a particular map f representing a. In this way we obtain a function $\chi \colon \pi^1(X) \to H^1(X)$ defined by $\chi([f]) = f^*(\gamma)$. An important fact about χ is contained in the following Bruschlinsky theorem:
 - 2.1. The function $\chi: \pi^1(X) \to H^1(X)$ is an isomorphism [4, p. 226].

We say that a compactum X is contractible with respect to S, notation: crS, if every map f from X into S is null-homotopic, $f \approx 0$. By 2.1 we obtain the following known corollary

- 2.2. A compactum X is $\operatorname{cr} S$ iff $H^1(X) = 0$.
- If $f: S \rightarrow S$ is a map, then the degree of f, notation: $\deg f$, is defined as the unique number such that $f^*(\gamma) = (\deg f) \cdot \gamma$. From now on by p_n we will denote a map from S into itself defined by $p_n(z) = z^n$, $n \ge 1$. It is well known that $\deg p_n = n$ ([5], p. 306), and p_n is a covering map. Now we shall prove the following proposition:
- 2.3. Let f be a mapping of a compactum X into S. Let $g = f^*(\gamma)$ and suppose that $g = n \cdot \tilde{g}$ for some $n \ge 1$ and $\tilde{g} \in H^1(X)$. Then there exists a map $\tilde{f}: X \to S$ such that $\tilde{f}^*(\gamma) = \tilde{g}$ and $f = p_* \circ \tilde{f}$.

Proof. By the Bruschlinsky theorem there exists a mapping $k: X \rightarrow S$ such that $k^*(\gamma) = \tilde{q}$. Since $p_n^*(\gamma) = n \cdot \gamma$, we have

$$(p_n \circ k)^*(\gamma) = k^*(n \cdot \gamma) = n \cdot \tilde{g} = g.$$

Again by 2.1 we see that $p_n \circ k \simeq f$. Let h: $X \times I \to S$ be a homotopy joining these maps, that is: $h(x, 0) = p_n \circ k(x)$ and h(x, 1) = f(x) for every $x \in X$. Since p_n is a covering map, it has the homotopy lifting property [16, p. 67]. Hence there exists a map $\tilde{h}: X \times I \to S$ such that $h = p_n \circ \tilde{h}$ and $\tilde{h}(x, 0) = k(x)$. Setting

$$\tilde{f}(x) = h(x, 1), \quad \text{for } x \in X,$$

we obtain the required map. Indeed, $f = p_n \circ \tilde{f}$ and since \tilde{h} is a homotopy joining k and \tilde{f} , we have $\tilde{f}^*(\gamma) = k^*(\gamma) = \tilde{g}$.

2.4. If X is a compactum, the group $H^1(X)$ is torsion-free (comp. [11, p. 409]).

Proof. Suppose $\tilde{g} \in H^1(X)$, $\tilde{g} \neq 0$ and $n \cdot \tilde{g} = 0$ for some n > 1. Let $f: X \to S$ be a constant map, say $f(X) = (s_0)$. Then $f^*(\gamma) = 0$ and by 2.3 there exists a map $\tilde{f}: X \to S$ such that $\tilde{f}^*(\gamma) = \tilde{g}$ and $f = p_n \circ \tilde{f}$. Hence $\tilde{f}(X) \subset p_n^{-1}(s_0)$. Since the fiber $p_n^{-1}(s_0)$ consists of n points, we infer in particular that $\tilde{f}(X)$ is a proper subset of S, and therefore $\tilde{f} \simeq 0$. Thus $\tilde{g} = \tilde{f}^*(\gamma) = 0$, contrary to our assumption.

The following proposition is an immediate consequence of 2.3 and the definition of the symbol $d(\cdot)$ (see § 1).

2.5. If f is a mapping of a compactum X into S, then

$$d(f^*(\gamma)) = \sup \{ n \in N : \bigvee_{\widetilde{t}: X \to S} f = p_n \circ \widetilde{f} \}.$$

2.6. Let X be a compactum and let $n_1, n_2, ...$ be a sequence of natural numbers such that for some $q_0 \in H^1(X)$ we have

(1)
$$n_1 \cdot n_2 \cdot \dots \cdot n_j / g_0$$
 for every $j \ge 1$.

