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Equivalence of fundamertal and approaching groups
of movable pointed compacta

by

J. Brendan Quigley (Dublin)

Abstract. If (X,x) is a pointed compact space then K. Borsuk defined, for each n, the
fundamental homotopy group, 7ta( X, x) which captures »#-dimensional spherical holes in X, which
escape the (standard) homotopy group ma(X, x), especially if X is not a well behaved space. For
each n the fundamental homotopy group (X, A, x) may be defined for a pair of compacta.
Then a long fundamental homotopy sequence 7t(X, 4, x) exists, but is not exact, (compare the
case of Cech homology).

The approaching homotopy groups an(X, x) share the advantages of the fundamental homo-

topy groups. But also, and it is proven here, the long approaching homotopy sequence of a pair
of compacta is exact. .

K. Borsuk defined and studied the movable compacta. It is proven here, that for these
movable compacta the fundamental and approaching homotopy groups agree. Thus the long
fundamental homotopy sequence of a movable pointed pair of compacta is exact.

Introduction. In the first section of this paper we draw the reader’s attention
to some results in approaching theory and give proofs of certain of these where
there is no easily accessible reference. We define the approaching homotopy
groups 7, and the inward homotopy groups I,, both for single pointed compacta
(X, x) and for pointed pairs of compacta (X, 4, x) contained in the Hilbert cube.
There is the following exact sequence, 0.1, from the nth fundamental homotopy
group 1,(X, x) to the (n—1)-st fundamental homotopy group ,_,(X, X).

(0.1) 0=m (X, x) =1 (X, X)=I(X, ) >, (X, X)om,- (X, x)=0.

The above sequence is defined and the exactness proven in [6]. The corresponding
exact sequence for pairs, (0.2) below, is described in detail

(0.2)  0-my( X, 4, )= L (X, A, X)> (X, A, )=, (X, A, x)>m,_ (X, 4, x)-0
Finally the long approaching sequence (X, A, x), (0.3) below, is described in

detail and a full proof of exactness of this sequence is given.
) 8 i j
03 =7y (X, 4, D)5 1A, D> (X, )2 m(X, A, ) >m, (4, 1)

In the second section we study the relationship between the approaching

homotopy groups z, and the fundamental homotopy groups 7, both for the case
1 — Fundamenta Mathematicae, T. XCI -
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of a single movable pointed compactum (X, x) and a movable pf)inted pair of
compacta (X, 4, x). In fact we show that in both cases'the approachn?g and ful"lda-
mental groups are isomorphic in all dimensions. Using (0.3) and these isomorphisms
we deduce exactness of the long fundamental homotopy sequence (X, A4, x),
(0.4) below, for a movable pointed pair of compacta (X, A4, x).

i . j 0
04)  Tpas (X, A, 0514, 071,00 D> T(X, A, )T (4,0

Section 1. Basic results in approaching theory.

Remark 1.1. Throughout this paper [ denotes the closed unit interval [0, .I]
and I® the Hilbert Cube. (E", S""1, po) denotes the n-dimensional ball with its
boundary sphere and base point (1,0, 0, ..., 0). R is the real numbers, J the non-
negative integers, R* = {x| xe R, x>0}.

DErINITION 1.2. The approaching group m,(X, X). ‘

Let (X, x)=(I, x) be a pointed compactum. A continuous mapping & from
R* x (8", po) to. (I°, x) is said to be an approximative approaching mapping from
(S™, po) to (X, x) if the following condition is satisfied:

(1.3) given UeNhd(X) there is an se R* such that &([s, w0)x "y U.

Two approximative approaching mappings &, n are said to be homotopic (we

' : @

write & ~ n) iff there is a continuous mapping & from R* x(S", po)x I to (I?, x)
such that the following conditions are satisfied:

o® = g,

given U e Nhd(X) there is an s€& R™ such that &([s, w)xS"x )< U.

(1.4)
(1.5)

1(1):11’

Homotopy is an equivalence relation on the set of approximative approaching

mappings from (5", pg) to (X, x) and the set of equivalence classes is denoted.

