Arcwise connected and hereditaxily smooth continua
by
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Abstract. We say that X is smooth at the point p € X if for each convergent sequence xi, X3, ...

of points of X and for each subcontinuum X of X such that p, x € K, where x = limxy, there is
. n—+wo .
a sequence Ky, K, ... of subcontinua of X such that p, x, ¢ K,foreachn=1,2,...and Lim K, = K.

n—o0

The set of all points of a continuum X at which X is smooth is denoted by I(X). A continuum X is
said to be hereditarily smooth at p provided each subcontinuum of X which contains p is smooth
at p. The set of all points of a continuum X at which X is hereditarily smooth is denoted by HI(X).
It is proved that if a continuum X is arcwise connected and HI(X) # @ then X is hereditarily
arcwise connected and HI(X) = I(X); and if C is the constituent of the set of all points at which X'is
locally connected, and Cn HI(X) # @, then C = HI(X) = I(X). Also other properties of an
arcwise connected and hereditarily smooth continua are studied in the paper,

§ 1. Introduction. The notion of smoothness of continua in a general form has

_ been introduced in [10]. In that paper relations are studied between this notion of

smoothness and that which was introduced previously in [5] by Gordh. In particular,
it is proved that both notions coincide on metric continua which are either hered-
itarily unicoherent at some point or irreducible between two points, i.e., any con-
tinuum X smooth in the sense of [5]is smooth in the new sense of [10]; and any con-
tinuum smooth in the new sense which is either hereditarily unicoherent at some
point or irreducible is smooth in the sense of [5]. For example, smooth. dendroids
(see [2]) are those arcwise connected continua which are smooth in the sense of [5].
The clags of arcwise connected continua which are smooth in the sense of [10] is
essentially larger than the .class of smooth dendroids. Any dendroid X (and, more
generally, any continuum X hereditarily unicoherent at some point) is hereditarily
smooth at p (see [10], Corollary (7.1); cf. [9], Theorem (2.6)). In this paper we con-
sider arcwise connected continua which are hereditarily smooth at some point.

The author is very much indebted to dr. J. J. Charatonik for encouraging these
investigation and for many helpful suggestions and conversations while this paper .
was in preparation.

§ 2. Preliminaries. The topological spaces under consideration will be assumed

to be metric and compact. If the space X under consideration is established, then g de-
notes a metric on X; B(N, &) denotes the union of all open metric balls with the
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centres in a given set N and with the radii ¢>0, and ab is an arbitrary arc with end-
points a and b.

The numbermg of conclusions in the proofs is separate in every proof. If
Ay, 4,, ... is a sequence of subsets of a space X, then Li A4, denotes the set

n-reo
of all points x € X for which every neighbourhood intersects 4, for almost all n,
and Ls A4, denotes the set of all points x e X for which every neighbourhood

intersects A, for arbitrarily large n. A sequence A, 4,,.. of subsets of X is
said to converge to a set 4 (denoted by Lim 4, = A) in case Li 4,= 4 = Ls 4,.
n-roo n-r oo Hon

Tt is known (see [8], § 47, II, Theorem 6, p. 171) that:

PROPOSITION 1. If Cy, C,, ... is a sequence of subcontinua of the space X such
that Li 'C, # O, then the set Ls C, is a continuum.

n—o

It is proved (see [10], Lemma (2.2)) that:

PRrOPOSITION 2. Let Cy, Cy, ... be a sequence of subcontinua of the space X
and {x,y}c Li C,. If Ls C, is irreducible between points x and y, then the sequence

n—+oo
Cyp, Cy oo
We say that X is smooth at the point p € X if for each convergent sequence

X1, X5, ... of points of X and for each subcontinuum K of X such that p, x ¢ K,
where x = lim x,, there exists a sequence Kj, K, ... of subcontinua of X, such

n-+o

that p, x, €K, for each n=1,2, ...

is conver, gent.

and Lim K, = K (see [10]).
. n=roo
‘We have the following characterizations of continua which are smooth al some

point (see [10], Theorems (2.4) and (3.1)):

PRrOPOSITION 3. The continuum X is smooth at the point pe X if and only if
one of the following conditions holds:

@) for each convergent sequence X1, x,, ... of points of X and for each irreducible
continuum I(p,x) between p and x, where x =limx,, there exists a sequence

o
I(p, x)), I(p, x3), ... of irreducible continua between p and Xy, respectively, such

that Lim I(p, x,) = I(p, x);

n-oo

(i) for each subcontimuum N of X and for each open set V of X there exists
a continuum K such that pe NcV implies NoInt KeKe V.

We can characterize the smoothness by the notion of nonaposyndeticity of
F.B. Jones (see [6], p. 104). Lot A=X. Then we define X\T(A) = {xe X: there
exists a subcontinuum @ of X such that ernth: Qc X\4} (see [3], p. 113), and
put T'(4) = T(T""*(4)) with T°(4) =

COROLLARY 1. A continuum X is .s'mooth at pe X if and only if for each con-

tinuum N in X such that peNand for each closed set A in X the condition N n 4 = @
implies N 0\ T(A) =

icm°
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Indeed, il N~ A =@, then Nc X\4. Thus, by Proposition 3(ii), there exists
a subcontinuum Q of X such that NclInt Q= Qe XNA. Therefore No XNT(4)
by the definition of T(4), i.e., N n T(4) =

Conversely, let N be an arbitrary continuum in X such that p e N and let ¥ be
an open set in X containing N. Then there is a closed set 4 in X such that
NeXNAcXNAc<V. We have N N T(4) = @, i.e., for each xe N, there is a con-
tinuum @, such that xeInt Q< Q< X\4. Put

0= U{0 xeN}.

It is casy to verify that the set Q is a continuum satisfying N Int Qc Q= XNA
< V. Thus condition (i) from Proposition 3 holds, i.e., X is smooth at p.

Since T'(A) is closed (see [3], Lemma 1, p. 114) we have by Corollary 1.

COROLLARY 1. Let a continuum X be smooth at p € X and let N be a subcontinuum
of X such that pe N. If the set A is closed and N n A = @, then N n T"(4) =
for each n=0,1,2, ..

The set of all points of an arbitrary continuum X at which X is smooth is called
the initial set of X and is denoted by I(X). If I(X) # @, then X is said to be smooth.

The next two corollaries are easy consequences of Proposition 3.

COROLLARY 2. A continuum X is locally connected at each point of I(X).