Then there exists a sequence of maps $\{f_i: X \to S\}$ such that $f_1^*(\gamma) = g_0$ and $f_i = p_n \circ f_{i+1}$ for every $i \ge 1$.

Proof. Observe that by (1) and 2.4 there exists a sequence $g_1, g_2, ...$ of elements of $H^1(X)$ such that

$$g_j = n_{j+1} \cdot g_{j+1}$$
 for $j \ge 0$.

By 2.1 there exists a map $f_1: X \to S$ such that $f_1^*(\gamma) = g_0$. Hence applying 2.3 infinitely many times, we can construct all the other maps f_i with the required properties.

2.7. Let X be a continuum and let $f: X \rightarrow S$ be a map such that $f \not= 0$. Suppose X can be represented as the union, $X = A \cup B$, of its two proper subcontinua A and B such that $f_A = f/A \simeq 0 \simeq f/B = f_B$. Then $f^*(\gamma)$ is a finitely divisible element of $H^1(X)$, i.e., $d(f^*(\gamma)) < \infty$.

Proof. Let R be the real line and let $\varphi \colon R \to S$ be defined by $\varphi(t) = e^{2\pi i t}$. Since φ is a covering map, it has the homotopy lifting property. Hence there exist two maps $\tilde{f}_A \colon A \to R$ and $\tilde{f}_B \colon B \to R$ such that $f_A = \varphi \circ \tilde{f}_A$ and $f_B = \varphi \circ \tilde{f}_B$. Put

$$l = \max(\operatorname{diam} \tilde{f}_A(A), \operatorname{diam} \tilde{f}_B(B)).$$

Choose a natural number m so large that

$$1/m < \frac{1}{2}$$

Suppose, to the contrary, that $g = f^*(\gamma)$ is infinitely divisible. Then there exist a natural number n and an element $\tilde{g} \in H^1(X)$ such that

(2)
$$g = n \cdot \tilde{g}$$
 and $n \ge m$.

By 2.3 there exists a map \tilde{f} : $X \rightarrow S$ such that

(3)
$$f = p_n \circ \tilde{f} \quad \text{and} \quad \tilde{f}^*(\gamma) = \tilde{g} .$$

Since p_n is a covering map and \tilde{f} is a lifting of f, we infer that $k_A = \tilde{f}/A \simeq 0 \simeq \tilde{f}/B = k_B$. By the same argument as at the beginning of the proof, there exist maps $\tilde{k}_A \colon A \to R$ and $\tilde{k}_B \colon B \to R$ such that $k_A = \varphi \circ \tilde{k}_A$ and $k_B = \varphi \circ \tilde{k}_B$. Let $\tilde{p}_n \colon R \to R$ be defined by $\tilde{p}_n(t) = n \cdot t$. Observe that $\varphi \circ \tilde{p}_n = p_n \circ \varphi$; hence we have

$$\varphi \circ (\tilde{p}_n \circ \tilde{k}_A) = p_n \circ \varphi \circ \tilde{k}_A = p_n \circ k_A = f_A.$$

It follows that $\tilde{p}_n \circ \tilde{k}_A$ and \tilde{f}_A are two liftings of f_A . Since A is connected, there exists an integer c such that $\tilde{p}_n \circ \tilde{k}_A(x) = \tilde{f}_A(x) + c$ for every $x \in A$ [11, p. 406]. In particular, the sets $\tilde{p}_n \circ \tilde{k}_A(A)$ and $\tilde{f}_A(A)$ are congruent. In the same way we prove that $\tilde{p}_n \circ \tilde{k}_B(B)$ and $\tilde{f}_B(B)$ are congruent sets. It follows that

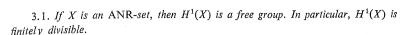
(4)
$$\max(\operatorname{diam} \tilde{p}_n \circ \tilde{k}_A(A), \operatorname{diam} \tilde{p}_n \circ \tilde{k}_B(B)) = l.$$

Since for every subset M of R we have $\dim \tilde{p}_n(M) = n \cdot \dim M$, by (1), (2) and (4) we obtain

(5)
$$\operatorname{diam} \tilde{k}_A(A) < \frac{1}{2}$$
 and $\operatorname{diam} \tilde{k}_B(B) < \frac{1}{2}$.

