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obtained from the constructible universe by adjoining any number of mutually
Cohen-generic reals.

1.7. TamoreM. If (K), then every filter over generated by less than 2° sets can be
extended to a selective ultrafilter.

This result follows easily from the following proposition:

1.8. ProPoSITION. If (K) holds and F is a filter over ® generated by less than
2 sets, and {X;| i<w} is a partitioning of © s0 that for every i<w

U{Xjlj>iteF,
then there exists a set XS so that {X}  F has the finite intersection property and
for every i<w: | X n X|<1.
Proof. Suppose that no such X exists. Let {C| {<A<2®}cF so that

Xe Fodl<i: X2C;.

Let

T = {fe“o| Yi<w: fi)e X;}.
We can w.l.o.g. assume that T'is a perfect closed subset of ®w in the usual product
topology. Define for <41

T, = {feT| range(f) n C, = 0} .
Then

T= U{TJ a<i}.

But then, by (K), there exists a <2 so that the closure of T, contains an open set
relative to T i.e. there exists a n<e and a function f: n—® so that ) e X; for
i<n and if n<m and ki m—o s.t. h(i) € X; for i<m and h2f, there exists a g € T,
with g=h. But this implies that

‘ U {range(f)| feT}=2 U {X| i>n}
and therefore

C,n(W{X| i>n}) =0;

a contradiction. B
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On a method of constructing ANR-sets.
An application of inverse limits

by

J. Krasinkiewicz (Warszawa)

Abstract, Tn the present paper we provide a method of constructing ANR-sets from a given
ANR-sequence. We establish certain properties of the ANR-sets. Some applications are given.
One of them is a simple proof of a theorem of H. Bothe which says that for every natural number
there exists an (z--1)-dimensional AR-set containing topologically every separable metric space
of dimension = 7. We prove that for every n-dimensional compactum X there exists an (n-+1)-dimen-
sional infinité polyhedron P disjoint from X such that XU P is an absolute retract. This result gen-
eralizes a theorem of Professor K. Borsuk.

1. A characterization of ANR-sets. By a compactum we mean a compact metric
space, and a mapping is understood to mean a continuous function from a topological
space to another one. A mapping f from a metric space X into a space Y is called
an g-mapping pravided that diamf ~*(y)< & for every y e f(X). It f maps the space X
into itself and o (x, f(x))< e for every x € X, where g is a metric in X, then we say
that it is an &-push of X. Clearly, an e-push is an 2s-mapping. It ¥ is a subset of X,
then we say that X is g~ deformable into Y provided there exists a mapping ¢: X X [-»X
such that @(x,0) =x, @(x,1)eY and diame({x}xI)<e for every xe X It
moreover g(y, ) = y for every (y, f) € ¥ x I, then we say that Y is a strong e-defor-
mation retract of X. Note that in this case each mapping ¢,: X—X given by the for-
mula @,(x) = ¢(x, 1) is an ¢-push of X.

The aim of this section is to prove the following theorem:

I.1. Let X be a compactum. Then it is an ANR-set if and only if for every >0
there exists an ANR-set Ye X such that X is e-deformable into Y.

The necessity of the condition is obvious. To prove its sufficiency we need
a characterization of ANR-sets due to S. Lefschetz. Recall that a positive number 7 is
said to satisly the condition of Lefschetz for a space-¥ and for &> 0.provided that for
every polyhedron W, every triangulation T of W, and every subpolyhedron W’ of
this triangulation containing all vertices of T, every mapping f': W' ¥, such that
diamf"(c A W')<n lor each simplex o e T, has a continuous extension f: W—Y
such that diamf(e)<e for each simplex o &T.
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1.2. A compactum Y € ANR if and only if for every ¢>0 there exists a number
n>0 satisfying the condition of Lefschetz for ¥ and & (see [1], p. 112).

Proof of the sufficiency of 1.1. According to 1.2 it suffices to show that for
a given number g>0 there exists a number 7n>0 such that
(1) 7 satisfies the condition of Lefschetz for X and e&.
Let ¢ = }e By the assumptions there exist an ANR-set Y= X "and a homotopy
@: XxI-X satisfying the conditions: ¢(x, 0) ='x, ¢(x,1)e ¥ and
©@ diame({x} xI)<¢’ for every xe X.
Hence 1.2 implies the existence of a number #'>0 satisfying the condition of Lef-
schetz for Y and &'. Let r: X— ¥ be defined by the formula r(x) = ¢(x, 1). Since r is
uniformly continuous, there is a number 7>0 such that
@ n<e,
4 Ac X AdiamA<n = diamr(4)<n’ .
We‘shall show that the number # satisfies (1). In order to prove this consider a map-

ping g': W'—X of a subpolyhedron W’ of W (in the triangulation T) satistying the
condition

%) diamg'(c n W)<n for each simplex e T.

Setting f' = r og’: W'=Y one gets a mapping such that diamf'(c n W')<n’ for
each simplex ¢ € T, by (4) and (5). Since ' satisfies the condition of Lefschetz for ¥
and ¢, there is a continuous extension f: W—Y of f’ such that

(6) diamf(s)<¢’ for each simplex ceT.

Consider the closed subset M= W'xIu Wx {1} of the Cartesian product Wx I.
It is easy to see that there is a retraction k: WxI—~M satisfying the conditien

©) . k(ox{0D<(o n'W')qu ox {1} for each simplex ceT.

(compare the proof of Corollary 4, p. 117, in [8]). Let #: M— X be a mapping defined
as follows: ‘
By, D) = {(p(g’(y), 1) for (y,0eW’'xI,
F» for (y.0ye Wx{l}.
This definition is correct because for (y, 1) & W' x I we have ¢ (g'(3), 1) = r « g'(y)
=f'(») =f(3). Note also that for ye W’ we have hok(p,0) = h(y,0)
= ¢(g'(»),0) = g'(»). Therefore setting

g0) = hok(y,0) for yeW,

one obtains a well-defined continuous extension of g’ onto the polyhedron W. Hence
it remains to show that diamg(c)<e for each simplex o T.