COROLLARY 3. A continuum X is locally connected if and only if I(X) =

A continuum X is said to be hereditarily smooth at p provided each subcon-
tinuum of X which contains p is smooth at p. The set of all points of an arbitrary
continuum X at which X is hereditarily smooth is called the hereditarily initial set
of X and is denoted by HI(X). If HI(X) # @, then X is said to be hereditarily
smooth. We have

CoROLLARY 2'. For each subcontinuum Q of X, Q is locally connected at each
point of the set Q n HI(X):

COROLLARY 3. A continuum X is hereditarily locally connected if and only if
HI(X) = X,

§ 3. Arcwise connected continua. The main result of this section says that any
arcwise connected and hereditarily smooth continuum is hereditarily arcwise con-
nected. Firstly we prove

THroreM 1. Lef an arcwise connected continuum X be hereditarily smooth at
a point p e X, let Q be an arbitrary subcontinuum of X and let pq be an arc in X which
is irreducible between p and Q. Then the continuum Q is hereditarily smooth at the
point, g. .

Proof. We have pg ~ Q = {g}. Let K be an arbitrary subcontinuum of Q such
that g € K. Then pg n K = {g}. We will show that K is smooth at g. Let x, X5, ...
be a convergent sequence of points of K and put x = lim x,. Let P be a subcon-

e
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tinoum of K such that x, geP. X being hereditarily smooth at p, the continuum
pg U K is smooth at p. Therefore there is a sequence Ry, R,, ... of subcontinua
of pq U K such that x,, p € R, for each n = 1,2, ... and Lim R, = pg U P by the

n-+oo
definition of smoothness. We define P, = K n R,. Obviously P, is a continuum
for each = 1, 2, ... Moreover x,, e P,cKforeachn = 1,2, .. and Lim P, = P.
The proof of Theorem 1 is complete. n o

COROLLARY 4. If X is a hereditarily smooth arcwise connected continuum, then
any subcontimuum of X is also hereditarily smooth.

Recall that a continuum X is said to be decomposable if there is a decomposi-
tion of X into two proper subcontintia. A continuum is said to be hereditarily de-
composable if any subcontinuum of it is decomposable.

COROLLARY 5. Any hereditarily smooth arcwise connected continuwm is heredi-
tarily decomposable.

This is obvious if we observe that, by Corollaries 2 and 4, any subcontmuum
of hereditarily smooth arcwise connected continuum is locally connected at some
point.

It is well known that for every irreducible continuum X there exists an upper
semi-continuous decomposition of X into continua (called layers of X) (see [8],
§48, IV, p. 199) with the property that the decomposition of X into layers is the
finest of all linear upper semi-continuous decompositions of X into continua
([8], § 48, IV, Theorem 3, p. 200, [7], Fundamental theorem, p. 259). If each layer
of X has a void interior, then X is said to be of type A (see [8], § 48, ILL, p. 197, the
footnote, and also [11], Definition 4, p. 13, where these continua are said to be
of type 4°). It is well known (see [8], § 48, VIL, Theorem 3, p. 216; [11], Theorem 10,
p. 15; [4], Theorem 2.7, p. 650) that an irreducible continuum X is of type A if and
only if each indecomposable suhcontinuum of X has a void interior. Thus, by Cor-
ollary 5, we have

COROLLARY 6. Any irreducible subcontinuum of a hereditarily smooth arcwise
connected continuum is of fype A (in fact, it is an arc — see Theorem 3 below).

Recall that a subcontinuum K of X is called a continuum of convergence (see [12],
p. 127, cf. [8], § 47, VI, p. 245) provided X is a topological limit of the sequence of
continua such that

K =LimK,

n-roo

and KnK,=@ foreachn=1,2,..

If X is compact, then we can assume that K, K,,
have

... are mutually disjoint, We

THEOREM 2. Let X be an arcwise connected continuum which is hereditarily smooth

at the point p € X. If K, is a continuum of convergence in X and pe is an arbitrary arc,
then Ky N pc is connected.

icm°
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"Proof. Suppose, on the contrary, that K, n pe is not connected. Then there is
an arc agby in pe such that
™ aobo M Ky = {ag, by} and gy # b,.

Obviously we can assume a, € pb,. Since K, is a continuum of convergence
in X, K is a topological limit of the sequence of continua such that

(2) K, =LimK,

n-teo

and K, N K, =@ foreach m# n and m,n = 0,1,2,..

Therefore there are sequences {g,} and {b,} of points of X such that

©) lima, =a, and limb, = b,
n=ro n-oo
4 a,b,e K, foreachn=0,1,2,..

Let pa, be the arc in pe. So we have pa, N Ko XN\{bo}. Let ¢ be a positive
number such that £<1/2¢ (b, pay). Since X is smooth at p, by Proposition 3 (ii) there
is a continuum Q in X such that

) pao=Int Q= 0= B(pay, &)= XN\{b,} .
By (3) and (5), and by the choice of &, we can assume that
© t,€ Q= X\{b,}

For each n = 1,2, ... take in K, the continuum I(d,, b,) irreducible between Q
and b,. Let eb, be an arc in agb, such that eby, 1 Q = {e}. It suffices to consider
only two cases.

1'. I(d,, b,) " eby = D foreachn = 1,2,... (or there is a subsequence I(d,,, b,,)
of the sequence I(d,, b,) such that I(d;,, ,,k) N chy =@ for each k=1,2,..,
but then the proof is the same). Then we consider the following continuum

for each n= 1,2, ..

R=QuUK,u UId,b,).
n=1

Since X is hereditarily smooth at p, R is smooth at p. Thus, by (3), there is
a sequence of continua R, in R such that

N p,b,eR, foreachn=1,2,.

and

®8) Lim R, = pag U agby .
nroo

But for each n = 1,2, ... we have

©®) I(dy, b)=R, .
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Indeed, by Corollary 6. the irreducible continua I(d,, b,) are of type:A, and
by the definition of R any layer of I(d,, b,) separates R between b, and p. Thus any
layer of I(d,,b,) is contained in R,, i.e., (9) holds.

Therefore, by (7) and (9) the set Lim R, contains some irreducible continuum

n-r o
between by and Q, which is contained in Kj, contrary to (8).
2. I(d,, b,) N eby # @ foreach n = 1,2, ... Then we can take, by Corollary 6,
irreducible continua I(d,, z,) in I(d,, b,) such that

(10) Zy € ebo E
and
(11) no proper subcontinuum of I(d,, z,) containing d, intersects eby .

