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Abstract. We prove a rather complicated theorem giving sufficient conditions for a set to bean
almost continuous retract of an n-cube, This theorem is then used to construct examples of patholog-
ical almost continuous retracts of the unit square. It is shown that there exist both closed and non-
closed almost continuous retracts of the unit square which are not arc wise connected and that
the closure of an almost continuous retract of the unit square need not be such a retract. On the
other hand, we show that if M is an almost continuous retract of I", where M is interior to I" and
n>1, then M does not separate I”. Also it is proved that an almost continuous retract of a Peano
continuum is almost arc wise connected. This last result affords a simple example of an acylic plane
continuum which is not an almost continuous retract of a 2-cell. Lastly, we answer negatively a ques-
tion of Naimpally and Pareek by giving an example of a I-almost continuous function on the unit
internal which lacks a fixed point.

1. Preliminaries. This paper is a continuation of work begun in [3]. We have
attempled to make the present paper as self-contained as possible. However, the
reader may wish to refer to [3] for further background.

No distinction is made between a function and its graph. The letter I denotes
the interval [—~1, 1]. .

DERINITION 1. The statement that the function f: X—Y is almost continuous
means that if De (X% ¥) is an open set containing f, then .D contains a continuous
function with domain X.

DEFINITION 2. Suppose N is a subset of M. We say that N is an almost con-
tinwous retract (ACR) of M if there exists an almost continuous function from M
onto N which leaves each point of N fixed.

Qur primary result is Theorem 1, which will be proved in Section 2.

THEOREM 1. Suppose M is contained in I". The Following conditions are together
sufficient for M to be an ACR of I":

(i) M has at most finitely many arc components, Ag, Ayy s Ay such that Ay
is dense in M and A, is no-where dense if 1<i<k,

(i) M contains no simple closed curve, and
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(iii) There exists a function fy: CL(M)—M which leaves each point of M fixed
and a sequencé of continuous functions gy, gz, ... Such that g;: I"~+ Ay and such that
if P, Py, ... is a sequence of points of CL(M) converging to P, then g,(Py), g.(P,), ...
converges to fo(P).

Theorem 2 follows immediately from Theorem 6.1 of [2].

“TueEOREM 2. An ACR of I" has the fixed point property.

COROLLARY 1. Under the hypotheses of Theorem 1, M hus the fixed point property.

DEerFINITION 3. The statement that the subset K of X'x Y is a blocking set
of f: XY means that K contains no point of f, Kis closed and K intersects g when-
ever g: X— Y is continuous. If no proper subset of K is a blocking set of f, we say
that K is a minimal blocking set (MBS) of f.

Various versions of Theorem 3 have been used by the author in earlier papers.
We give a statement and proof here for the sake of completeness.

THEOREM 3. Suppose [ X— Y is not almost continuous and X is compact. Then
there exists a minimal blocking set K of f.

Proof. Since fis not almost continuous, there exists an open set .D containing f

such that D contains no continuous function with domain X. Then (X'x Y)— D is
a blocking set of f. Let # be a collection of blocking sets of f, linearly ordered by
inclusion. Suppose g: X— Y is continuous. The set g is a homeomorph of X and is
compact. Foreach Cinf, g n C # @, so {g n C: Cisin 0} is a nested collection of
closed non-empty subsets of g must have a non-empty intersection. It follows that
N {C: Cis in 8} is a blocking set of f. The result now follows from Zorn’s lemm.

2. Proof of Theorem 1. We break the proof into a series of lemmas. We will
need some notation. Suppose K is a subset of J"x M. The projection of K into 1" is
denoted by p,(K) and the projection of K into M is denoted by p,(K). 1f A is
a subset of p(K), then K|4 = {(x,y) in K: x is in 4}, and if 4 consists of a single
point, z, we write K|z.