‘e ©
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By (7) we have
9(0) = h o k(o x{0)=h((c 0 W)XI) U k(e x{1}) = o (g'(c A w)x1)u f().

Furthermore, by (2), (3) and (5), we obtain diam(p(g’(o‘ N W'Y xI)<3¢'. Since the
polyhedron W' contains all vertices of T, the set ¢ n W’ is not empty. Let y be
a point of this set. Then ¢ (¢'(3), 1) = f(»), and therefore the summands in the last
union intersect. Combining the above considerations with (6), we conclude that
diamg (0)€4e’ = 8, which completes the proof.

1.3. COROLLARY, Let X be a compactum. Then it is an AR-set if and only if for
every number ¢>0 there exists an AR-set Y= X such that X' is e-deformable into Y.

This corollary follows from 1.1 and the fact that an ANR-set contractible in
itself is an AR-set (see [1], p. 96).

2. Quotient maps, decomposition of spaces and function spaces. A function f
from a space X into a space Y'is said to be a quotient map if fis onto and the following
condition is satisfied: a set A< Y is open in Y iff the set f ~*(4) is open in X. Hence
each quotient map is a mapping. Bach closed (open) mapping onto is a quotient map.
The following results are almost evident; they are included here for future reference.

2.1. A mapping from a compact space onto a Hausdor(f space is a quotient map.

2.2. Let p;: X;= X[, i = 1,2, be quotient maps. Suppose f: X, X, is a mapping
agreeing with py,p,, le., for every xeX{ there exists a ye X, such that
ST eps ' (¥). Then there exists a unique mapping f': X{—X, such that f' o py
=p;of

As usual, we denote by 2% the collection of all closed nonvoid subsets of.
a space X, A class D<2¥ such that | D = X is called a decomposition of X if no two
clements of D intersect. The decomposition is upper-semicontinuous if for every
open subset U of X the union of elements of D which are contained in U is an open
subset of X. To every decomposition D corresponds a space D, called the space
of D, defined as follows: the points of D are elements of D, a set A= D is open in D
iff the union |) 4 is an open subset of X. Denote by D(x) the unique element of D
which contains x e X. The function &: X- —D given by the formula k(x) = D(x)
is called the natural projection. The projection is a quotient map; if D is upper-
semicontinuous, it is a closed mapping. The following result is well known:

2.3. The space of an upper-semicontinuous decomposition of a compactum is
a compactum (see [5], p. 65).

It f maps a closed subset 4 of a compactum X into a compactum Y, the‘n‘the
matching of X and ¥ by fis the space of the (upper-semicontinuous) decomposition,
of the disjoint union of X and ¥, into individual points of the set 4 v (Y\f(A))

! .
and the sets {y} U f~(y) for y € f(4). This space is denoted by XU ¥, and by 2.3 it
is a compactum.

‘ !
24, If X, A, Y& ANR, then XOY e ANR (see [l], p. 116).
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Let f be.a mapping of a compactum X into a compactum ¥. If A= Xx{l}
cXxIand f': A—Y is defined by the formula: f/(x, 1) = f(x), then the matching
of XxIand ¥ by f'is denoted by Z, and is called the mapping cylinder of f (see [8],
p. 32). By 2.4 we have ) R

2.5. If X, Ye ANR, then Z, e ANR.

Let Y* be the set of all mappings from a space X into a space Y. By the space ‘1""
is meant the set ¥¥ with the compact-open topology, i.e., the totality of sets I'(C, H )
={fe Y*: f(C)=H}, where C= Xis compact and He Y is open, is an open subbase
of ¥Y* (see [5], p. 76).

2.6. If X is a compactum, and f: I~ Y* is a mapping, then g: X x I-Y defined
by the formula g(x, 1) = f(f)(x) is also a mapping (see [5], p. 86).

If Yis a compactum, then we may also consider in the set ¥* another topology
called topology of uniform convergence defined by the metric:

[f—gl = sup{e(f(x), g()): xe X}, ~ frg9eX™,

where ¢ is a metric in ¥ (see [5], p. 88). We have

2.7.1f X and 'Y are compacta, then the compact-open topology of Y* coincides
with its uniform convergence topology (see [5], p. 89).

3. Constructions and properties of spaces ¢X, ZX and SX. Throughout this
section X denotes an inverse sequence of compacta, X = {X,, f,..}, with bonding
maps fi,,: X=X, m>n,satisfying the conditions: f,,= 1x, , fym o So=Sux; X denotes
the inverse limit of X, X,, = invlimX, and f,: X, — X, denotes the natural projection:
Jix) = x, for x = (x4, X, ...) € X,,. We assume that all the sets X,, X, are pairwise
disjoint (this can always be achieved by taking the disjoint union of these sets).

DErFNITION 1. The space ¢X is. the set X, U | X, with the topology defined
n21l .

by assuming that the totality of the following sets: open subsets of the spaces X,
and sets of the form £, "(U) U U fin'(U), where U is an open subset of X,, n>1,
mZn N

is an open base of cX.
This space will be called the Freudenthal space of X. The construction is due to
H. Freudenthal ([3], p. 153, comp. also [7]). Recall the following result
3.1, The space oX is a compactum (see [3], p. 153-156).
3.2. The spaces X,, X, are subspaces of oX; the space X, is closed-open in oX.
3.3. The function p,: 6X—0X, nx1, defined as follows:
x for xeX, and m<n,

PaX) =1 fom®)  for xe X, and mzn,
A for xeX,,

* © ‘
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is well defined and satisfies the following conditions:

1. p, is continuous, i.e. is a mapping,

2. p, is an &-push, with 111;1 g, =0,

3. Py oDm = Py fOr n<m,

: n
4, p(x) = x for every xe | X,
. jm 1
5. pn(U XV er») = X‘n'
mEn

Proof. Tt follows from our assumption on the sets X,, X, and from Defini-
tion 1 that p, is well defined and continuous. Conditions 3, 4 and 5 are obvious, so
it remains to prove 2.

