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5. In Theorem 1 the functions g;, g5, ... may just as well be taken to be almost
continuous functions.
6. Can an indecomposable continuum be an ACR of I*?
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Discrete and continuous flows of characteristic O
by

Ping—Fun Lam * (Columbia, Miss.)

Abstract, The objective of this paper is to show some application of strictly almost equiconti~
nuous transformation groups (s.a.e.) of [6] on discrete and continuous flows, making no assump-
tion of the presence of equicontinuous points. We assume that the phase spaces X to be locally
compact and connected, the set G of points of characteristic 0% to be open and dispersive. Then we
show that under general conditions there exist components X and L of X— G which acts as positive
and negative centers of attraction and sufficient conditions for G to be dispersive are also obtained.

Let (X, T) be a discrete or continuous flow on a locally compact metric space.
Hence T denotes the group of integers for the case of discrete flow, the group of real
numbers for the case of continuous flow. Let 7% and T'~ be respectively the set of
non-negative and the set of non-positive elements of T. Let x& X and %, be the
neighborhood filter of x. The positive (negative) prolongation of x € X is defined to

be the set .
D) =N UT* (D= UT).
Uey Ve

A point x e X is said to be of characteristic 0%, 07, OF, if respectively we have

D*(x) = xT*, D™(x) = xI'"; D*(x) = xT* and D™ (x) = xT~. The set of points
of characteristic OF is invariant and is denoted by G; its complement is denoted
by F. A point y e D*(x) is characterized by that there exist sequences {x,}=X
and {t,}aT" such that x,~ x and x,t,—y; points in .D™(x) may be similarly cha-
racterized. If the group T is equicontinuous at x € X, then x is of characteristic
O*: converse is in general not true. A flow (discrete or continuous) is said to
be of characteristic 0% if X = G.

Tn this paper we are mainly interested in the studying of F and the corresponding
discrete flow when G is sufficiently large. Results for continuous flows are also ob-
tained (Section 3) under simpler approach. The main results are application of our
works [5] and [6]. Two of the main theorems which we obtajn in this paper are
the following.

* Partially supported by NSF Grant GP-38885.
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THEOREM 1. Let (X, T) bea discrete Sflow, where X is a locally compact connected
metric space. If F is non-empty, closed, totally disconnected, consisting of recurrent
points, and G is connected, then F is the union of one or two fixed points.

TueoREM 2. Let (X, T') be a discrete flow on a compact connected metric space.
If F is non-empty and compact and G is a semi-continuum which contains a point not
almost periodic, then there exist invariant components A and B of F (4 may equal B)
such that a()<A and w(x)cB for all xe X~(4 U B).

1. Flows of characteristic OF. In this section we give a proof for the theo-
rem whose case of continuous flow is proved in [2].

TreoreM 3. Let (X, T) be a discrete or continuous flow of characteristic 0% on
a locally compact metric space. Then there exists a decomposition. into sels which dare
open and closed X = Aw B such that 4 = {x & X| J*(x) = @ and J™(x) = @} and
B={xeX| x is almost periodic}.

The positive (negative) prolongation limit set of x& X is defined to be

JHx) = {'T] Dr(xt)y (J(x) = t('}D"(xt)) .

Tt can be easily shown that D*(x) = J*(x) U xT™* and that y e J*(x) if and only if
there exist sequences {x,}c X, {f,}=T ™, t,~c0 such that x,—x and X,#~).
The proof of Theorem 3 follows from a sequence of simple lemmas.
Levma 1. Let (X, T) be a discrete or continuous flow. If xe X has a compact
neighborhood U and UcG, then whenever x is positively recurrent, X is positively
almost periodic.

Lemma 2. If (X, T) is a flow of charaeteristic OF, then every orbit closure is
minimal. ) :

Proof. Suppose there exists ﬁg;c?' Then x € DT (y) u D™(y)—yT, contradict-
ing that y € G.

" Lemma 3. Let (X, T) be a flow of characteristic OF. Then x e X is positively

(negatively) recurrent if and only if J*(x) # @ (J~(x) # @).

Proof. Obvious (cf. [1, Lemma 2]).

LEMMA 4. Let (X, T) be a flow of characteristic OF on « locally compact metric
space. Then x € X is almost periodic if and only if either J* (x) 5= & or J™(x) # @.

Proof. The ne}:essity is clear. For the sufficiency we may assume J™"(x) # @.