(2) and (10) imply that lim z, = b,. By the standard construction we can take,
00

n
by (11), irreducible continua I(d,,x,) in I(d,,z,) such that lim x, = by, and

n=+oo
I(d,, %) N eby = & for each n=1,2;... Then we obtain a contradiction as in
case 1. The proof of Theorem 2 is complete.

Let an irreducible continuum X be of type A and let T, ¢ € [0, 1], denote a layer .

of X. Thus X = |J {T,: 0<z<1}. Put

L= U{T.: O<u<f} and R, = U{T,: t<v<l}.

Therefore

L= (0,9) and R, =o', 1),

where ¢ is the canonical mapping from X to the unit interval [0, 1]; we sec that
both L, and R, are connected. (Here the capital letters L and R stand for left and
right, respectively). .

Adopt the. following definitions (see [1], p. 46). A layer T is said to be a layer
of left cohesion if either t =0 or T, = LN\L,; and T, is said to be a layer of right
cohesion if either ¢ = 1 or T, = R,\R,. One can see that T} is a layer of right cohesion
(T, is a layer of left cohesion) provided the interior of T, (TY) is empty. A lyaer Ty is
said to be a layer of cohesion if it is a layer of both left and right cohesions (see [7],
p. 260; [8], § 48, IV, p. 201). We have the following (see [1], Theorem, p. 48) »

PROPOSITION 4. An irreducible continuum X is smooth at a point p if and only If

all three of the following conditions are satisfied:
() X is locally connected at p,
(i) for each t sarisfying 0<t<o(p) the layer T, is of right cohesion,
(iii) for each ¢ satisfying o (p)<t<1 the layer T, is of left cohesion.
LEMMA 1. For each two points x, and yq of an arbitrary layer T\, of an irreducible
smooth continuum X, there exists a continuum of convergence K, such that
{x0, vo} Ko Ty

icm°®
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Proof. By Proposition 4, the layer T, is either of right or of left cohesion.
Suppose that T, is a layer of left cohesion (if T, is a layer of right cohesion the proof
is the same). Then either £, = 0 or T, = L, \L,,. If 7, = 0, then T, is a layer of right
cohesion, and the proof is the same as for layers of right cohesion. If 7, # 0, then
there are sequences {x,} and {y,} such that

(1) x, and y, belongs to L, for each n=1,2, ...,

@ lim x, = x,

n-o

and limy,=y,.

n~om

Let ¢ be the canonical mapping from X to the unit interval [0, 1]. We can assume that
foreachn=1,2,..

©) Px)<eD) <P (X )< L -
Put )
K, = o7 (lo(x), ¢ 0)])

Obviously, by (3), for each n =1,2,.. the set K, is a continuum and

foreach n = 1,2, ...

 K,n T, =@, and by (1), we have {xo, yo}<= Ls K,=T,,. We can assume that the

n—o

sequence {K,} is convergent. Then K, = Lim K, is a continuum of convergence,

and {x,, yo}cKocT;,. The proof of Lemma 1 is complete.

COROLLARY 7. Let a continuum X be arcwise connected and hereditarily smooth
at p. For each layer T of an arbitrary irreducible subcontinuum A of X and for each
arc pc in X the set pc N T is connected.

Proof. By Corollary 4, 4 is an irreducible smooth continuum. Let a be an
arbitrary point of pc N T. Therefore by Lemma 1, for each y e T'there is a continuum
of convergence K, such that {a,y}cK,=T. Thus T= U{K,: yeT} and pcn T
= U {K, npe: yeT}. But K, N pc is connected by Theorem 2, and a€ K, n pc
for each y e T. This implies that the set pc N T is connected (see [8], § 46, IL, Corol-
lary 3(i), p. 132).

LeMMA 2. Let I(a, b) be an irreducible continuum between a and b which is smooth
at the point d, and let I(c, d) be an irreducible subcontinuum of I(a, b). If T is a layer
of I(c, d), then T is a layer of I(a, b).

Proof. Let ¢ be the canonical map from I(a, b) onto I = [0, 1] such that
@(a) = 0. Suppose that ¢ ()< (d) (f ¢(c)>¢(d) the proof is the same). It follows
from Theorem (5.3) in [10] that I(a, ) is hereditarily unicoberent at d; thus
I(c, D)=~ (o (c), ¢ (d)]). Consider the continuum

K=o "0, p@) v I, d)vo (lp@d,1]).
Since a,be K, we have K = I(a, ). Therefore ¢~ *((¢(c), @(@)))=I(c, d). Thus

o7 ([0, @) = 0~ {(¢(0), o @D))=I(c, d)

5 — Fundamenta Mathematicae t. XCII
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by Proposition 4. We infer I(c, d) = o (e (9, o(d)]). This equality implies the
conclusion of the lemma.

LevMa 3. Let I(c,d) be an irreducible continuum between c and d, which is
smooth at d, and let ¢ be the canonical map from I(c, d) onto I = [0, 1] such that
@(0) = 0. If I(x,, yo) is an irreducible subcontinuum of I (c, d) such that ¢ (xo) <@ (¥o),
then the set ¢~ *(p(xq)) is a layer-of I(x,, ¥o)-

Proof. Let I(x,,¥o) be an irreducible subcontinuum of I(c, d) such that
0(x)<@(y). Consider the continmum K= ¢ ([0, ¢ (x)T) W I (0, yo) v
U 0~ ([p(¥o). 1]). Since ¢, de K, we have K = I(c, d). Therefore

flfl((‘/’ (x0)s (p(yo)))cl(xo Vo) -

Thus ¢~ (¢ (xe))=I(xe, ¥o), and the set ¢~ *(¢ (o)) is nowhere dense in I(xq, yo)
by Proposition 4. This implies by Theorem 7 in [8], § 48, 11, p. 194, that the continuum
I(x,, yo) is irreducible between each point of the set ¢~ *(¢ (x,)) and yo. Morcover,
since for each ¢ (%) <t<@(¥,) the set ¢~ !(¥) separates I(xy, ¥o), We conclude that
o {(@(xo)) is the set of all points a of I(xy, yo) such that I(xo, yo) is irreducible
between a and y,. Therefore ¢~ *(xo) is a layer of I(xo, ¥o) (cf. [8], § 48, IV, Theo-
rem 4, p. 202).

THEOREM 3. If an arcwise connected continuum X is hereditarily smooth, then X is
hereditarily arcwise connected.