‘We have to show that for every number ¢> 0 there exists an integer ny such that p,,
is an g~push for every nzng. Suppose, to the contrary, that this is not true. Then
there exist an increasing sequence of integers {n;} and a sequence {y;} of points of
the space ¢X such that for every j we have

(1) Q(J{”pll](yj))?aﬂ

where ¢ is a metric in ¢X. By 3.1 we may assume that {y;} converge to a point y.
We claim that y € X,,. Indeed, otherwise y € X, for some n. Since X, is an open
subset of X, there exists an integer 7 such that n;>n and y; € X,. Consequently,
by 4, we obtain p, (y;) = ;, contrary to (1). Hence y € X,. Let ¥ be a neighbour-
hood of ¥ in ¢X such that

@ diamV<e.

By Definition | there exist an index n and an open subset U of X, such that

U =7 U) v U (U) is a neighbourhood of y in X contained in V. Hence
mEn

for some index j we have m;zn and y;€ U It immediately follows from the defini-
tion of p,, that in such a case pa (¥ € U'. Since U’ is a subset of ¥, by (2) and (1)
we obtain an absurdity. This completes the proof 3.3.

DerINITION 2. The space XX is the following subspace of the Cartesian prod-
uct oXx [t

IX = X x {1} u U X,xI, U X, x{0}, where I, = [l/n,1/;n=D)I.
n>1

Since XX is a closed subset of the compactum ¢X x I (see 3.1), we have
3.4. The space XX is a compactum, and the mapping hy: 0X—3X, defined by
the formula )
b(x) = G, UYn) for xeX, nzl,
() = (x,0) Sfor xeX,,

is an embedding.
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DErINITION 3. The collection D of subsets of ZX defined as follows: the single

point sets {p} for pe EXN\(X; x {1} u U1 X, x{l/n, 1/(n—1)}), and the sets{(x, 1/n)}'v’

U St 1) x{1n} for xe X,, nz1, is called the canonical decomposition of IX.
The canonical decomposition is a decomposition in the usual sense (see lemma
below); the space of the decomposition is called the space of the inverse sequence X
and is denoted by SX. The natural projection k: XX-SX is called the canonical
projection.

3.5. The canonical decomposition is an upper-semicontinuous one.

Proof. It is evident that the elements of D are closed, nonvoid and disjoint.
So we have to prove that for every open subset Uof ZX theset ¥V = () {De D: DU 1
is an open subset of ZX. Pick a point y e V. To prove that ¥ is open we need only
to find a neighbourhood G of y such that G is the union of some elements of D each
of which is a subset of U. Suppose ye DcU and consider four cases:

L yeX,x(l/n,1/(n—1)) for some n>2. Then G = Un X,x (Un, 1/(n—1))
is the required neighbourhood of y.

1. ye X, x{1/n} for some n>1. Let y = (x, 1/n). Hence D = (fx} ufnt 1(x)) %
x {1/n}. Since U is open and Dc U, there exists an open subset W of X,, such that
xe W and (WU £ (W) x {1/n}cU. Define a set L, as follows: if # = 1, then
L, = {1}; if n>1, then L, = [I/n, 8,), l/n<t,<1/(n—1), is such that WxL,cU.
There exists an interval L.y = (f4q, 1], J(n+1)<t 4, <1/n, such that

Fites (WYX L, ;< U. It follows from the construction that the set G = Wx LU

U frms1(WYx Ly 4y is the required neighbourhood of y.

L y = (x,1/n) € X, x{1/n} for some n>1. In this case the point
V' = (fonr1(x), 1/n) also belongs to D. Proceeding as in case II, we obtain the
neighbourhood G of y'. This is also an appropriate neighbourhood of y.

IV. y = (x,0) € X, x {0}. Since ye U and U is an open subset of ZXcoX x I,
there exist an open neighbourhood N of x in ¢X and an interval M = [0, 5] such
that Nx M N ZX<U. Let ny>1 be an index such that H(n—1)<ty for nzn,.
There exists an index n2n, and an open subset H of X, such that H' = (J fim*(HYu

>

- . - . . a men
U fiY(H) is a neighbourhood of x in X contained in N (see Definition 1). Let us
note that

G=H'x[0,1/(n—1)) n X
= Hx[Un, 1/(n=1)) U Ufp!(H)x 1, Of7 H)X {0}cNx M A EX< U.
m>n
By its definition the set G is a neighbourhood of y. Since G is the union of some

elements of D, it is the required neighbourhood of y. This completes the proof of 3.5.
The following statement is obvious:

3.6. The mapping p,: X1 given by the formula

,‘Ll(x: l) =1

* ©
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agrees (in the sense given in § 2) with the canonical projection k and the identity mapy
ping 1.

3.7. Let q: IN{O}=N, N = the set of natural numbers, be defined as follows:

) 1 for t=1, }
"(’)=J|n+1 for  Yma1)<t<i/n, nzl.

Let ¢y denote the identity mapping of ZX and, for t>0, let ¢,: XX be given
by the following formula:

y for  yeur'((t,10),
(Paen@). ) Jor  y = (x,8)eur [0, 1]).

Then the functions ¢, te I, are continuous and agree with k, k.