7,(X, x) and the class of & is written [¢]. For n>1, m,(X, x) is a group, called‘th'e
eth approaching group of (X, x), with multiplication induced by the comultlpll/—
cation of the homotopy cogroup (S, po).
DEFINITION 1.6. The approaching group m(X, 4, x). '
Let (X, 4, x)c(®, I, x) is said to be an approximative approaching mapping
from (E", S"™*, po) to (X, A, x) iff the following condition is satisfied:
1.7y given (U,U')e Nhd(X, A) there is an se RY such that
E(ls, ) x (E", " 1) =(U, U").
Two approximative approaching mappings ¢, 1 are said to be homotopic (we
write £op) iff there is a continuous mapping & from R* x(E", S"™ ', po)x I to
(I, I° x) such that the following conditions are satisfied :
(]8) Od’ = 67
(19) given (U,U’)eNhd(X, 4) there is an se R* such that
- ®([s, ) x (E", S Nyx (U, U") .

1@:’1’
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Homotopy is an equivalence relation on the set of approximative approaching
mappings from (E", $"7', py) to (X, 4, x) and the set of equivalence classes is
denoted 7,(X, 4, x) which, for n>2, is a group, called the n-th approaching group
of (X, 4, x), with multiplication induced by the comultiplication of the homotopy
cogroup (E", S""1, py).

DermviTioN 1.10. The inward group I(X, x).

In Definition 1.2, replacing R* and [s, o) everywhere they appear by J and
J n [s, o0) respectively, we get the concept of an inward mapping from (S po)
to (X, x) and the equivalence relation of homotopy between inward mappings.
The class of £ is denoted by [£] and the set of such classes by I,(X, x). For n>1,
I(X, x) is the group called the n-th inward group of (X, x).

DermNiTiON 1.11. The inward group I(X, A, x).

In Definition 1.6, replacing R* and [s, o) everywhere they appear by J and
J n [s, o) respectively, we get the concept of an inward mapping from (E", "1, po)
to (X, 4,x) and the equivalence relation of homotopy between such inward
mappings. The class of £ is denoted [£] and the set of such classes by I,(X, 4, x).
For n>2, I(X, 4, x) is a group called the n-th inward group of (X, A, x).

Remark 1.12. At this point we find it convenient to describe the endo-
morphism from Z(X, x) to I(X, x) in the exact sequence of (0.1). If & = {&}is0
is an inward mapping from (S", py) to (X, x) then A,(€) is that inward mapping
from (8", po) to (X, x) such that (4,(£)); = &4, for all j>0. There is an endo-
morphism A4,; L(X, x)-=1(X, x) which carries [¢{]e L(X, x) to [4,(5)] e I(X, x)
and this is well defined since £~y implies A4,(é)~ A4,(n). Finally the endomorphism ‘
of the sequence (0.1) is written

Id,—4,; L(X, )=>I(X,x), nzl

and carries [£] e I(X, x) to [E]#[4,(8)]* € I(X, x). In other words (Id,—4,)([£])
= [n] where n; = fj*éj"fl where inversion of ¢;,; and multiplication of the two
continuous mappings &;, &, from (S”, p,) to (I°, x) is induced by inversion and
comultiplication in the homotopy cogroup (S”, py).

Remark 1.13. If (X, 4, x) is a pointed pair of compacta then analogous
to (0.1) there is an exact sequence. :

02)  O-smy(X. A, )>L(X, A, )8 10x, 4, %)

Ay (X, A, X) 51,y (X, A, X)=0 .

We now describe the homomorphisms i, Id,—A,, 8, r. First we remark that
(X, A, x) can be described as that subset-of 7,(X, 4, x) such that [¢] e 7. (X5 A4, x)
iff there is an approximative approaching mapping v from (E", $"" !, p,) such that
¥ls+ x(gn, sn-1y = €. The homomorphism i is then simply an inclusion mapping:
Id,—4, is described as in 1.12, the homomorphism # takes [5]61_r,,_1('X,:4,3§)
1=
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0 Elye (e, sn-ty € Tuo1(X, 4, x). Next we describe 8. 1f [E]e (X, 4, x) then
() = Il e m,—1(X, 4, x) is described by the following diagram.

L j+11x (E""1, 872, pg) Ales, 5+ 11% (@n=1, 5n-2)
fj\—+ [0, 1]x (E""%, §"72, po)
ol (E", $" 1, po)
éil—~> (1, I°, x)

where ¢ is an identification mapping from [0, 1]x (E", S"71, po) regarded as the
reduced suspension of (E"" %, 8"72, po), and fj(s, ¢) = (s—j, e). Exactness of (0.2)
now follows by the methods used in [6] to prove exactness of (0.1).

Remark 1.14. As mentioned in the introduction it is proven in [5] and in [7]
that the long approaching sequence n(X, 4, x) of a pointed pair of compacta
(X, A, x) is exact. We now describe TE(X A, x) and prove the exactness as in [5].