Proof. It suffices to prove that any irreducible continuum in X is an arc, Let
I(a, b) be an arbitrary subcontinuum of X irreducible between given points « and b.
Then I(a, b) is of type 4, by Corollary 6. Therefore it suffices to show that any layer
of I(a, b) is degenerate. Suppose, on the contrary, that there is a nondegenerate
layer T of I(a, b). Let p e HI(X). Since X is arcwise connected, there is an arc pc
in X such that

() penT = {c}.

If pc N I(a, b) = {c}, then the continuum I(g, b) is smooth at ¢, by Theorem 1.
Thus I(a, b) is locally connected at ¢. This implies that the layer T, of the point ¢ in
I(a, b) is degenerate. But ¢ € T, and hence T, = T, i.e., T'is degenerate — a contra-
diction. .

Therefore we consider the remaining case, namely that of pe n I(a, b) % {c}.
Take an arc pd in the arc pc such that
)] pdnI(a,b) = {d}.

Then I(a, b) is smooth at d by Theorem 1; and thus, by Lemma 2, if we take the
continuum I(c, d) in I(a, b) irreducible between ¢ and d, then the layer of the point ¢ in

I(c, d) coincides with T by (1). Let ¢ be the canonical mapping from I(e, d) to the
unit interval [0, 1] such that

G) oM 0) =T

and let cd mean the subarc of the arc pe.

and  p7i(1) = {4},

icm°
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We define for each e [0, 1] the numbers «(f) and (¢) by conditions:
@  o<ad<t, o '(@®)ncd#@ and (p“((oc(t), t)) Nned=@,
&) =<pO<L, T (W) ned#B and oY, BOD) ncd =9,

it ' Nned=B; a@® =D =tif o~ ') ncd # @.
It is easy to check that the following conditions are satisfied.

© a(d) # ¢ B # 1,

g a(a(®) = a() = B(x(2) a(B(D) = O = B(B®).

®) if £ e, B®), the a() =a(®) and B() = B@),

©) i ¢ ¢, ()] and a(d) # B(®), then (x(t), B(2))n (), BO] = B.

Moreover,

if and only if

and

(10) it «(f) # 2, then ¢™*((2(9), ﬂ(t)))\(p‘l((oc(t), B@))<pe.
Indeed, observe firstly that

o7 (2, BO)N Y@@, B@)) =0~ (2 ®) L ™ (B().

Since I(c, d) is smooth at d, the layer ¢~ *(«x (%)) is of right cohesion by Propo-
sition 4. Therefore by Lemma 3 the set ¢~ *(x(?)) is a layer of an irreducible con-
tinuum  I(xo, yp) in I(c,d) such that x;e¢™'(x(?)) and y, e (). Then
pe 0 I(xg, yo) = pen @~ (x(2)) by the definition of «(f) (see (4)), thus I(x,, yo)
is smooth at some point of ¢~ *(«(£)) by Theorem 1. We infer that I(x,, y,) is locally
connected at some point of ¢~ *(x(f)); hence
(10 @~ *a(p) is 2 one-point set.

Suppose now that

zo € {07 (@™, BO)Ne (), BG))] N 0~ (BO)Npe -

Since I(c, d) is smooth at d, the layer o~ *(B(2) is of right cohesion by Proposi-
tion 4, If

o7, BO)) n o™ (W)~ pe % B,
then there is a sequence {z,} of points of (p‘l((zx(t), ﬁ(t))), ie.,

o(z) e (a(), B(),

such that

lim z, = zp € ¢~ *(B(1) N pc .

n—roo
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We can assume that <o (z,)<p(f) for each n. Take the arc pzo=pe, and con-
sider the continuum L of the form
L=pzu o~ *(t, B(®).
Then, by assumption, L is smooth at p, and thus there are, for each n = 1,2, ...,

irreducible continua I(p, z,)=L such that

Lim I(p, z,) = pzo -

n-roo
Since any layer ¢~ (t') for t<i# <p(f) separates the continuum L, we con-
clude that
R (CICANI0) | SH(CEAR

Therefore, since

zoe @ (5, B@D) 0 0 HBW) = 07 (o), BO) 0 07D,

we have

zgeLimI(p, z,) ,

n—too
i.e., 2z, €pzocpc— a contradiction.
Therefore, we can assume

o™ (@), B@) N @ (BW) npc =12

By (10) o~ (2(#)) is a one-point set. Denote this point by e. Take the arc pe in the
arc pc, and take a point ¢’ in pe such that ee’ A @~ *([8(?), 1]) = {¢'}, where ee’ is
an arc in pe. Consider two cases.

1. ¢(e) # B(2). Then there is a point #, such that B(2)<to<g(¢’). Consider
the continuum K defined as follows:

K=" p(e), 1) uee u o™ ([a(), t)) -

The continuum X is irreducible between d and any point of K n ¢~ !(f), and K'is
smooth at d, because pd N K = {d} (cf. Theorem 1). Therefore by Proposition 4,

o BW)= o[, BO) -
By the definition of B() we have ¢~ *(B(9) n pc # @; thus
o7, BO)) n o™ (W) N pe £ B

—a contradiction.

2. ¢(e') = B(). The layer ¢~ Y(B(®) is of right cohesion of I(c,d), and
{¢, 2o} =@ 1(B(9), we infer there are continua K, such that K, N K,, = @ for

icm
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n# m, Lim K, = Ko, {€, zo}cKocp ' (B(0), @(K,) n [2(d), B())] =D (cf. Lem-

n-row
ma 1). Since the continuum pe’ U ¢~ *([B(#), 1)) is smooth at p, there is a con-
tinuum @ such that

pe'=Int Q= Qcpe’ U o™ ([B(), D)Ne ~*{[a(®), (1))

(cf. Proposition 3 (ii)), because tp_l((rx(t), ﬂ(t))] npe =@ (Int Q denotes the
interior of Qinpe’ U o~ *([A(#), 1]). Since K,cpe’ U @~ ([B(®), 1])and Lim K, = K,

n=+oo

contains the point €', we can assume that K, n Q # @ for each n = 1, 2, ... Since
2y € K,, there is a sequence of points {z,} such that lim z, = z,, and z, € K. Take

norw
the continua I(z,, ¢,) irreducible between z, and Q (in K,). We can assume that
the sequence {c,} is convergent and put ¢, = lim ¢,. Then ¢, & Q.