Proof. We may assume that #>0. First we prove that ¢, is well defined. Suppose
yeClur Y, 1) A ui ([0, 7). Then y =(x,7. If #=1/n, then xeX, and
q(f) = n; hence (pyy(x), 1) =y, by 334 If ljn<t<1f(n—1), n>2, then also
xeX, and ¢(f) = n; hence (py(x),?) =y for the same reason as above. The
continuity of ¢, follows from 3.3,1. It remains to prove that ¢, (D))= D(p,(»))
for every y e ZX. We may assume that D(y) is nondegenerate, that is:

D) = ({x} U fimes () x {1/}

for some x & X, and n3 1. We may also assume that 1/n<t, for otherwise @, (y) =y’
for every ' € D(). But in such a case we have D(p)<pui ([0, #]) and g()<n<n+l1;
hence, by definition of ¢, and 3.3, we obtain @(y") = (py(*), ) for every ¥ € D(3).
Therefore ¢,(D())e D (pyn(); ) = D(¢,(»)), which completes the proof.

We will consider oX x / as a metric space with a metric o, given by the formula

o (v, 8), (¢, 8)) = ax, x)+]s—51,

00) = {

where ¢ is a metric in oX.
3.8. For every tel define U, in the following way:

2,13 . for =1,
(1/(n+2), Un)  for t=1/n+1),
VWD), Un) for W) <e<tn,

[ for t=0.

U

Then for every yeXX we have

. , _ o0
Wax=Pun| +1E'1 for =0 and £>0,
(%) Q;(D(%(J))), Do) < {lt—-xt’l 1) For 150 and 0,

where g,(A, B) = inf{o,(a, b): ae 4 and be B}. ' o
‘ Proof. We may assume # = 1. Let y = (x, 5). Suppose ﬁrét t=0 a'nd.th> .
Then () = y because ¢ is the identity mapping of 2X. The point ¢,(y) is either y
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or (g, ). In the latter case s<t'. Therefore 01(0/3), 0N <@ (*, Poery()
+]t'|, which proves (¥) in the case of 7 = 0. B

Suppose now that >0 and "€ U,. We have to consider several cases.

1. ¢'<t = 1/n for some nz1. Then ¢(¢) = n and ¢(t) = n+1. If s>1, then
o ») = 0.(») = y. If s =1, then either xe X, or x€ X,,. In the former case
@(») =y = (), in the latter one ¢, () =y and ¢(3) = (f,4+1(x), ), and
therefore  D{(p,(»)) = D(»). If #<s<t, then xeX,,;. Hence D(p()
= D(fops1(), 1) = D(x,?) and ¢.() = . It s<t, then D(¢,(3)) = D(p.(x), 1)
= D(py+1(x), 1) and @ (») = (p,+1(x), ¢'). Hence jn each case we obtain ().

I >t = 1/n. Then g(H) = n = q(¢). If s>7, then ¢(y) = @.(y). If t<s<?,
then @,(3) = y and @,(y) = (x, t). If s=t and xe X,, then ¢,()) = y and ¢,(y)
= (x,2). X 5= tand x€ X, , ,, then ¢,(») = (p,(). 1) and ¢,.(¥) = (p,(x), t'). It s<t,
then @) = (p,(x), 1) and ¢,.(y) = (p,(x), t'). Hence in each case we obtain (x).

1. 1/(n+1)<z<1/n for some n. Then q(¢) = ¢(¢') = n+1, and by arguments
similar to that used above we obtain (x) in this case. This completes the proof,

The results which we have just proved will now be used to establish several
properties -of the space of the inverse sequence X.

Notation. k(x,s) = [x, s].

By 3.4, 3.5 and 2.3 we obtain
3.9. The space SX is a compactum and the function h: cX—SX defined by the
formula .

h(x) = {[x, 1/n] for xeX,and nx=1,
[x, 0] for xeX,

is an embedding.

By 3.9, 2.1 and 2.2 we obtain

3.10. The function p: SX—I given by the formula

ulx, 1) =z

is a mapping. The set ™" (f) is homeomorphic to X,,. Moreover, p~*(0) =h (X))
and p”'(1/n) = h(X,) for every n=1. Finally, the set p~*([1/n, 1]) is homeomorphic
to the mapping cylinder Z; .. for 1/n>t>1/(n+1).

3.1L.- For every t €l the function \,: SX—SX given by the formula:

=7 for  zeu (1)),
vile) [Pay®), 1 for z = (x,8)eu" ([0, 1],

where Y, is defined by the first equality, is a mapping. The function f: SX x I-SX,
defined as i (z, 1) = \y(2), is a mapping satisfying the following conditions:
1..yi(z,0) = z for every ze SX,
2. Y(z,0 =z for ze u”X([t', 1]) and t<1,
3. Yz, Dep () for zep™X(t') and t=1,
4. diamy ({z} x [0, )< e(s), with }Lrg e() =0,

®
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. Proof. The assertion about , easily follows from the corresponding properties
of ¢,. We shall show that y is continuous. Hence by 2.6 it suffices to show that the
function 3 I—SX%, where f(t) =, is continuous (the function space with the
compact-open topology). Let d be a metric in SX. By 2.7 we may assume that the
function space has the uniform. convergence topology defined by d. Let ¢ & I and let
£>0 be a real number. We have to prove that [if,~y,[<e for every ¢’ in a neigh-
bourhood of 7. Since SX is a compactum, the canonical projection k is uniformly
continuous, hence there is a number #>0 such that condition ¢,(y, y')<# implies
d(¥l, [yD<e By 3.3,2 and 3.8, there is a neighbourhood UcU, of # such that
for ¢ & U we have [t—¢'|<n and if £ =0, then |l,x—pyl+It|<y. Let z = [y]
be an arbitrary point of SX. Then £k™'(Y(2)) = D(p,(») and k™ 1(y,(2)
= D (). Since v, o k= k o for every s e, by 3.8 we obtain d(,(2), ¥(2))<e-
1t follows that |y~ |<e. This proves the continuity of f. Thus y is continuous.