LemMmA 1. Suppose K is a MBS of a function f: I"~ M, where M satisfies condi-

tions (i) and (ii) of Theorem 1. if z is an isoluted point of p(K), then p,(K|z) contuins
some A;.

Proof. Let U be a neighborhood of z such that p,(K) N U == {z}. By the mini-
mality of X there exists a continuous function g: /"M such thal g » K consisls
of the point (2, g(2)). Let 4; be the arc component of M containing g (I"). Assume
that p,(K|2) does not contain 4;. Let (z, ) be in the complement of K|z where p
isin 4;. Let C be an arcin 4, joining y and g (I"). Since M contains no simple closed
curve, g(I" v Cis a dendrite ([6], p. 300) and hence an AR ([6], p. 335). So, the
function h: (I"—U) L {z} > g(I") U C defined by h[I"— U = g|I"~U and h(z) = y
has a continuous extension 2': I"— g (I") U C. But then A’ n K = @, a contradiction.
Thus 4;=p,(K]z). :

LeMMA 2. Under the hypotheses of Lemma 1, PKl2) N 4y = @.
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Proof. First note that since 4, is dense in M, K is closed and K N f = @,
Ao cannot be contained in K|z. Thus 4, # 4. Assume that (z, x) is in K where x
is in Ao. Let ¥ be a neighborhood of x which intersects none of 4, 4,, ..., 4;.
Now, K—(K n (Ux V) is a closed proper subset of K, so there exists a continuous
function g: I"—M such that g n K consists of a point (z, g(z)) where g(z) is in V.
But then g(I") is contained in A,. Let y be in 4y~ (4o N p,(K [2)). A contradiction
can now be reached in the same way as in the proof of Lemma 1.

LeMMA. 3. Under the hypotheses of Lemma 1: if z; and z, are two different isolated
points of p(K), then p(K|zy) and p(K|z,) do not both contain the same arc compo-
nent of M.

Proof. Note that each of K—K|z; and K—K|z, intersects each continuous
function from I" into Ay. Assume that py(K|z,) and p,(K|z,) contain the same arc
component, say 4;. Let ¥ be a neighborhood of y which meets none of 45, 43, ..., 4.
There exists a continuous function g: I"—M such that (g A K)=({z,}x V). But,
since g(I™ N Ao =@, we have g(I"\c=d4, and gn K|z, # @, a contradiction.

Completion of the proof. Denote by 0 the set of all closed subsets of I" x M’
such that va(L) has c-many points not in Cl(#4). Using transfinite induction, we may
define a function f: I"=M such that f|CI(M) = f; and f intersects each member
of 8. We complete the proof by showing that fis almost continuous. Assume that it
is not. By Theorem 2, there exists a MBS K of f. Then K intersects each g; in a point
(P;, gi(P)). Let T be the set of all isolated points of p(K). By Lemmias 1 and 3,
T is finite, s0 p,(K)—T is perfect. By the construction of f; p,(K)—T<=CI(M). For
each i, g{I" =4y, so, by Lemma 2, Py is not in T, so P, is in CI(M). We may
assume that P;,P,,.. converges to some point P. But then, by hypothesis,
91(PD), 92(Py), ... converges to fo(P) = f(P). Since K is closed (P, f(P)) is in K,
a contradiction. This completes the proof.

3. Examples. In this section, Theorem 1 is used to show that the following sets
are ACR’s of I

My Let My = {(x, (sin 1/x)): 0<x<4} v {0, 0.

My: Let M, = Cl(M).

M, Let 8 = {(rcosa, rsing): r = af(1+2a); 0<a}, so that S is a spiral begin-
ning at (0, 0) closing outward on the circle € = {(x, y): x*+y” = §}. Let M; be
the set S together with the single point P = (%, 0) of C.