Since A and B intersect, there is a point $z_0 \in \widetilde{f}(A) \cap \widetilde{f}(B) \subset S$. Since $\widetilde{f}(A) = \varphi \circ \widetilde{k}_A(A)$ and $\widetilde{f}(B) = \varphi \circ \widetilde{k}_B(B)$, by (5) we infer that $-z_0 \notin \widetilde{f}(A) \cup \widetilde{f}(B)$. Hence we obtain in turn: $\widetilde{f}(X) = \widetilde{f}(A) \cup \widetilde{f}(B) \neq S$, $\widetilde{f} \simeq 0$ and finally $\widetilde{f}^*(\gamma) = 0$. On the other hand, since $f \not\simeq 0$, we have $g = f^*(\gamma) \neq 0$ by the Bruschlinsky theorem. Hence by (2) we see that $\widetilde{g} \neq 0$, and by (3) we have $\widetilde{f}^*(\gamma) \neq 0$, contrary to the previous conclusion. This completes the proof of 2.7.

3. Movable compacta. If $X \in ANR$, then X is homotopically dominated by a polyhedron P. It follows that $H^1(X)$ is a direct summand of $H^1(P)$. Since $H^1(P)$ is a finitely generated torsion free group (see 2.4) and thus is a free group; we conclude that



An inverse sequence $\underline{X} = \{X_n, f_{nm}\}$ is called an ANR-sequence if $X_n \in \text{ANR}$ for every $n \ge 1$. \underline{X} is called *movable* if for every number $n \ge 1$ there exists a number $n' \ge n$ such that for every $m \ge n$ there exists a mapping $f \colon X_n \to X_m$ such that $f_{nn'} \simeq f_{nm} \circ f$. We say that \underline{X} is associated with a compactum X if $X = \text{inv} \lim \underline{X}$. The compactum X is called *movable* if there exists a movable ANR-sequence associated with X [13]. It is known that every ANR-sequence associated with a movable compactum is movable [13]. The notion of movability was introduced by K. Borsuk [2].

Now we shall prove the following proposition:

3.2. If X is a movable compactum, then $H^1(X)$ is finitely divisible.

Proof. By the classical result of Freudenthal [6] there exists an ANR-sequence $\underline{X} = \{X_n, f_{nm}\}$ associated with X. By the continuity of the Čech cohomology we may assume that $H^1(X) = \text{dirlim}\{H^1(X_n), f_{nm}^*\}$. Since X is movable, the sequence X is movable [13]. This implies that the direct sequence of groups $\{H^1(X_n), f_{nm}\}$ is movable. Hence 3.2 follows from 3.1 and 1.4.

By a result of K. Borsuk [2] all plane compacta are movable. Combining this result with 3.2, we obtain

- 3.3. If X is a plane compactum, then $H^1(X)$ is finitely divisible.
- 4. Main results. In this section we give a characterization of continua which can be mapped onto non-planar circle-like curves. First we establish the following result:
- 4.1. Let X be a circle-like continuum and let $X = \{X_n, f_{nm}\}$ be an inverse sequence associated with X such that $X_n = S$ for every $n \ge 1$ (see [12] for the existence of such sequence). The following conditions are equivalent:
 - (i) X can be embedded in the plane (into a 2-manifold),
 - (ii) $H^1(X) \approx 0$ or Z,
 - (iii) $H^1(X)$ is finitely divisible,
 - (iv) X is movable,
- (v) for every $l \ge 1$ there exists an $n \ge l$ such that $|\deg f_{nm}| \le 1$ for every m > n. In the case $H^1(X) = 0$, X is snake-like [15, p. 324] and it is either indecomposable or the union of two of its proper indecomposable subcontinua [9](1).