The properties 1,2 and 3 of ¥ follow from 3.7. The property 4 follows again
from 3.8 (») by an argument similar to that used above.

The inverse sequence X is called an ANR-sequence provided every space X, is
an ANR-set.

3.12. If X is an ANR-sequence, then

1. = Y([t, ') & ANR. for t,¢ el and t-+1t'>0,

2. X, e AR = p~U([t, 1]) € AR for every tel.

Proof. 1. By 3.10 the set u™*([L/(n+1), 1/n]) is homeomorphic to Zy, . ,; hence
it is an ANR-set by 2.5. By 3.10 we have also

(1, 1) A ([0 4+2), 1+ D]) = h(Ker) -

The set on the right-hand side of the equality is an ANR-set by 3.9. Since the union
of two ANR-sets whose common part is an ANR-set is an ANR-set (see [L], p. 90),
we have u~!([1/(n+2), 1/n]) € ANR. By an easy induction and by 3.10 we infer that
w=X([t, 1/n]) € ANR for every 0<t<1/n. It is easy to see that if 1/n+1)<s<s'</n,
then the set = ¥([s, 5']) is homeomorphic to X, X [s, s'], and hence it is an ANR-set.
The above two resulls, 3.10 and the quoted result on the union of two ANR-sets
imply that g~ '([t, ¢']) e ANR for every 0<t<#. It remains to prove that
w0, 1) € ANR for £>0. But 3.11 implics that for every e>0 there exists an
ANR-=set Aes ™ '([0, 1) (namely the set p~*([¢', ) for some 0<'<7) such that it
is a strong s-deformation retract of w40, f]). Hence p~*([0, 7)) € ANR, by L.1.
This completes the proof of 1.

2. Let X, € AR. By the previous result SX = p~ ([0, 1) € ANR. By 3.11 the
set (1) is o strong deformation retract of SX, and by 3.10 pwHD = hA(Xl)‘
Hence x4~ '(1) @ AR, by 3.9. Tt follows that SX is an ANR-set contractible in itself,
and therefore an AR-set (see [11, p. 96). By 3.11 the set p~*([, 1]) is a (strong def-
ormation) retract of SX. Hence it is an AR-set. This completes the proof.
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4. Embedding of eompacta into absolute retracts. The aim of this section is to
prove the following theorem:
4.1. For every nondegenerate compactum X there exist an absolute retract M con-
taining X, a point ve M and a mapping u: M—1 satisfying the following conditions:
1. p is an open mapping onto I,
2. u7H0) = X,
TR OES {U}’ .
. pTN([t, ') e ANR if £4+1'>0,
. 1Y, 1) € AR for every tel, _
. w~ () is a strong deformation retract of u”([t', t]) for every te I and ¢ <1,

[= R N N Y

Moreover, if dim X = n, then in addition
7. p~ (1) is an n-dimensional polyhedron for every 0<i<1,
8. u~([z, ¥')) is an (n-+1)-dimensional compactum if t<t'.

Proof. By a classical result of Freudenthal [3] there exists an inverse sequence
of polyhedra X = {X,,f,,} such that X = invlimX, and the bonding maps
Som® Xy— X,,, n<m, are mappings onto (comp. [6]). If dim X' = », then we may assume
that dim X; = nfor every k> 1. Without loss of generality we may also assume that X,
is a single-point space. Put M = SX. According to the results of Section 3 it is easy
to check that the space M satisfies all the required conditions, because we can identify
the compactum X with 2(X,) (comp. the figure).

The constructions
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‘ An interesting application of 4.1 is a simple proof of the following result of
H. Bothe:

4.2. COROLLARY [2]. For every natural number n there exists an (n+1)-dimen-
sional absolute retract containing topologically every k-dimensional metric separable
space, with k<n. . )

Proof. Let X, be an n-dimensional universal compactum (see [4], p. 64).
Hence X, contains topologically every metric separable space of dimension <n.
Applying 4.1 we obtain an (n-1)-dimensional AR-set containing X,. Hence this
absolute retract satisfies the conclusion of 4.2. ‘

5. Remark on homotopy groups. The main result of this section is not of in-
terest in this paper, but it will find an important application in a forthcoming paper
of the author on the theory of continua. We begin with some lemmas. The following
one is evident; ‘

5.1. Let A be a subset of a space X. If the inclusion map i: A—X induces an
epimorphism )
(i)#: n)l(A5 LZ)'—)W”(X, a)

of the n-th homotopy groups for some point ae A, then it induces the epimorphism for
every other point x € A provided x belongs to the path-component of A which contains a.

Let f be a mapping from a compactum X into a compactum Y. Denote by [x, £]
the point of the mapping cylinder Z, which corresponds to the point (x, #) € Xx I
by the natural projection of XxIu ¥ into Z  and, likewise, by [y] we denote the
point of Z, which corresponds by this projection to the point y ¢ ¥. The mapj)ings
it X»Z;and j: Y-Z, given by the formula i(x) = [x, 0], j(y) = [y] are embeddings.

It is an easy exercise to prove the following lemma:

52. Let f: (X, x0)—(Y,¥,) and suppose that the induced homomorphism
Syt m(X, x0)=>m, (Y, yo) is an epimorphism. Then the induced homomorphism
iy (X, x0)=m(Zy, [, 0}) is also an epimorphism.

The main result of this section can be stated as follows:

5.3. Let a pointed compactum (X, x,) be the limit of an inverse pointed
ANR-sequence (X, xo) = {(X,, %), frm}s 1€y (X, %) = invlim(X, x;), where
X = (X, X3, ...) € X. Suppose that the bonding maps fo,: (X, %u)—(X,, x,) induce
epimorphisms (fudg: X, X)>ml( Xy, %) of the k-th homotopy groups, where
mzn. Then there exist an absolute retract M containing X and & decredsing sequence
{4,} of ANR-sets in M such that X = (\ 4, and the inclusion map i,: (4,41, %o)
=(Ay, x0) induces an epimorphism of the corresponding k-th homotopy groups, for
every nzl.