Clearly, each of My, M,, and M, satisty conditions (i) and (i) of Theorem 1.
All that is required to prove that these sets are ACR’s of 7 2 is to construct f and
G142 . We indicate the construction of these functions but omit the details of
showing that condition (iii) is satisfied. ,

M, is an ACR of 1%

Proof. Let f, leave points of M, fixed and for each P in Cl(M)—M;, let
Fo(P) = (0, 0). Lt g, be a retraction of I* onto the arc {(x, 3Gin1/x): 1/2in<x <t}
such that it —1<x<1/2in, then g(x,y) = (1)2im, 0).
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M, is an ACR of I%

Proof. Let f, be the identity of M,. Let g, be a retraction of I 2 onto
B, = {(x, 3(sin1/x)): 1nQi+3<x <}, such that if —4<y<$ and (x, y) lies (o
the left of B,, then gx, y) is the left-most point of (Ix {y}) N B;.

M, is an ACR of I%. .

Proof. Let fo(@) = Pif Qis in Cl(M;)—M;. Let C(, Cy, ... be a sequence of
circles each with center (0, 0) such that Cy; n M3, Cy N M3, ... is a sequence of
points Py, P, ... converging to P.-Denote by C} the circle C, logether with its
interior. Let g, be a retraction of I% onto M5 n C¥ such that g(T) = P, il T is in
I*—int(CF).

Note that CI(M5) does not have the fixed point property, so CI(M;) is not
an ACR of 72, In summary, we have that an ACR of I* need not be arc wise con-
nected even if it is closed, and the closure of an ACR of J* may or may not be an
ACR of I%

4. ACR’s of Peano continua. In this section we obtain some properties of ACR’s
of Peano continua.

The proof of Theorem 4 is a simple modification of the proof of Theorem 3.16
of [1], and is omitted.

THEOREM 4. Suppose M is an ACR of I", where M is closed and in the interior
of I" and n>1. Then M does not separate I".

DerINITION 4. The space M is said to be almost arc wise connected (AAWC)
if for each pair of disjoint open sets U and ¥ in M there exists an arc in M which
meets both U and V.

THEOREM 5. An ACR of a Peano continuum is AAWC.

Proof. Suppose M is an ACR of the Peano continuum N, and let /3 N—M be
an almost continuous function which leaves points of M fixed. Let x be in U and
let y be in ¥ where U and ¥ are disjoint open sets in M. Then

D = (Nx M)—(({x} x (M=) u ({p} x (M=)

is an open set containing f. So D contains a continuous function g with domain N.
Then g(N) is a Peano continuum, g (x) is in U, g (y) is in ¥, g(N) is arc wise connected,
and the result follows.

Note. The set M, U ([—4,0]x{0}) is not AAWC and cannot be an ACR
of I%, even though it is a continuum with the fixed point property.

THBOREM 6. The continuous image of an AAWC space is AAWC.

Proof. Suppose fis continuous with domain the AAWC space N. Suppose U
and ¥ are disjoint open sets in f(N). Let 4 be an arc in N which meets both £~ (1)
and f~(¥). Then f(d4) contains the desired arc.

Using Theorem 6 and a modification of the proof of Theorem 5 we can now
prove:

* ©
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TueoreM 7. An ACR of an AAWC space is AAWC.

‘We can now shed some light on the problem suggested in Remark 1 of [3).

COROLLARY 2. An ACR of an ACR of a Peano continuum is AAWC.

5. I;-almost continuity. We now digress a bit. It would be of interest to study
types of functions and retracts, more general than almost continuous, which have
the fixed point property when defined on an n-cube. The notion of I';-almost
continuity was introduced by Naimpally and Pareek [7]. They leave open the question
as to whether a Hausdorfl space with the fixed point property for continuous func-
tions also has the fixed point property for I';-almost continuous functions. We will
give a counter-example.

DErFNITION 5. The function /2 X—=Y is I';-almost continuous if each open set

n
of the form () ((X % Y)—(d4,x B)), where 4, and B, are closed, contains a continuous
=1

function with domain X.