Proof. The equaivalence (i) \Leftrightarrow (ii) was established by Mc Cord [15, p. 323]. By the continuity of Čech cohomology [5, p. 261] we may identify $H^1(X)$ with the limit of the direct sequence $\underline{G} = \{H^1(X_n), f_{nm}^*\}$. If X is movable, then \underline{X} is movable and this in turn implies that \underline{G} is movable. Thus Proposition 1.3 implies all the other equivalences.

4.2. If a circle-like continuum is not movable, it is indecomposable (comp. [8]).

⁽¹⁾ Added in proof. The second fact has first been obtained by C. E. Burgess in his paper: Chainable continua and indecomposability, Pacific J. Math. 9 (1959), pp. 653-660.

Proof. Let X be a non-movable circle-like continuum. By 4.1 there exists an infinitely divisible element $g \neq 0$ of $H^1(X)$. By the Bruschlinsky theorem there is a map $f \colon X \to S$ such that $f^*(y) = g$. Suppose X can be represented in the form $X = A \cup B$, where A and B are proper subcontinua of X. Then A and B are snakelike and therefore $f/A \simeq 0 \simeq f/B$. Since $g \neq 0$, $f \rightleftharpoons 0$. Using 2.7, we see that g is finitely divisible, a contradiction.

Remark. If a continuum X is the limit of an inverse sequence of the form

$$S \leftarrow S \leftarrow \dots$$

where n_i is a prime number for every $i \ge 1$, then X is called a solenoid. Since $n_i > 1$, we see by 4.1 and 4.2 that solenoids are non-movable [2], indecomposable, circle-like curves not embeddable in the plane. Using the notion of shape (see [1] and [14]), we can easily see that every non-planar circle-like curve has the shape of a solenoid.

We say (following Mazurkiewicz and Knaster, Fund. Math. 21 (1933), pp. 85–90) that a continuum X is λ -connected if every two points of X can be joined by a hereditarily decomposable subcontinuum of X. Let us note that

4.3. No λ -connected continuum X can be mapped onto an indecomposable continuum Y.

Proof. Suppose f(X) = Y and let $a, b \in Y$ be two points from distinct composants of Y (see [11, p. 208] for the notion of a composant). Let f(a') = a, f(b') = b and let C be a subcontinuum of X joining a' and b'. Then f(C) = Y because Y is irreducible between a and b. According to [11, p. 208] there exists an indecomposable subcontinuum of C. Hence X is not λ -connected, contrary to our assumption.

Combining 4.1, 4.2 and 4.3 we obtain

4.4. No λ-connected continuum can be mapped onto any non-planar circle-like continuum. In particular, the same conclusion holds for every hereditarily decomposable or arcwise connected continuum.

4.5. If X is a compactum such that $H^1(X)$ contains an infinitely divisible element $g \neq 0$, then X can be mapped onto some non-planar circle-like curve.

Proof. According to 1.2 there exists a sequence of natural numbers n_1, n_2, \dots such that $n_1 \cdot n_2 \cdot \dots \cdot n_j/g$ and

(1)
$$n_j > 1$$
 for every $j \ge 1$.

Applying 2.6, we obtain a sequence of maps $\{f_i: X \rightarrow S\}$ such that

$$(2) g = f_1^*(\gamma),$$

(3)
$$f_j = p_{n_j} \circ f_{j+1} \quad \text{for every } j \geqslant 1.$$

Since $g \neq 0$, the Bruschlinsky theorem and (2) imply $f_1 \neq 0$. Hence by (3) we see that no map f_j is homotopic to a constant map. In particular, we obtain

(4) f_j is a mapping onto S for every $j \ge 1$.