Proof. Without loss of generality we may assume that X; is a single-point
space. Let us adopt the notation of Section 3 and let M = SX and
A, = p~ ([0, 1/n]) for every nz1. The Freudenthal space of X consists of the
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spaces X, and X. Since % is an embedding of - the Freudenthal ' space into M, by
3.12 we have i :

) . h(X)=MeAR,
o)) A, cA, e ANR and () 4, = h(X).

Now we shall prove that

(3) the induced homomorphism (i,,)#:‘ Tl Aps1s X)) (A, Xp) is an epimor- -

phism.

By 3.10 we have h(X,i() = p (1/(n+1))=A,.q; in particular 2(x, () € Ayiy-
By 3.3, 3.7, 3.9 and 3.11 the following diagram commutes:

V1/(n+1)

Me——-M

B X+ 1T Thlx

Xppr—X

Since f,11(%o) = X4y, it follows from 3.11 that ¥y ({2(x0)} % [0, 1/(n+1)])
is an arc in 4, ; joining A(x,) with A(x,. ). Hence these points belong to the same
path-component of 4, . Hence, by 5.1, in order to prove (3) we need only to show
that
(©) (in);ﬁ;: nk(An+1a h(xnﬂ))“*"k(Am R (%,4)) is an epimorphism.
Let u: I-I, ., = [1/(n+1), 1/n] be a homeomorphism such that u(0) = 1/(n+1)
and u(l) = 1/n. It is easy to check that the function

@ Zpyo = ({4 1), 1n]) = B
given by the formula

and xe€ X, ¢,
and xe X,

y = [JC, t] szn,n+1

_ flxu®]  for
a@y) = { y = [x] €Zfnss

[x,1/n] for
is a homeomorphism. Let us note that a([x,+;,0]) = &(x,;). Hence we have
(5) oyt TZp,ers nss> ON—7(B, 2(X,41)) I8 an epimorphism.

Consider the following diagram:

In

(Ans h(xn‘k 1))‘" (An+1: h(xn+ 1))

L4 (B  h(e 1)) [

a,

(an,m-n [xn-i-la 0])<_"’“_‘~—" (Xn+1a xn+1) 3
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where i, and j are inclusion maps, o' = jo o, f(x) = A(x) and i(x) = [x,0]. It is
evident that the diagram commutes. It easily follows from 3.11 that P(X, 1)
= p~!(1/(n+1)) is a strong deformation retract of An1, and Bis a strong deforma-
tion retract of 4,. Hence the homomorphisms (@4 and (B)y are isomorphisms
(see [5]). By our assumption and by 5.2 the homomorphism iy Is an epimorphism.
Combining these facts we see that (i)4 is an epimorphism, which proves (4) and
therefore (3). Identifying X with /(X) and x, with & (x,) we obtain by (1), (2) and 3
the conclusion of 5.3. This completes the proof.

6. A generalization of Borsuk’s theorem. Professor K. Borsuk proved the f ollow-
ing theorem (see [1], p. 108):

For every compactum X there exists an infinite polyhedron P with a null-
triangulation such that X U P is an absolute retract.

In this section we shall prove a strengthened version of this result. We first
prove a list of lemmas which will be used in the proof of the theorem. We start
with the following important fact established by J. H. C. Whitehead (91, p. 259
and [10], p. 244):

6.1. Let K and L be finite complexes and let f: |K| - |L| be a mapping simplicial
with respect to these complexes. Embed polyhedra |K| and |L| in the mapping cylin-
der Zg by the maps: x— [x,0] and y— [y] for x€ K| and y e|L|. Let Z;— I be the
natural projection, i.e., Y([x, 1]} = t and Yy ([y]) = 1. Then there exist a finite com-
plex P, subcomplexes K' and L' of P, a homeomorphism <: |P|=»Z; onto Z;, and
a mapping @ |P|— I simplicial with respect to P and a triangulation I' of I, satisfying
the conditions: t(|K'() = [K|, ©(IL']) = |L|, © is a simplicial isomorphism between
K'(L') and K (L, respectively), and ¢ = ov. (I' is obtained by dividing I at its
middle point.) ’

6.2. Let @ be a simplicial map from an n-simplex 6" onto a 1 -simplex c*={ay, a;>.
Let o, = ¢~ *a), i =0, 1. Hence simplex ¢" is the join of simplexes o, and o,
i.e., o" = oo%0y. Suppose that K, is a subdivision of ¢o. Then there exists a subdivi-
sion K of ¢" such that Ky U (o) K and ¢ is simplicial with respect to K and o*.

Proof. To prove the lemma it suffices to take as X the subdivision of ¢" composed
of all simplexes of the form 7%, where T e Kp, and all faces of these simploxes,

An immediate consequence of 6.2 is the following lemma:

6.3. Let ¢ be a simplicial map of a complex K onto a 1-simplex o' = {aqy, a,>-
Let Ky = @~ ay), i =0, 1, and suppose that K; is a subdivision of K. Then there
exists a subdivision K' of K such that Ko U K\< K’ and ¢ is simplicial with respect
to K' and o'. ‘

Let ¢: ¢"— o be a simplicial map into ¢! = {(ap, a;> and let ¢ = #oap+1,a,,
to+1, = 1, be an interior point of ¢!, i.e., ,>0. By a (¢, ¢)-barycentre of ¢" we
understand a point b5, € 6" defined as follows: if ¢(¢") = a;, then b%. = b,n is the
usual barycentre of ¢"; if ¢(c") = o, then we define b5, = tob,,+#; b,,. where
2 — Fundamenta Mathematicae t. XCII : )
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o; = ¢~ *(a;) and b,, is the barycentre of o;. Observe that ¢(b%) = c. For each
sequence 7, Ty, ..., T of faces of ¢” such that 7; is a proper face of 7, , the sequence
of corresponding (¢, c)-barycentres of ©°s span a simplex contained in 7,. All
simplexes obtained in this manner form a subdivision of ¢" denoted by o}, , and
called a (¢, ¢)-subdivision of o".