‘We describe the homornorphlsmsz 7» aofﬂ(X A, x), (see (0.3). If [Ele m, (4, x),
i([E) = [l ema(X, x). Let ¢ be a continuous mapping from (E", S"~ T po) to
(S™, po. o) Whose restriction is a homeomorphism from E"—S"" ' to S"—{po},
if [€lem(X,x) then j([£]) = [£o(Idg+,0)] €T, (X, 4,x). If [Elen(X,4,x)
then 8([¢]) = [Elg+ xsn-1] € Ty 1(4, X).

We prove i o § = 0. Let H be a continuous mapping from (E", po) x Ito (E", py)
such that oA is the identity mapping and [H(E") = {po}- Let A denote the re-
striction of H to a mapping from (S$"~ 1 po)x I to (E", po). Let [£]lem (X, 4, x).
Then & o (Idg+, H) is a homotopy between &g+ ysn-: and the constant ~mapping ¢,
c(RT x§""1) = {x}, both. approximative approaching mappings from (S™1, po)
to (X,x). Thus iod([E]) = i([Elgsxsn-1]) = [Elrexsn-1] = [c] = 0 € m,_y(X, X).

We prove joi=0. Let [{]em, (4, x). Since £ is an approximative approach-
ing mapping from (S",p,) to (4,%), & o (Idg+,0) o (Idg+, H) is a homotopy
from & (Idg+, @) to the constant mapping ¢, ¢(R* xE") = {x}, both approxi-
mative approaching mappings.from (E", S" 1, po).to (X, 4, x). Therefore jo i([£])
= [£o(ldg+, @)] = [c] = 0 e, (X, 4, X).

We prove 8. = 0. Let [£] e;r,,(X, x),

8 o J(IE) = 8([¢ o (dgs, @) = [(€ o (Udgp+, @)+ xsn-1]
= [{lgr+ X {po} © (Idg+, 0lgn-0)] = [c o (Idg+, glgn-1)]
=l =0em,_4(4, ).

We show Ker(i)cIm(5). Let [£] e m,(A4, x), [£] € Ker(i). Then there is a con-
tinuous mapping ¢ from R* X(S",po);I to (I, x) which is a homotopy from ¢
to ¢, both approximative approaching mappings from (S", po) to (X, x). Let n be
the unique continuous mapping from R™ x E"** to J° such that 5o (Idgs+, H)= @

Then 7 is an approximative approaching mapping from (E"**, 8", p;) to (X, 4, x).
But §([1) = [lg+xsn] = [o®] = [£].
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We show Ker(j)<Im(i). Let K be a continuous mapping from E"x I to E"x [
such that, K(e,f) = (e, 0) for all (e,1)e (S 'xI)u (E"x{0}) and K(E"x{l})
= (S""1xI)u (E"x {1}). Assume [¢] € (X, x) and j([¢]) = 0 ez, (X, 4, x). Then
there is a homotopy @ from & . (Idg+ ,0) to ¢, both approxima?ive approaching
mappings from (E", S" 1 po) to (X,A4,x). Now -the continuous mapping
@ o (Idgs+, K) from R* x E"xI to I® carries R* xS" "' x I to {x}. Thus there is
an unique continuous mapping ¥ from R* x §"x I'to I such that ¥ o (Idg+, ¢, 1d;)
= @, ¥ is a homotopy from & = ,¥ to ,¥, both approximative approaching
mappings from (S", p) to (X, x). But since @ takes (r,e,1)e R* xS~ xI close
to A=l for large r (see (1.9)) and since K(E"x {1}) = (S"xI)u (E"x{1}), (¥ is
an approximative approaching mapping to 4. Thus i([{¥]) = [\¥] = [&.

We show Ker(8)c Im(j). Let [¢] € m,(X, A, x) and assume S([¢]) = [&]g+ xsn-1]
=0em,- (4, x). Then there is a homotopy & from &g+ xgn-1 0 ¢, both approxi-
matlve approaching mappings to (4, x). Let x be that continuous mapping from

X ((E"x {0}) U (8" *x 1)) to I°, whose restriction to R¥ xE"x {0} is:¢ and
whose restriction to $"~*x 7 is &. Let & be a retraction from E"x I to (E"x {0}) U
U (S"1x ). Then ¥ o (Idg., k) is a homotopy from & to (¥ o (Idg+, h)) both
approximative approaching mappings from (E", S" 1, py) to (X,A,x). But
(¥ o (Idg+, B))(R* x§"™1) = {x}. Thus there is an unique approximative ap-
proaching mapping # from (S”, pg) to (X, x) such that 5 o (Idg:, 0) = ;¥. There-
fore j([n]) = [no(Idg+, )] = [ ¥] = [L¥] = [l

The latter 6 paragraphs prove exactness of the long approaching sequence
=_7;(X, A, x) for any pointed pair of compacta (X, 4, x).