n-*o

Consider the continuum

K=guedup™(u®, @YV Ulf(z,., ) -
n=
Since p € K, K is smooth at p. The continuum

1(p, 20) = pe v 0™ {[(), B®))

is irreducible between p and z,. Moreover, I(p, zo)< K, and lim z, = z,. Then,
n—+oo

by the smoothness of X at p, there are irreducible continua I(p, z,) in X such that
Lim I(p, z,) = I(p, zo)-

n—+oo

By the definition of K, we have I(z,, ¢)<I(p, z,). Therefore
’ Ls 1(z,, c)=1(p, z0) 0 97 (B(D) -

n-rw

By Proposition 1 the set M = Ls I(z,, ¢,) is a continuum. Therefore, because
. n-+oo

M=(penM)u(qu([a(z),ﬁ(t)))nM) and 7,97 ([2(), BO)) " M,

we have either pe " M = @ or pen M m—cp_”‘((rx(t), B(t))) #0. U penM=0,
then

co eMc;“l([a(t), ﬁ(t))) .
But e 0, and thus cpe Q nm)_a contradiction, bétsuse

0n ¢ Y[, BR)) =2,

pen Mo~ [a(), B)) # B,


GUEST


160 T. Maékowiak

then
pea o7 (B®) 0 o (@, 1)) # @

— a contradiction.
Therefore the case

m ne {(B@)npe=0

is also jmpossible. Thus (10) holds.
Obviously by (6)-(9)
(11)  the number of nondegenerate intervals of the form [x(®, (O] in 10,17 is
countable. :
Let t,, ,, ... be points of [0, 1] which determine all the intervals mentioned
in (11). Put ‘

= (I(d, ) n pc) L U (p—]((“(li) ﬁ(ti)))

Observe thatif e [0 1]and 0™ %(1) N pe = @, then t & (a(t;), A(z;) for some #;,
and thus ¢ (H<=R; if te[0,1] and ¢ ') Apc# @, then o '(HnR
= ¢~ () A pc, and therefore, by Corollary 7, ¢ *() n R is connected. If R is

closed, then ¢|R is monotone; thus R is a continuum, and since d, ceR’

cI(d, OON(T\{c}), we have a contradiction by the irreducibility of I(d,c). We
conclude that

(12) R is not closed.
Therefore, there is a sequence {g,} of points of R such that

(13) . lim g, = go € I(d, )\R .
Thus
4 o™ p@o) npc#D and  go¢pc.

Since I(d, ¢) n pe is closed, we can assume that all points ¢, are contained in
U o™i (e). 5).
" Suppose that there is a subsequence {g,} of the sequence {g,} such that
((oc(t,ﬂ) ﬁ(t,a))) for some iy. Then llm ¢ (¢,) = ¢(qo) and, by (14), cither
qa(qo) = aft,) or p(go) = B(z;). But then

90 € 97 (@(t), RE)N0 ™ (2, Bt =pe
by (10), contrary to (14).
Therefore there is no such subsequence. Let q,,e<p“1((a(t,n) i ))) Since

97 *(a(1;)) is a one-point set for each n = 1, 2, ... (by (10"), we can assume that the
sequence {7 *(«(t;))} is convergent and lnn (p"l‘(a(tln)) = X, € pc by (10).
‘n=o0

Arcwise connected and hereditarily smooth continua 161

Take a sequence {x,} such that hmx = xg, and a(t;)<e@(x,)<o(q,)<B(; ") .
Then Ls o™ (o (=), B = TO is contamed in a layer of I(c,d), a

{x0s qo}c To. Consider the continuum P of the form

P=peuTyu glfp'l([qﬂ(xn), B -

Then, by assumption, P is smooth at p; thus there are irreducible continua
I(p, x)=P su.ch that Lim I(p, x,) = px,, where px, is an arc in pc. Then any con-~

n—+ o
tinuum I(p, x,) must contain the point g¢,, and thus g, € px, — a contradiction
by (14). The proof of Theorem 3 is complete.

§ 4. The initial set of a hereditarily smooth arcwise connected continuum. In this
section we will prove that, if X is a hereditarily smooth arcwise connected con-
tinuum, then any point p of X at which X is smooth is such that X is hereditarily
smooth at p; and that the intial set of X is equal to the constituent C of the set of
all points of X at which X is locally connected provided C contains some point of
the initial set of X. Firstly we will prove some theorems which are needed in the
proofs of the theorems mentioned above, and which also show the structure of her-
editarily smooth arcwise connected continua. We have

THEOREM 4. Let a continuum X be arcwise connected and hereditarily smooth at
the point p. If K, is a subcontinuum of convergence of X, then for each two continua
pxy and py, which are irreducible between p and K, we have xy = y,.

Proof. It follows from Theorem 3 that X is hereditarily arcwise connected.
Therefore, if px, and py, are arbitrary irreducible continua between p and K,
then they are arcs. Thus

o Ko npxo = {xo} and Ko npyo = {yo}-
By assumption K, is a topological limjt of a sequence of disjoint contjnua, i.e.,

Ky, =LimK, and K,nK,=@ foreachm#nandm,n=0,1,2,..
n—orw
1t follows from {x,, yo}= K, that there are sequences {x,} and {y,} of points
of X and a sequence {x,¥,} of arcs in X (by the hereditary arcwise connectivity of X)
such that ’

@) limx, =x, and limy, =y,
n—+oo n—+w
3 ' x,y,=K, foreach n=1,2,

‘We may assume (see [8] § 42, T, Theorem 1, p. 45) that the sequence {x, 3.} is
convergent and .

(4) ' ' Lim XV = KacKo.

nr
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Since X is smooth at p, it follows by Proposidition 3(ii) that there are con-
tinua Q, and Q, such that

(5) prCIﬂt QnCQnC B(pJCO: 1/”) 3
© pyocInt 0y @, B(pyo, 1/n) -

We can assume by (2) that for an arbitrary but fixed # and for each i =1, 2, ...
we have xy; 0 0, #@ and xy;n Q, # @. Take arcs a;b,cxyy; irreducible
between x,; ~ O, and x;3, 1 Q, for each i=1,2,.

If the sequence {a;b;} contains a subsequence {aikbh} of dcgcnm ate arcs, then
there is a sequence {z, } of points such that z, €, by, N @, N Q- Therefore there
is a point z, € Lim {z,} such that zy& 0, N 0, N K, :

k-0

If each subsequence {a; b, } of the sequence {¢;b,} is a sequence of nondegener-
ate arcs, then there are arcs a;,¢; such that

U lim ¢, = ¢o€ Oy,
ko0
® a;kcikcaikblk s
) age, N 0n=2 and  aue,n Q= {a,}.