Lemma 1. Since X is locally compact this implies that xT'* is compact, whence
o(x) # ©. By Lemma 2 we have XT = w{x)and *Tisa compact minimal set. Hence x
is almost periodic.

Proof of Theorem 3. From Lemma 4, X = 4 U B. That B is o closed set is
clear. Now xT is compact minimal set for x & B. Take a compact neighborhood U
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of xT. Sinci_ D¥(x) = xTe U, there exists a sufficiently small neighborhood ¥ of x
such that VT« U. If y e V then y e B. Hence B is also open.
The proof of Theorem 3 is completed.

2. Discrete flows of characteristic OF except for a zero-dimensional set. In study-
ing discrete flows of nearly characteristic zero we find that it is sufficient for G to
have a point which is not almost periodic, with (X, T') a discrete flow on a locally
compact metric space, F' non-empty closed and totally disconnected and G con-
nected. There is in general no such a point @ in G, however it is desirable to seek
conditions as weak as possible guaranteeing the existence of a.

LemMA 5. Let (X, T) be a discrete flow on a locally compact connected metric space.
Let K be a closed and totally disconnected set such that FcK. Let x e F. In order
that there exist a € X—K and a sequence {t,} =T such that at,— x it is sufficient that
any one of the following conditions is satisfied:

(a) X is locally connected im kleinen at x [4];

(by X—K is locally comnected;

(c) there exists an open neighborhood W of x such that Wn (X—K)cWn E,
where E is the set of points at which T is equicontinuous; :

(d) K consists of recurrent points (in this case the connectedness of X is not needed).

Proof. The proof for conditions (a), (b) and (c) are similar, cf. proof of
[6, Lemma 1.11].

We prove that condition (b) is a sufficient condition. We prove by contradic-
tion by assumming that such an @ does not exist. Since xeF there exist
yeX*zeX,z# y, {t,}<T, {x,}cX such that ‘

X=X,

Xt,—=Yy, X, 0,—>Z,

where X* is the one-point compactification of X. Now that a locally compact con-
nected metric space is separable, hence X * is a compact metric space; then {0} U F
is a set of dimension zero. Let U be an open neighborhood of y such that U is
compact, 3Uc X—K and z¢ U. Let X ¢ V;2V,oV;>... be a decreasing sequence
of neighborhoods of x such that their diameters go to zero. Let 4, be the component
of ¥, containing x. Then there exists N, such that for n> N,.4,= U. For otherwise
A, 1, would intersect 8U infinitely often and so there exists b € 90U n (D¥(x) U D™ (x)).
Hence x e D~(x) u DT(x)=bT, which contradicts the hypothesis of the proof.
Let X,,, be the component of x, in ¥, nzm. For a similar reason we can conclude
that there exists M, such that if m>M, then K, ,t, N U = @. For a prescribed
£>0 let s be chosen such that s>M,, s>N,, diameter (V;)<}e and V, is compact.
Let p, € K, 0 0V,. By choosing subsequences we may assume that p,—p. Since
lim{K,,| n=s,s+1,..} # @, we have im{K, | n=s,s+1, ..} is connected.
Hence p € 4,. We may assume pt,—q € U. Let W be a connected neighborhood of p
of diameter <}e. We may assume that {p,}=W. Since W1, is connected, pf, € U
and p, 1, ¢ U, we have r € 8U such that r € D*(p) u D™(p). Hencep e D*(r) v D™ (r).
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Denote r by r, and let & = 1, %, ... and assume that ¢ = limry, € 0U exists. Then
x e D*(¢) L D™(c)=T, which contradicts the hypothesis of the proof. Hence (b) is
a sufficient condition.

For proving that (a) is a sufficient condition we use the proof of (b). The
connected neighborhood W of p should be replaced by a sequence of connected sets
in the & neighborhood of x. The connected sets join p o p,.