Section 2. Proof of the main results.

DeFINITION 2.1. Movable compactum.

A pointed compactum (X, x)=(I®, x) is said to be movable iff for each
Ue Nhd(X) there exists U, e Nhd(X) such that, for each ¥V e Nhd(X) there is
a continuous mapping L from Uyx[I to U satisfying the following conditions:

(2.2) oL is the inclusion mapping Uy U,
23 LUV,
(2.4) L(x)=x, foralltel

(by Nhd(X) we mean the set of all W such that X W<l and W is open, and
by ,L we mean the mapping from U, to U carrying u to ,L(u) = L(u, 1)). This def-
inition was given originally by K. Borsuk in [3] 3.1. For more information about
movable compacta see [2], [3], [4], [8] and [9].

DEFINITION 2.5. Movable pairs of compacta.

A pointed pair of compacta (X, 4, x)c(I®, I°, x) is said to be movable iff for
each pair (U, U’) e Nhd (X, A) there exists a pair (Up, Ug) € Nhd (X, 4) such that
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for each pair (V, V') € Nhd (X, A) there is a continuous mapping L from (U, UJ) x I

to (U, U’) satisfying the following conditions:

(2.6) oL is the inclusion mapping (Uy, Ug)=(U,U"),
(2.7 LUy, U=V, V',
(2.9) L) =x, foralltel

(by Nhd(X, 4) we mean the set of pairs (W, W') with W W and We Nhd (X)
and W' e Nhd(4)).

Remark 2.9. It is apparent that if (X, 4, x) is a movable pointed pair of
compacta then each of (X, x) and (4, x) is a movable pointed compactum. How-
ever a pair of movable pointed compacta need not be a movable pointed pair of
compacta. Indeed there is an example in [8] by R. H. Overton of a pair of movable
{non-pointed) compacta which is not a movable (non-pointed) pair. Overton also
points out how to alter these compacta to get the same result in the pointed case,

Remark 2.10. We will show that when the pointed compactum (X, x) is mov-
able, the endomorphism of (0.1) o

Idn_An; [,,(X, X)—?]"(X., X)

is an epimorphism for all n31. We now indicate the intuitive reasoning behind
the proof.

Let n>2 and [¢] e I(X, x). Define 5, = c, the constant mapping ¢(S") = x e I
and for each i>1define ;= (& # & # &y &y . w &, % &)™ . Compounding
these ;. />0, we get a continuous mapping 75 J*¥x 8" and it might appear that
Id,—A([n]) = n* (A([4D)"* = € and that we have proven that Id,— A, is an epi-
morphism. This naive argument fails since n may not be an inward #n-mapping.
Indeed if n were an inward #-mapping, given any Ve Nhd (X), n,(S" =V for some
large 7. Thus &,(S")=y(S" <V, for each Ve Nhd(X). Thus &,(S"<=X, which
is not in general true.

Since (X, x) is movable we can replace this incorrect argument with a correct
argument which is essentially the same but also involves “moving” &, &, &,, ... etc.
arbitrarily close to X. The next lemma is the technical tool which accomplishes this,

Lemma 2.11. Let (X, x)=(I°, x) be a movable pointed compactum. Correspond-

ing to each integer p= —1 there is a neighbourhood V. » of X and corresponding to
each integer p>0 there is a continuous mapping H"; R* x V=1 satisfying the
Jollowing conditions:
D Voy =V, =1
) V>V, .y, for all pz—1,
) N v, =X,
’ pz-1

(iv) H} = inc; V,c Vo1, all pz0,

icm®
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W B[, j+ 1% VyeV,_yy;, for all p, j=0,
i) H{j} xV?)=V,.;, for all p,j=0,
(vii) HP(R* x {x}) = {x}, for all p=0.