Let Y be the limit of the inverse sequence

$$S \leftarrow S \leftarrow \dots$$

Hence Y is a circle-like continuum. Moreover, because of 4.1(v) and (1), Y cannot be embedded in the plane. Using (3), we see that the maps f_j induce a map $f: X \rightarrow Y$. Finally, condition (4) implies that f is onto Y, which completes the proof.

Before we state our next result, let us recall the following facts established in [10].

4.6. One-dimensional image of a snake-like curve is movable.

4.7. Let $Y = \text{invlim}\{Y_n, \varphi_{nm}\}$, where $Y_n = S$ for every $n \ge 1$. Let $\pi_n : Y \to Y_n$ denote the projection. Suppose f is a map of a continuum X onto Y such that $\pi_n \circ f \simeq 0$ for every $n \ge 1$. Then Y can be represented as the image of a snake-like curve.

Now we are ready to prove the following theorem:

4.8. If a continuum X can be mapped onto a non-planar circle-like curve, then $H^1(X)$ contains an infinitely divisible element $g \neq 0$.

Proof. Let Y be a non-planar circle-like curve and let f be a map of X onto Y. We may regard Y as the limit of an inverse sequence $Y = \{Y_n, \varphi_{nm}\}$ such that $Y_n = S$ for every $n \ge 1$ [12]. Let $f_n = \pi_n \circ f$, where π_n : $Y \to Y_n$ is the projection. Hence we have

$$(1) f_n = \varphi_{nm} \circ f_m \text{for every } m \ge n.$$

Using 4.1(v) we see that there exists an index l_0 such that for every $n \ge l_0$ there exists m > n such that $|\deg \varphi_{nm}| > 1$. Hence there exists an increasing sequence of natural numbers $k_1 < k_2 < ...$ such that $|\deg \varphi_{k_i k_{i+1}}| > 1$ for every $i \ge 1$. Choosing if necessary a subsequence of Y we may assume that

(2)
$$n_i = |\deg \varphi_{i,i+1}| > 1 \quad \text{for every } i \ge 1.$$

We claim that $f_n \neq 0$ for some $n \geqslant 1$. Indeed, otherwise by 4.7 we could obtain Y as the image of a snake-like curve, and by 4.6 the continuum Y would be movable because dim Y = 1, contrary to our assumption and 4.1. Without loss of generality we may assume that $f_1 \neq 0$. By the Bruschlinsky theorem $g = f_1^*(\gamma) \neq 0$. To finish the proof we need only to show that for every $k \geqslant 1$ there exists an $l \geqslant k$ such that l/g. By condition (2) there exists a $j \geqslant 1$ such that $l = n_1 \cdot \ldots \cdot n_j \geqslant k$. Hence by (1) we have in succession

$$g = f_1^*(\gamma) = (\varphi_{1,j+1} \circ f_{j+1})^*(\gamma) = f_{j+1}^* \circ \varphi_{j,j+1}^* \circ \dots \circ \varphi_{12}^*(\gamma)$$

= $f_{j+1}^*(\deg \varphi_{j,j+1} \cdot \dots \cdot \deg \varphi_{12} \cdot \gamma)$
= $l \cdot [\operatorname{sign}(\deg \varphi_{j,j+1} \cdot \dots \cdot \deg \varphi_{12}) \cdot f_{j+1}^*(\gamma)],$

which completes the proof.

Combining 4.3 and 4.6, we obtain the following theorem characterizing continua which cannot be mapped onto non-planar circle-like curves.

4.9 (1). Continuum X cannot be mapped onto any non-planar circle-like curve iff $H^1(X)$ is finitely divisible.

This result provides an answer to a problem of G. W. Henderson [7].

- 5. Final conclusions. By 3.2, 3.3 and 4.8 we obtain
- 5.1. No movable continuum can be mapped onto a non-planar circle-like curve. In particular, the same holds for plane continua [8] and continua with trivial shape [10].