6.4. If ¢ is the barycentre of o' = {ay, a,>, then we have
2n+1 u
meshaz,csﬁdmma .

Proof. Let o € o,,.. Hence there exists a sequence {r;}, 0<i<k, 0gk<n, of
faces of ¢”" such that t; is a proper face of 7;,, and o is the simplex spanncd by the

barycentres %, b7, ..., b, i.e., o = (b5, ..., b;>. We have to show that

diam <2n+ld'
iamo jamo” .
Sont e

We have diamo = bz, — b,| for some i<j. If 1;c 07 (a,), then also ;=0 !(ay)
and b}, I = i,, is the barycentre of 7;. So we have

1B, 85, = B,—b, )<

no_ 2n+1
diam ;< — diamo” < + diamo”.
n+1 n+2

dim ,+1

Thus we obtain the conclusion of the lemma in this case. Suppose now that
7207 ({4, a;}). It follows that ¢(z)) = ¢*, and t; = T'+7", where 7’ = ¢~ ()

"

A, t =9 @) n, and b = 2(b,,+b,,,) (because C—%(ao+ﬂ1)) Let
% = (Pos 1, s 1) Since %<, and B, belongs to 7, we have

by = aopit ooy, Yoy =1, 420,

(4 c .
It follows that b7, —bg| < Org?zs|bﬁj—p,-,]. It remains to show that for every vertex

Pm> 0Sm<r, we have
a !
) |6, me< diam¢”.
2n+2

Without loss of generality we may assume that ¢ = {Pos s puy  and
7" = (Pys1s s Pry- SO we have o

<Z +17 Z )

v=utl
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We may also assume that m<u. Then we obtajn

r

bz, Pl = Iz +] pm)+z——(po D)

v=u+l

r

1 -1 1
< - R — —_ —
\2( E el E 1 2

v=0 v=utl

1/ 2u+1 241
< Y giamor +diame” = 2 diamor < 22 diam o7
2ut2 M2

S o\u+1

because u<r<n. This proves condition (1) and completes the proof of 6.4.

If ¢ is a simplicial map of a complex K into a 1-simplex o', then we denote by X,
the complex |J o .. This complex is a subdivision of K and is called (¢, c)-subdivision

o"eK
of K. It is evident that ¢ is simplicial with respect to K|, , and a}mc (the last symbol
will be abbreviated to ol). From Lemma 6.4 we obtain the following corollary:

6.5. If ¢ is the barycentre of o* and 0<dimK<n, then
nK, <2 neshk
mes| ——m .
D b

Let ¢: o"—>o' = {4y, 4> be a simplicial map onto. Let o; = ¢ '(a),
i =0, 1, and let ¢ be an interior point of ¢*. For each face o of ¢” which is mapped
onto ¢! take the point 5% and define a subdivision co® in the following way: for the
vertices of ¢o” we take all vertices of " and.the points b5 ; a simplex belongs to ca™ iff
it is a face of a simplex spanned by the vertices vy, U5, ..., 0, b5, B,, .., by, where
o = vy, .., 0> is a simplex in either ¢, or oy, 0<7;<...<7 and @(7y) = ot
Observe that o, and co” induce on ¢~ 1(c) the same subdivisions.

6.6. Let @,: co"—>oa. be the simplicial map defined by @ and let & be a given
positive number. There exists an n>0 such that if l|ag—c|<n, then
diame<max{e, diamo,} for every o€ co” such that lo|< o1 ({ag, ).

Proof. Let ¢ = toag+1t,ay, where #o-+t, =1 and #,>0. Let K be the sub-
complex of ¢o” such that |K| = 071(ag, ). Let f: K ¢" be a vertex map defined
as follows. If v is a vertex of oy, then let f(v)'= v. If v = b%, then v = tobg~+1,b,n,
where ¢’ = o N o, and o'’ = o N oy; in this case we set f(v) = b, and observe
that £ may be extended linearly onto each simplex from K. Denote the extension by f
as well and note that |f(v)—o|<t |b»—b,|<t;diama”. This observation easily
leads to the existence of #.

As a corollary we obtain the following proposition -

6.7. If p: K—»o' = {ay, a,) is a simplicial map and >0 is a given number,
then there exists a subdivision K' of K and a point ¢ in the interior of ¢* such that ¢, is

2%
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simplicial with respect to K' and ol, Ky = ¢ Xap) is a subcomplex of K' and
diamt<max{e, meshKo} for each 1€ 01 'Kag, ),

where @, is the map induced by ¢. ‘

6.8. If ¢: K—o' = {ap,a,) is a simplicial map, £>0 is a given number and
Ko = ¢~ Yao), then there exist subdivisions R of K and L of ¢* such that Ko<= K , ¢ in-
duces a simplicial map &: R—L, mesh R <max{e, meshK,} and mesh@™'(a,) <.

Proof. First choose ceinte!, o, and K’ as in 6.7. Let Ky = ¢~ '(ap),
K, = o7, M= 97 {a,cy) and N = o7'(c, @) Applying 6.5 several
times to the map ¢,|N: N—{c, a,>, we obtain subdivisions N', L’ of N,{c,a>,
respectively, such that meshN’<e¢ and ¢, is simplicial with respect to N’ and L',
The subdivision N’ induce a subdivision K, of K,. Applying 6.3 to the map
| M: M~{c, a,y, we obtain a subdivision M’ of M such that K, U K, is a sub-
complex of M’ and ¢ is simplicial with respect to M’ and {c, ay). Put R=M uN'
and L= {{c, ap>} U L' Then R is a subdivision of K, L is a subdivision of ¢* and
these subdivisions satisfy the conclusion of 6.8.