Put R= Q,u Q,u Kgu | a,c;. Obviously R is a continuum and peR.
. k=1
Moreover, for each k = 1, 2, ..., by (4) and (9), we infer that
(10) any continuum 4 in R such that p, ¢; € A contains a;,.

Since X is hereditarily smooth at p, the continuum R is smooth at p. Therefore
by (7) and by the definition of smoothness, there are continua 4, in R such that

11) {p, co}cLlim 4, = O,,
k-0
(12) p,c,€d, foreachk=1,2,..

It follows from (10) and (12) that a;, € 4, foreach k = 1, 2, ... Let &, be a cluster
point of the sequence {a,}. We have a, € Ko n Q, 0 Qj, is nonempty, by (4), (9
and (11).

Thus we find that for each n = 1, 2, the set Ko 0 @, N Q) i is nonempty There-
fore

Lim (Kg n @, N Q;) = K5 nLim @, n Lim Q) = K, n.pxy 0 pye
n—+oo n=+oo n-too
is nonempty. Hence x, = y, by (1). The proof of Theorem 4 is complete.
LEMMA 4. Let a continuum X be hereditarily arcwise connected. If the arc A, is

a continuum of convergence of X, then any subarc of the arc A, is a continuum of
convergence of X.
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Proof. The arc 4, is a continuum of convergence of X; thus 4, is a topological
limit of the sequence 4, of subcontinua of X such that

Ao =Lim4, and d,n4,=@ for m#nand mn=0,1,2, ..
n—+ow
Let a, and b, be endpoints of the arc 4. There are sequences {a,} and {b,} of
points of X and a sequence {a,b,} of arcs of X such that

¢)) lima, =a, and limb, = b,,
n—oo nr o
2) a,b,cA4, for eachn=0,1,2,..

by the hereditary arcwise connectedness of X. It follows from Proposition 2 that

3) Lim a,b, = Ay = agb, .

n—+aw

For each i = 1,2, ... there is an arc a,,b,, such that

“) o(x, 4p)<1/i for each xea,,b

ny

®) 0@y, ag)<1fi  and (b, bo)<1/i.

Let cod, be an subarc of the arc A, such that a,<c,<dy<b, in the natural
order of the arc 4,. It suffices to prove that cyd, is a continuum of convergence of X.

Let 7 be a natural number and let a,,b,, be an arc determined above. Let d,, be
the first point in the arc a,b,, such that

(6) ' Q( npdobo)sl/is

where dy b, is the subarc of the arc agby; i.e., for each xea,,d,\{d, }<a,,b, we
have g(x, dyby)>1/i. Let ¢,, be the least point in the arc a,,d,, (in 4,,b,,) such that

) 0(en,» apco)<1/i,

where agc, is an arc in the arc ayb,. Therefore, if ¢, d,, is an arc in a,b,,,
by (#-(7)

) o(x, agey U dobo)>1/i  for each x & ¢,,d,\{¢n; dp,} -
Put K,, = ¢,,d,,. Consider K, = Ls K,,. By (7), any cluster point of the se-
i=o

qguence {c,,} is contained in @y ¢y, but (4) and (8) imply that any cluster point of the
sequence {c,} is contained in cydy; therefore

(©) lime,, = ¢ .
i~

In a similar way we obtain

10) lim d,, = dp .

iww
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Moreover (4) and (9) imply that
n Kyceody .

Thus, by (9), (10) and (11), we infer Ky = codp. Therefore, by Proposition 2, we
have LimK,, = ¢, dy, i.e., the arc codp is a continuum of convergence of X by the

iz

choice of K,,. The proof of Lemma 4 is complete.

Lemma 5. Let a continuum X be arcwise connected and hereditarily smooth at
apoint pe X. Let {px,} be a sequence of arcs of X such that lim. x, = x, and Lim px, is

n-roo n-tao
an arc pxo. If {z,} is a sequence of points of px, such that
() lim z, = z,,

n—w
(i) if z,x, is an arc in px, and pz, is an arc in pxe, then pz, M z,x, = {z,},
then Ls z,x, is the arc zyx, in px,.
n—row
Proof. By Theorem 3 the continuum X is hereditatily arcwise connected. By
assumptions, Ls z,x, is a subarc of the arc px, and x,€ Ls z,x,. Suppose, on

n—+ow n=oo

the contrary, that Ls z,x, = 25X, and zg € pzo\{zo} =px. Then there is a sequence

n—o
,
Zp, € Z,,X,, such that

3 ’ ’
@ - lim z,, = zq .
nroo
We can assume that for each i = 1, 2, ... the arcs z,x,, contained in z,,x,, are

such that z, x, N px, = @. Since Ls z,x,, = z5x, we have Lim Zy, Xy = ZoXg
o Laded

by Proposition 2. Therefore
(2) the arc zyx, is a continuum of convergence of X.

Take the arc z,,z, contained in z,,x,, for each i = 1,2, ... Consider
o
’
0= pxo Y U ZuyZny
i=1

Obviously Q is a continuum. Since X is hereditarily smooth at p and pe Q,
Q is smooth at p. Let & = $0(z9, pzy), where pz} is an arc in pxg. It follows Trom
Proposition 3(ii) that there is a continuum K in @ such that

3) pracIntKe Ke B(pzh, 5) .

By (i) of the assumptions and by (1) we can take a natural number n; such
that z, € K and ¢(z,,, 20) <. Let ab be an arbitrary arc in pz,, such that b N K = @
and p<a<b in the natural order of the arc px,. The continuum KU 2,25, bz,
where bz, is an arc in pz,,, contains an arc pb by the hereditary arcwise connec-
tedness of X. Then pb n ab = {b}. By Lerama. 4 and (2) ab is a continuum of con-

icm
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vergence; thus by Theorem 4 if we take the arc pb and the arc pa, which is con~
tained in px,, then we obtain @ = b — a contradiction.

THEOREM 5. Let a continuum X be arcwise connected, If HI(X) # @, then
I(X) = HI(X).