For proving that (c) is a sufficient condition we modify the proof of (b) by
introducing a compact neighborhood Uy of y, Uy= U. Now the sets 4, can be shown
to satisfy that 4, U, for ns. By the hypothesis of (c) we may assume that p € E.
Then pt,—qe U, and p,t, ¢ U provide a contradiction. N

The proof of condition (d) is different. Since x is recutrent, xT' o T = xTT,
We may assume that there exists g € D¥(x)—xT. Let 4 be the orbit closure of x in
(X*,T), then ge D*(x)—A. Let U be a neighborhood of A4 in ‘X* such that
g¢U and dUcX—K. We may assume the existence of {#}=T™ such that
xt,»ped and a sequence x,f,~+¢. By the fact that 4 is a compact invariant
set and by continuity argument there exists a subsequence {x,} of {x,}, a sequence
{k}, k;>o0 such that

xmsis xm(S,--l- 1): wes xru(si"'ki_l) € U and xmkm ¢ U .

We may assume that x,k,—ye X—U. Then, y(—1), y(~2),..eU. Since y is
negatively recurrent we must have yedU. Then ye D*(x) n (X—K). Hence
xe D~(y)<yT.

The proof of Lemma 5 is completed.

COROLLARY 1. Let (X, T) be a discrete flow on a locally compact zero-dimensional
metric space. If (X, T) is pointwise recurrent, then (X, T) is of characteristic OF.

Proof. In condition (d) put K to be X. It follows from Lemma 5 that F = &,

Proof of Theorem 1. We first prove for the case that X is compact. Since F
consists of recurrent points, F # &, by Lemma 5 G contains a point which is not
almost periodic. Applying Theorem 3 to the restricted flow (G, T) we find that
B=@.1f xeG, then a(x) U o(x)=F. We claim that T is equicontinuous at points
in G, For suppose not there would exist sequences {x,}=G, {t,}=T such that

x,»x€G, xt,»peF, x,t,—>qeF, g#p.

We may assume #,20 for all n. Then p, g € w(x). Let U be an open neighborhood

of p such that U is compact, 8U<G and g ¢ U. Then there exists {k,}=T ", k,~®
- such that

Kby, X(ly+ D), oo, Xy +h,—1) e U and  x(t,+k) ¢ U.

The proof of (d) of Lemma 5 shows that there is a contradiction to the fact that
'B = 93 We have then shown that E = G, where F is the set of points in X where T
Is equicontinuous. (X, T) is then satisfied what we defined in [6] to be a strictly
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almost equicontinuous transformation group (cf. [6], p. 171 and Theorem 1.5 (3)).
Since T'is Abelian, by 1.17 of [6] F is the union of one or two fixed points.

It remains to consider the case that X is non-compact by considering the extended
flow (X*, T) on the one-point compactification X*. It is easy to verify that the set
of characteristic 0% points in (X*, T) contains G and the set of non-characteristic 0%
points F in (X*, T) contains F. Hence (X*, T)) satisfies the hypothesis for (X, T) in
the theorem. The proof for the first case then shows that F is the union of one or two
fixed points. Hence F consists of one or two fixed points.

The proof of Theorem 1 is completed.

The hypothesis that F consists of recurrent points is in general necessary.
However, the condition can be omitted if further connectivity is assumed on G
or X, as shown in the following theorem.

THEOREM 4. Let (X, T) be a discrete flow on a locally compact connected metric
space. Let F be non-empty, closed and totally disconnected and G be a semi-continuum.
If G contains a point which is not almost periodic, then F is the union of one or two
fixed points.

Proof. Applying Theorem 3 to (G, T) we have B = &. We show that if xe G
then T'is equicontinuous at x. For this fact we need not assume that G'isa semicon-~
tinuum. We need to assume that there exists m#0 such that x and xm can be joined
by a continuum K in G. Suppose T is not equicontinuous at x, then there. exist
sequences {x,}<=G, {f,}=T such that

x,—~+x€G, xt—-peF, xit,—»qeF, q#p.

Now let U be an open neighborhood of p such that U is compact 9U=G and g ¢ .
We may assume £,>0 for all n. Since g eJ*(x) we have g'€ @(x). Then there exists
{k,}=T*, k,~o0 such that ‘

x(#,+K)¢EU.

We make the assumption that z = limx(#,+k,) exists, z¢ U. If yeKk, then
¥(ty+k,)— z. For if not we can choose a small open neighborhood ¥ of z such that
V is compact and V< G. Then K(1,+k,) would intersect 8V for infinitely - many
. There would exist ae K, bedV such that beJ¥(a). This would ocontradict
B = @. Hence xm(t,+k,)—z. On the other hand xm(t,+k,) = (x(tatE)ym—zm.
Then z=zm is a periodic point. Now by continuity argument we have
z2(—1),2(~2),..€U. Hence zedU. But then ze J*(x) n G contradicts that
B = @&. Hence T is equicontinuous at x. Now set X® = X if X is compact and
set ® = X* if X is non-compact. Since points in G remain equicontinuous in X, 1),
(X,T) is again a strictly almost equicontinuous transformation group. The
theorem follows from 1.17 of [6]. , )

TrEoREM 5. Let (X, T) be a discrete fllow on a locally compact connected metric
space. Let F be non-empty, closed and totally discorected and G be connected and
locally connected. Then F is the union of one or iwo fixed points.