ExampLE, Let f: I-1 be a function which has no fixed point such that if U is
an open subset of J, then f(U) = I. Then fis I';-almost continuous. To see that this

n
is true, assume not. Then there exists an open set () I>—(4;x B)) which contains no
n =1
continuous function. Then | (4;x B)) contains a MBS, K. By Theorem 1 of [5],
=1 n
the X-projection of K is connected and non-degenerate, so J 4; contains an open

=1
set. But then some A; contains an open set and £ (4;x B)) # @, a contradiction.

6. Questions and remarks.

1. It would be of interest to know something about AAWC spaces.

2. Note that Theorems 5 and 7 and Corollary 2 all hold for I';-almost con-
tinuous functions.

3. Under what conditions is a subset X of the plane a MBS of some real func-
tion? Tt is known that K must be a Cantor set with connected X-projection [4].

4, Call M a weak almost continuous retract (WACR) of I" if there exists an
almost continuous function f: I"-»I" such that f(I") = M and f leaves each point
of M fixed. Tn Question 10 of [8] it is asserted, in effect, that if the continuum M is
2 WACR of 12, then M has the fixed point property. This author has thus far been
unable to determine if this is true,

The point is, when considering the almost continuity of a function £, one must
be carefull to specify the space that is to be considered the range of f. Let /2 X=Y
be any function. Let ¥’ be the set Y together with a point P and declair a non-empty
subset U of ¥ to be open if P is in Uand U—{P} is open in Y. Then f consjdf.:red
as a function from Xinto Y, is almost continuous. This raises the following question.
Suppose f2 X— Y is almost continuous and Z is a subspace of ¥ such that f(X.)cZ..
Under what conditions is f; X-»Z almost continuous? One obvious condition is
that Z be open in Y. Another condition is that Z be a retract of Y.
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5. In Theorem 1 the functions g;, g5, ... may just as well be taken to be almost
continuous functions.
6. Can an indecomposable continuum be an ACR of I*?
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Discrete and continuous flows of characteristic O
by

Ping—Fun Lam * (Columbia, Miss.)

Abstract, The objective of this paper is to show some application of strictly almost equiconti~
nuous transformation groups (s.a.e.) of [6] on discrete and continuous flows, making no assump-
tion of the presence of equicontinuous points. We assume that the phase spaces X to be locally
compact and connected, the set G of points of characteristic 0% to be open and dispersive. Then we
show that under general conditions there exist components X and L of X— G which acts as positive
and negative centers of attraction and sufficient conditions for G to be dispersive are also obtained.

Let (X, T) be a discrete or continuous flow on a locally compact metric space.
Hence T denotes the group of integers for the case of discrete flow, the group of real
numbers for the case of continuous flow. Let 7% and T'~ be respectively the set of
non-negative and the set of non-positive elements of T. Let x& X and %, be the
neighborhood filter of x. The positive (negative) prolongation of x € X is defined to

be the set .
D) =N UT* (D= UT).
Uey Ve

A point x e X is said to be of characteristic 0%, 07, OF, if respectively we have

D*(x) = xT*, D™(x) = xI'"; D*(x) = xT* and D™ (x) = xT~. The set of points
of characteristic OF is invariant and is denoted by G; its complement is denoted
by F. A point y e D*(x) is characterized by that there exist sequences {x,}=X
and {t,}aT" such that x,~ x and x,t,—y; points in .D™(x) may be similarly cha-
racterized. If the group T is equicontinuous at x € X, then x is of characteristic
O*: converse is in general not true. A flow (discrete or continuous) is said to
be of characteristic 0% if X = G.

Tn this paper we are mainly interested in the studying of F and the corresponding
discrete flow when G is sufficiently large. Results for continuous flows are also ob-
tained (Section 3) under simpler approach. The main results are application of our
works [5] and [6]. Two of the main theorems which we obtajn in this paper are
the following.
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