Proof. Let ¢ be the usual metric on I°. Let W, = {w; we I o(w, X)<1/p},
for all integers p>1. We will inductively define V,.p=—1, to satisfy (o), (B), (Y),'
(8) below

() Vo =V, =1,

(B) VpDVp-i-l': pz—1,

(Y) V;;CVV]H p>_1

() Given Q e Nhd(X) and p >0, there is a continuous mapping F; ¥, x I Vp-1
such that F is the inclusion mapping V,c Vaoir 1F(V,)ceQ and F(x,1) = x,
o<l

Define ¥V = V_; = I®. Since I” is contractible (8) is satisfied for p = 0. Now
assume V_y, ¥y, Vi, ..., ¥, have been defined to satisfy (o), (B), (y), (8) above.
Since (X, x) is movable there is a Ue Nhd(X) such that, given Q € Nhd(X) there
is a continuous mapping K; Ux/—V¥, such that oK is the inclusion mapping
UcV,, (K(U)cQ, K(x,t) = x, 0<r<]. Define Vos1 = Wy 0 U, (B) and (y)
are automatically satisfied and given Q € Nhd(X) a continuous mapping F from
Vs %1 to ¥V, which shows (8) to be satisfied in degree p+1 is, F = Ky, x1-

By (8) above, for each p>0, there is a continuous mapping G?; V,xI->V,_;
such that ,G” is the inclusion mapping ¥, V,_,, ;G*(V,) = Vpriand GP(x, ) = x,
0<t<1.

We now define, for all p=0, H?; R* x V,~I”. Let jeJ*, peJ*, for all (s, y)
el/.j+11xV,, define ‘

HP(s, ) = GPHIGGPH ™0 (6P 72 0o (GPH 0 (G(p), s —))

This defines H?; R* x V,—I*, for all p>0.

Now (i) is satisfied by (o), (ii) by (B) and (iii) by (y) and the definition of Wys
p=1. By the definition of H?, (H” = ;G* = inc; V,=V,_,, for all p=0, thus (iv)
is satisfied. Again by the definition of H?, H?([j,j+1]x V,)=Image G”“«:V,ﬂ.j_l,
thus (v} is satisfied. Again by the definition of H?, H*({j} x V,)=Image (GPHiTle Vosi
and so (vi) is satisfied. (vii) is also satisfied since G”(x, ) = x, all p>0, 0< <1,
This completes the proof of the lemma. Q.E.D.

Remark 2.12. We can also show that if (X, 4, x) is a movable pointed paii‘
of compacta then the endomorphism of (0.2)

1d,—A,; I(X, A, X)=>I(X, A, x)

is an epimorphism for all #32. The next lemma is the technical tool which ac-
complishes this,
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LemMa 2.13. Let (X, A, x)=(I°, 1%, x) be a movable pointed pair of compacia.
Corresponding to each integer p>—1 there is a neighbourhood pair (V,

v Vo) of

(X, A) and corresponding to each integer p=0 there is a continuous mapping
HP; R*x(V,, V)—I°, 1%

satisfying the following conditions:
(@) V-1, VLy) = (Vo, Vo) = (2, 1),
(i) (Vp, V)2 (Vpsrs Vour)s for all pz—1,
(i) N 1(V,,, V) = (X, 4),

Pz -
(iv) H§ = inc; (V,, V)= (Vy—1, Vo1, Sor all p=0,
W) B, j+ 1%V, V) E(Vyeras Voo for all p,j>0,
(Vl) Hp({]}-l_(Vp’ V;))C(Vp-l'js VI;-C-j)a fDI’ all psj>03
(vii) HP(R* x {x}) = {x}, for all p,j=0.
Proof. Exactly as in Lemma 2.11 above but replacing single compacta and
neighbourhoods by pairs of compacta and neighbourhood pairs throughout.
Lemma 2.14. Let (X, x) be a movable pointed compactum. Then

1d,—A4,; I(X, x)=1,(X, x)
is surjective for all n=1.

Proof. Let {V,},»-1 and {H"},5, be asin Lemma 2.11. If {&; (S", po)
—(I°, x)};=o are continuous, where n>1 and />0 are integers, then we denote

Olo % Oy % Olp % ... % O;_{ * 0;
by *, o Let [¢] e (X, x) where n>1. Since ¢ is an inward n-mapping of (X, x)
there is an increasing function k; J*—>J* such that k(i) tends to infinity as i tends
to infinity and such that £(S")= ¥V, for all i

Let 5o be the constant mapping 774(S") = {x}<7and for each i>1 define a con-
. . . i-1
tinuous mapping #; from (5", py) to (I° x) by n; = (,i‘oH:((irl 1y-kry o &)1 For
each i>1 we have

i-1
(2.15) 1SN e U HEL -ay o E)(S™), by definition of 5,
. . r=0

i-1

= poHl,:((ir)—l)-k(r)(Vk(r)) R by definition of k

S Vi) +rii-1)-ktr) » by (vi) Lemma 2.11

= Vk(i-l) .
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Compounding the #;, i>0, we get a continuous mapping #; J*© x §"—I°. Since
k(i) tends to infinity with i, by (2.15)  is an inward n-mapping of (X, x).