' xt,, x(t,+1), ..., x(@t,+k,—~1)eU and
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Proof. Use Lemma 5 and Theorem 4.

3. Discrete flows with compact set F. In this section we extend results of Sec-
tion 1 to the case F is compact. The techniques are those of [6, Section 2].

Proof of Theorem 2. Consider the quotient space X, of X whose set of ele-
ments are elements of G and components of F. Since the decomposition is upper
semicontinuous, the quotient topology of X, turns X, into a compact metric space.
Let 7 X—X, be the canonical profection. Define (X, T) by (¥m)t = (x)m, x e X,
teT. Let G, and Fy be the corresponding sets for G and F respectively in X, Tt
is easy to verify that Grne Gy,. The set Gr is a semi-continuum and since G is assumed
to have a point not almost periodic, Gr also has a point not almost periodic. Applying
Theorem 3 on (Gn, T) we have B = @. The proof of Theorem 4 shows that Gr con-
sists of equicontinuous points, hence (X, T) is a.s.a.e. Hence the set of non-equicon-
tinuous points of X, consists of one or two fised points. Let a, b denote the
fixed points. Then Gy = X—{a, b}. Applying Theorem 3 on the restricted set
we have w(x) U a(x)c{a, b} for all x € Gy. Theorem 2 follows.

COROLLARY 2. Let (X, T) be a discrete flow on a locally compact metric space X
which is not compact. If F is non-empty and compact and G is a semi-continuum which
contains a point not almost periodic, then F is a continuum.

Proof. (X*, T satisfies Theorem 2.

TueorREM 6. Let (X, T) be a discrete flow on a locally compact connected metric
space X, F non-empty and closed. If F has two isolated fixed points and G is connected,
then X is compact and F is the union of two fixed poinis.

Proof. Let p, g be the isolated fixed points of F. The proof for (d) of Lemma 5
shows that there exists a e G such that pe al. If we assume that pe w(a) the
proof of Theorem 1 shows that p = w(a) and T is equicontinuous at a. Let
R = {x € G] w(x) = p}. In applying Theorem 3 to (G,T) we have B = &. It
follows easily that R is both open and closed in G and we have R = G. Likewise
there exists b€ G such that w(b) U «(b) 2 g. Then ¢ & a(b). The previous argument
applied to T~ shows that ¢ e a(x) for all x e G and T~ is equicontinuous at x. It
follows easily that (X}, T') is a s.a.e., where X* is again the one-point compactifica-
tion of X. Let F be the set Ffor (X*, T) and let 7: X*— X + be the canonical projec-
tion by identifying components of F to points, as in the proof of Theorem 2. Ac-
cording to 1.17 and 1.22 of [6] a strictly almost equicontinuous transformation
group with abelian acting group has one or two fixed points p, ¢ and for any
other point y we have peyT and geyT. Since F already has two isolated fixed
points a, b, it follows that X is compact and F has no other points but «, b.

4. Continuous flows. The case for continuous flows can be studied by the help
of the fact that orbits are connected. Further connectivity of G is not required
for this case. )

TrEOREM 7. Let (X, T) be a continuous flow on a compact connected metric
space, F non-empty and closed, G connected, and let G contain’ a point which is
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not almost periodic. Then F is the union of two components K and L (K may equal L)
and o(x) = K, a(x) = L for all xe X—(K U L).

Proof. We first prove for the case that F is totally- disconnected. Applying
Theorem 3 to (G, T) we see that B = @. Since T is connected, F consists of fixed
points. The proof for Theorem 1 shows that G consists of points at which T is equi-
continuous. Again F consists of one or two fixed points a, 4. It follows easily that
(x) = a and a(x) = b for all xe X—{a, b}.

As in Section 2 we form the flow (X, T). The general case of Theorem 7
follows from projecting (X, T) to (X, T).
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