" Now we need the following version of the Freudenthal theorem [3] (see also [0],
p. 310).

69. If X is a compactum, then there exist an inverse sequence X = {X,, fin}
and two sequences of finite complexes K, Ky, ..., K1, Ky, ... satisfying the condi-
tions:

(@) X = invlimX, X, = {v} is a single-point space,

(i) if dimX =k, then dim X, ., = k,

(i) X, = 1K},

(iv) K, is a subdivision of K,,

) fumsr: Xy~ X, is simplicial with respect to K, and K.

The following theorem is the main result of this section:

6.10. If X is a compactum, then there exist an absolute retract M containing X,
a point v e M, a mapping u: M—I, an infinite countable complex P with null-triangula-
tion, and a triangulation L of IN{O} such that all conditions of 4.1 and the following
ones are fulfilled: :

o)) M\X = |P|,
2)  pl(MNX) is simplicial with respect to P and L

3) if dimX=n, then dimM =n+1.

Proof. Since the details of the proof are technically complicated but casily
verifable, we limit ourselves to a sketch of the argument. Let X, {K,}, {K’} be as in
6.9, let M= SX and let u be defined as in the proof of 4.1. Then w0 n, L+ ny
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may be identified with the mapping cylinder Zj, .., and u~*(1/n) may be identified
with X,. Using these identifications, we have X,, X, ., <Z; . and

(4) an,n-l'l n an+1.n+z = Xn+1 .

By 6.9 and 6.1 we may also assume that there exists a finite complex R, such that
an,11+l = an!’ .

Kn+1! K)’ICRII >

and plZ,, .. is a simplicial map with respect to R, and Q,, where Q, is a complex
obtained by dividing the segment [l/n, 1/(n+1)] at its middle point c,.
According to 6.9, 6.3 and (4) we may subdivide R, in such a way that X, U K, .,
is a subcomplex of the subdivision, and u|Zy, ., is still simplicial with respect
to this subdivision and Q,. Without loss of generality we may assume that
already, R, possesses these properties. In this way the collection R = |J R,

n
constitutes an infinite complex such that |R|= M\X and p|(M\X) is simplicial
with respect to R and Q, where Q denotes a triangulation of I\{0} obtained by
dividing each simplex of the form [1/n, 1/(n-+1)] at its middle point c,. Let ap =1
>a,>a,>... be the sequence of all vertices of Q and let A,, n>>1, be the subcomplex
of R such that [4,|= p~*(c}), where o} = <@, a,>. Let B,, n=0, be the sub-
complex of R such that |B,] = u™*(a,). Let {¢,} be a decreasing sequence of positive
numbers converging to zero. Let ¢,: A,— oy be the simplicial map induced by .
Since By, = {v}, by 6.8 there exist subdivisions P, of 4; and L; of o1 such that
meshP, <&, @, is simplicial with respect to P, and L; and meshP,|B; <e,, where
P,| B, denotes the subdivision of B, induced by P;. Applying 6.3 to 4,, we obtain
a subdivision Pj of 4, such that P;|B,, B,cP, and ¢, is simplicial with respect
to P, and oi. According to 6.8 there exist subdivisions P, of P, and L, of o3
such that P,|B,cP,, meshP,<g,, ¢, is simplicial with respect to P, and L, and
meshP,| B, <é&;. Continuing this process, we obtain all the other P, and L,. It is
easy to see that the complexes P = |J P, and L = {J L, constitute the appropriate

. n n
triangulations of MN\X and IN{0}, respectively. This completes the proof.
T would like to thank Professor A. Kirkor for his help in, the preparation of
this paper. .
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Two model theoretic ideas in independence proofs

by

David Pincus (Cambridge, Mass.)

Abstract. Some new Fraenkel-Mostowski models are built on universal homogeneous struc-
tures. Also a connection is established between indiscernability theorems and models for the com-
pactness theorem.

L. Tntroduction

This paper will illustrate the model theoretic ideas underlying some set theoretical
independence proofs. The results include conceptual simplifications of known inde-
pendence proofs, new independence proofs, and a new theorem in model theory.

In § I we discuss Fraenkel-Mostowski models built on universal homogeneous
structures. The idea dates back to Mostowski’s proof, [17], of the independence of
the axiom of choice, (AC), from the ordering principle. Mathias [16] reawakened
interest in the idea with his proof of the independence of the order extension principle
from the ordering principle. Others followed, notably Plotkin ([23] and [24]), and
Felgner ([3] and [4]) as well as the author. Except for [17] the work cited above
is set up in the language of forcing. Arguments here and in [13] demonstrate that
only Fraenkel-Mostowski ideas are involved.

In § ITA we indicate what, besides the universality and homogeneity of the
structure, is involved in proving the support intersection lemma of Mostowski [17].
These results are applied in the remainder of § II. § IIB contains a conceptual proof
of the combinatorial group-theoretic lemma of Lauchli [15]. The resulting Fraenkel-
Mostowski model is then used to settle a question of Halpern [9]. In § ITC we elimi-
nate forcing from Gauntt’s solution ([7]) to Mostowski’s problem on the axiom
of choice for finite sets. A by-product is that these results, and related ones of
Truss [27], transfer automatically to ZF set theory (*). § IID is a brief mention of
other applications. These are from the author’s thesis and are more fully exposited
by Jech in [13].

(%) Our set theories incorporate classes when desirable. ZF is the usual Zermelo Fraenkel
set theory. ZFA. is the usual weakening (see [17]) of ZF to permit a set of atoms. E is Godel’s axiom
of strong choice. ZFE is ZF-+E. ZFE is a conservative extension of ZF+AC. We assume that our
standard universe, Std, satisfies ZFE.


GUEST