We will show that n % (4(y))~" is homotopic to &. Passing over this point
for the present, we have (Id,—A4,)(In) = 1*(4(m)~ "1 = [£], for all n>1. Thus
Id,~A, is surjective for all n>1 and the theorem is proven.

We introduce some technicalities useful in showing that 7 * (A(n))~'=2¢ (in-
wardly). Let i;>>1 be an integer such that k(io)>1. Let i>7,. Define,

0, = Hi&) 3oy » for all 0<r<i—1,
Q, = H,f(({))_k(,) s for all 0<r<i.
By Lemma 2.11 part (v),
H ([ (i— D= k), k@) —kD]% Vi) S Vagy  etim 1) = k=1 = Vii=1)-1 >
for all O<r<i—1.

Thus 6, is homotopic to @,, relx, in Vy;_q—q, for all 0<r<i—1. Thus 6, . & is
homotopic to @, o &,, relpy, in Vi;_1y-4, for all 0<r<i—1. Thus

(2.16) (8,0 &)L % (@, o £,) is homotopic to the constant mapping, rel to po, in

Vi-1-1-
Now

(n* (A)™*)s = mew mivh
i-1 i
= (,,_”__‘0 Hl’:((;)—l)—k(r) AR (‘,10 fo((i))—k(r) o &)
' i-1 i
= (,.ﬁo 91‘ ° ér)-l * (,io (] ér)
i-1 — i .
= (2, Oimrr o Sima-r) Nae(x,0,08)  in Vigogy-1-
Applying (2.16) above to (8,0 &)1 # (@, o &) for each r such that 0<r<i—1 we
see that u;* 773y is homotopic to @;o &, rel to pg, in V1)1 Therefore, for
each i> i, there is a continuous mapping ¥;; S"x I—Vy;_yy-; such that
o =1 * vy,
W= il =B ypo b= H o & =&,

by Lemma 2.11 part (iv), and such that ¥ (p,, £) = x, for all t & I. When i<ip let ¥
be any homotopy from #; * 455 to &, relp, (such homotopies exist since I is
contractible). Compounding these ¥;, i>0, we obtain a continuous mapping
Vi JY xS X I-1° with oW =+ (AM)™1, (¥ =& P xpexI)= {x}. Given
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any ¥ e Nhd(X), since k() tends to infinity with 7, by Lemma 2.11 part (iii), we
may choose NeJ¥, such that N>iy, and Vyylqy— V. If i>N>i,

Y(S"xDeVig-1y-1= Vg~ -1V

Thus ¥; & n= (A@)~" (inwardly). Q.E.D.
LemMA 2.17. Let (X, 4, x) be a movable pointed pair of compacta. Then

1d,—4,; L(X, 4, x)=L(X, 4, x)

is surjective for all n=2.
Proof. As in Lemma 2.14 above but using Lemma 2.13 in place of Lemma 2.11.

TueoreM 2.18. If (X, x) is a movable pointed compactum then
g,,(X, x) = n(X,x), foral nz0.
If (X, A, A) is a movable pointed pair of compacta then
7:1,,(X, A, x) =2 n (X, 4, x), foralnz0.

Proof. For all #>0 apply Lemma 2.14 to the exact sequence (0.1). For all
n20 apply Lemma 2.17 to the exact sequence (0.2).

- COROLLARY 2.19. If (X, A, x) is a movable pointed pair of compacta the long
Sfundamental homotopy sequence n(X, A, x) of (0.4) is exact.

Proof. Apply Theorem 2.18 to the long approaching sequence (0.3).

Remark 2:20. Let (X, x) be a pointed compactum where X is an ANR.
By [3] 2.4 (X, x) is movable. By [1], 14.6, (X, x) = n,(X, x). By Theorem 2.18
above and these remarks 7,(X, x) = m,(X, x). This result is proven in a more general
form by a direct method in [5], Section 2, and also in [7].
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