Proof. Obviously HI(X)=I(X) by definition. It follows from Theorem 3 that X
is hereditarily arcwise connected. Let X be smooth at p and let Q be an arbitrary
subcontinuum of X such that p e Q. By the definition of hereditary smoothness
it suffices to prove that Q is smooth at p. By Theorem 1, if r € HI(X) and rq is an
arbitrary arc irreducible between r and Q, then Q is hereditarily smooth at g.
Let {x,} be an arbitrary sequence of points of Q such that
(¢ limx, = x,eQ,

n—+ow :
and let px, be an arbitrary arc contained in Q. We will prove that there is a se-
quence {R,} of subcontinua of Q such that Lim R, = px,.
n—+o

Let gy, be an arbitrary arc in @ which is irreducible between g and px,. Denote
by py, and y,x, arcs contained in px,. Put gx, = gy, U ¥ox,. Since g is an initial
point of Q, there is a sequence {gx,} of arcs in Q such that
2 Lim gx, = gxq .

n=co

For each n = 1,2, ..., let the point z, of gx, N gx, be such that, if z,x, is an
arc in ¢x, and ¢z, is an arc in gx,, then gz, N z,x, = {z,}. Let z, be an arbitrary
cluster point of the sequence {z,}, i.e., for some subsequence {z,} of the se-
quence {z,} we have
©) zo = lim z,, .

i+

Suppose that z, ¢ yox,. Then (3) and Lemma 4 imply that

(4) dny proper subarc of the arc zyx, is a continuum of convergence of X,
where zyX, is an arc in gx,.

Let & = }0(zo, pXo). Since X is smooth at p, by Proposition 3(ii) there is a con-
tinuum K such that ‘
%) . pxycInt Ko K B(px,, €) -

By (1) and (3) there js a natural number », such that x, € K and z,, ¢ K.

Let 4 be a non-degenerate subarc of the arc z,x,=gx, such that
Adcz, x,\(K U {z,}) and denote by & and b the endpoints of 4 (where g<a<b
in the natural ordering of the arc gx, from g to x,). We have two arcs ga and gb
such that
© . gacgx,, v
(7 gbsqz,, L 2, %, 0 KU by, ,


GUEST


166 T. Maékowiak

where by, is an arc in gx,. We define ra = rq w ga and rb = rq U gb. Since
ranab = {a} and rbn ab = {b}, we have a = b by Theorem 4 and (4). This
contradicts the choice of @ and b.

Therefore any cluster point of the sequence {z,} belongs to the arc yyx,. We
define R, = Pyo Y YoZ, Y 2%y, Where oz, is an arc in gxo. Then Ls R, = py,u

=0
U Ls yoz, U Ls 2,X,5ppo U YoXo = PXo by Lemma 5. Therefore Lim R, = px,
- — n—+ o

bynPg:opositio'x]l ; Since the continuum R, is contained in @ by the construction
for each n=1,2, ..., the required condition is satisfied. The proof of Theorem 5
is complete. ’

COROLLARY 8. A continuum X is hereditarily locally connected if and only if
HI(X) # @ and X is locally connected.

Indeed, if X is hereditarily locally connected, then HI(X) = X by Corollary 3.
In particular HI(X) # @ and X is locally connected. Conversely, if X is locally
connected and HI(X) # @, then I(X) = X by Corollary 3 and HI(X) = X by
Theorem 5, because local connectedness implies arcwise connectedness. There-
fore X is hereditarily locally connected by Corollary 3'.

COROLLARY 9. For every continuum X the equality HI(X) = X holds if and only
if I(X) = X and HI(X) # Q.

THEOREM 6. Let a continuum X be arcwise connected. If p, g € HI(X) and if pq is
an arbitrary arc in X with endpoints p and gq, then pge HI(X).

Proof. By Theorem 3, X is hereditarily arcwise connected. Take an arbitrary
point 7 of pg and a convergent sequence {x,} of points of X. Put
0)) limx, = xq ,

n-r oo
and let rx, be an arbitrary arc with endpoints r and x,. Denote by y, such a point
of rx, that if yox, is an arc in rx, then pg M yoxo = {¥o}. Let pr and rq denote the
arcs in pg. Assume y, € pr (if y, € rq the proof is the same). Since X is smooth at p,
theére exists a sequence {px,} of arcs such that
) Liglpxn = PYo \ Yo¥o »
-~

where py, is an arc in pg. Take a sequence {z,} of points of arcs px, such that if z,x,
is an arc in px, then (pyo U ¥o¥g) N 2,%, = {z,}. Let z, be an arbitrary cluster
point of the sequence {z,}. Suppose that z, & pyy\{yo}. Since z, is a clugter point
of {z,}, there is a subsequence {z,} of the sequence {z,} such that
3 lim z,, = z, .

i~ o0

Then, by Lemma 4, we infer that

(4) any proper subarc of the arc zoxg in py, U yox, is a continuum of conver-
gence of X.

icm°
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Let & = $0(20, Yog Y YoXo), Where Yoq is the arc in pg. Since X is smooth at q,
by Proposition 3(ii) there is a continuum K such that

) Yoq Y YoXocIntKe Ke B(yoq U yox,, &) -

By (1) and (3) we conclude that there is a natural number n; such that x,, € K
and z, ¢ K. Let 4 be an subarc of the arc z,x, in py, U ¥ex, such that
Acz, x\(K U {z,,}) and denote by & and b the endpoints of 4 (p<a<b in the

natural ordering of the arc py, L yoxo from p to x,). We have two arcs ga and gb
such that

() - gbepy,
(@] qgacK v x,z, U z,.a,

where z,,a is an arc in pg.

Since ga N A = {a} and gb N 4 = {b}, by Theorem 4 and (4) a = b, which
contradicts the choice of a and b.

Therefore, any cluster point of the sequence {z,} belongs to the arc y,x,. By
Lemma 5, we have
®) Ls z,X,SYoXo -

n—+wo

Let ry, be the arc in rx,. We define R, = ryy U ¥532, U z,X,, where y,z, is an
arc in py, U YoXo. Then
Ls R, =ry, v Ls ypz, U Ls z,%,Cryo U YoXo = FXp -

n—ro n— n—+ow

Therefore, by Proposition 2, we have Lim R, = rx,.

n—+ow

Using the hereditary arcwise connectedness of X, we infer by Proposition 3(i)
that X is smooth at r. Therefore X is hereditarily smooth at r by Theorem 5. Thus
pq=HI(X). The proof of Theorem 6 is complete.

THEOREM 7. Let a continuum X be arcwise connected and let p,qe X. If X is
hereditarily smooth at the point p and if X is locally connected at each point of an
arc pq, then X is smooth at g.