Combining 4.4 with 4.5, we obtain

5.2. If X is a λ -connected continuum, then $H^1(X)$ is finitely divisible.

Hence the same conclusion holds for hereditarily decomposable and arcwise connected continua.

As a particular case of 4.9 we have by 2.2 the following proposition:

5.3. If X is a $\operatorname{cr} S$ continuum, then X cannot be mapped onto a non-planar circle-like continuum.

The Case-Chamberlin curve [3] is cr S. Hence 5.3 implies;

5.4 ([10]). The Case-Chamberlin curve cannot be mapped onto any non-planar circle-like curve.

Let X be a connected and simply connected ANR-set. Then the fundamental group $\pi_1(X)$ of X is trivial. Hence, by the lifting theorem [16, p. 76], for every map $f: X \rightarrow S$ there exists a map $\varphi: X \rightarrow R$ such that $f(x) = e^{2\pi i \varphi(x)}$. In particular, $f \simeq 0$, i.e., X is crS.

Now we show that

5.5. If a continuum X is the limit of an inverse sequence $\{X_n, f_{nm}\}$ of connected and simply connected ANR-sets, then X is cr S.

Hence by 5.3 it cannot be mapped onto a non-planar circle-like curve [7].

Proof. Let $f: X \to S$ and let $\pi_n: X \to X_n$ be the projection. According to [12] there exist an index n and a map $g: X_n \to S$ such that $f \simeq g \circ \pi_n$. Hence $f \simeq 0$ because $g \simeq 0$, which completes the proof.

Remark. If a continuum X is fundamentally dominated (see [1] for the definition) by a continuum Y, then $H^1(X)$ is isomorphic to a subgroup of $H^1(Y)$ [14]. Hence if $H^1(Y)$ is finitely divisible, then so is $H^1(X)$. Thus if Y cannot be mapped onto a non-planar circle-like curve, the same holds for X.

The author would like to express his thanks to the reviewer for his valuable suggestions.

References

- [1] K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), pp. 223-254.
- [2] On movable compacta, Fund. Math. 66 (1969), pp. 137-146.
- [3] J. H. Case and R. E. Chamberlin, Characterizations of tree-like continua, Pacific J. Math. 10 (1960), pp. 73-84.
- [4] C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. 69 (1947), pp. 200-242.
- [5] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton 1952.
- [6] H. Freudenthal, Entwicklungen von R\u00e4umen und ihren Gruppen, Compositio Math. 4 (1937), pp. 145-243.
- [7] G. W. Henderson, Continua which cannot be mapped onto any non-planar circle-like continuum, Colloq. Math. 23 (1971), pp. 241-243.
- [8] W. T. Ingram, Concerning non-planar circle-like continua, Canad. J. Math. 19 (1967), pp. 242-250.
- [9] J. Krasinkiewicz, On the hyperspaces of snake-like and circle-like continua, Fund. Math. 83 (1974), pp. 155-164.
- [10] Curves which are continuous images of tree-like continua are movable, Fund. Math. 89 (1975), pp. 233-260.
- [11] K. Kuratowski, Topology, vol. 2, New York-London-Warszawa 1968.
- [12] S. Mardešić and J. Segal, ε-mappings onto polyhedra, Trans. Amer. Math. Soc. 109 (1963), pp. 146-164.
- [13] --- Movable compacta and ANR-systems, Bull. Acad. Polon. Sci. 18 (1970), pp. 649-654.
- [14] Shapes of compacta and ANR-systems, Fund. Math. 72 (1971), pp. 41-59.
- [15] M. C. Mc Cord, Embedding P-like compacta in manifolds, Canad. J. Math. 19 (1957), pp. 321—332.
- [16] E. H. Spanier, Algebraic Topology, New York 1966.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES

Accepté par la Rédaction le 20. 5. 1974

⁽¹⁾ After submitting the paper to the editors I received from Prof. J. T. Rogers, Jr. a preprint of his paper. A cohomological characterization of pre-images of non-planar circle-like continua, to appear in Proc. Amer. Math. Soc., in which he obtained an equivalent result.