Proof. By Theorem 3 we conclude that the continuum X is hereditarily arcwise
connected, i.e., all irreducible continua in X are arcs. Let {x,} be an arbitrary se-
quence of points of X such that
(1) lim x, = X,

n-o0
and let gx, be an arbitrary arc joining ¢ and x,. Denote by y, the point of the arc gx,
such that if y,x, is an arc in gx, then y,xo N pg = {yo}. Since X is smooth at p
and (1) holds, there is a sequence {px,} of arcs of X such that
()] Lim px, = pyo Y YoXo

1+ oo
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where py, is an arc in pg. Since X is locally connected in y,, we have, for each
natural number j, a continuum K; such that
&) yo € Int K= Ky= B(yo, 1)) -

Take for each n = 1, 2, ... the point z, of px, such that it z,%, Is an arc in px,
then z,x, N (pyo U yoxo) = {z,}. I z, € ypxy, then we define

4

94Xy = q¥o Y Vo 2y \J 2%y

where gy, is an arc in gx, and y,z, is an arc in yox,< gxg. I z, ¢ yox, then the arc
z,X, intersects the continuum K for some i. Therefore we have, for a subsequence
{zu;} of the sequence {z,} such that z,, ¢ yox,, a sequence of indexes {j, } such that
lim 1/j,, = 0, and

=

@ Zn X, N K, # D

Let a,, be a point in the arc z,,x,, such that if g,,x,, is an arc in the arc Zy X,

then Kj, ~ a,x,, = {a,}. Since X is hereditarily arcwise connected, there are arcs
i

Yo8,, contained in ]<j"z. Obviously, by (3) we have
®* : Lim yoa,, = ;.
i=ro0

Consider the continua 4,, = py, U yod,, U &y, %, Obviously Lim 4,, = py,u
=0

U YoXo. A continuum 4,, contains an arc B,, irreducible between X,, and p, and

the first point in the arc B,, which belongs to py, U YoXo (in the natural order in

DYo Y Yo%, from x, to p) is contained in anl. Therefore we can assume that any

cluster point of the sequence {z,} is contained in the arc YoXo, because we can con-

sider arcs B,, instead of arcs P%,,. Thus, by Lemma 5, we have Ls z,x,=y,x,
1+ 00

h;

and Ls yoz,c90Xy, Where yoz, is an arc in PYo Y YoXg-

n—+w

We define, as before, R, = gy, U y, 2, U z,x,. Then

Ls R, = qpy U Ls yoz,u Ls ZyXy S qXo U YoXo = gXg .
n—+oo

[ad-) o

Therefore, by Proposition 2, we have Lim R, = gxg, i.e., X is smooth at ¢.

n-o0
The proof of Theorem 7 is complete,
Let N(X) be the set of all points of X at which X is not locally connected. We
have the following (cf. [2], Theorem 2, p. 299).
CoroLLARY 10. If a continuum X is arcwise connected and hereditarily smooth
at p, then the constituent of the set X\N (X) containing p is the initial set of X.
Proof. Obviously I(X)< X\N(X) by Corollary 2. Denote by C the constituent
of the set X\N(X) which contains p. To prove I(X)e C take a point geZ(X) and
an arbitrary arc pg. By Theorem 5 we have g € HI(X), and thus, by Theorem 6,

icm°
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pg=HI(X)=I(X). Therefore X is locally connected at each point of the arc pq by
Corollary 2; thus geC, i.e., I(X)c=C.

To prove C=I(X) take a point g e C and an arbitrary arc pq<=C (such an arc
does exist by the definition of the constituent since X is hereditarily arcwise con-
nected by Theorem 3). Thus X is locally connected at each point of the arc pg, and
therefore X is smooth at g by Theorem 7. Thus geI(X), i.e., CcI(X). The proof
of Corollary 10 is complete.

§ 5. The set N(X). In this section we study properties of the set N (X). We have

THEOREM 8. If a continuum X is arcwise connected and HI(X) # 9, then for any
continuum Y

YcoX  impliess N(Y)eN(X).

Proof. By Theorem 3 the continuum X is hereditarily arcwise connected, Let X
be hereditarily smooth at a point p, let ¥ be an arbitrary subcontinuum of X and let pg
be an arbitrary arc in X such that pg n Y = {g}. Then, by Theorem 1, ¥ is heredi-
tarily smooth at g. Suppose, on the contrary, that ¥ is not locally connected at the
point x, and X is locally connected at this point. Therefore there is a closed neigh-
bourhood E of the point x, in ¥ and a component C of E containing x, such
that x, € ENC. We infer that there exists a sequence {x,} of points of X such that

)] X = lim x, ,
) x, € ENC.

Let gx, be an arbitrary arc in Y. Since ¥ is smooth at g, by (1) there is a se-
quence {gx,} of arcs of Y such that :
3) Lim gx, = gx, .

n—+o

Take, for each n = 1, 2, ..., a point z, of gx, such that if z,x, is an arc in gx,
then z,x, N gx, = {z,}. Let z, be a cluster point of the sequence {z,}. Then there is
a subsequence {z, } of the sequence {z,} such that lim z,, = z,. There is an arc ax, in

i=w

the arc gx, such that a # x, and ax,cIntE. If zyeaxo\{a}, then, by Lemma 5,
Zy, %, is contained in E for indexes i larger than some 7,, because lim z,,x,, = ZoX,,

i~
where zyx, is the subarc of gxy; thus x,, € C for i>i, — a contradiction. Therefore
2z ¢ axo\{a}. This implies by Lemma 4 that

(4) any subarc of the arc ax, is a continuum of convergence of X.

Let cd be an subarc of the arc ax, such that cd=axo\{a, %o} and cead\{a,d}.
Let & = $0(xq, ed U pg). Since X is locally connected at x,, there is a continuum K
such that

(5) X0 € IntKe K= B(x,, &) -
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1t follows from (1) and (5) that x, € K for n>ny, and z, ¢ cd for n>n,. Let
m>n, and m>n,.

Take the arcs gc contained in gx, and gd contained in pz,, U z,%,, U K U xod,
where pz,, and x,d are arcs in pxo. Then pg U g and pg U qd are both irreducible
between p and the continuum of convergence cd of X (cf. (4)); thus, by Theorem 4 we
have ¢ = d — a contradiction. The proof of Theorem 8 is complete.

TuroREM 9. Let a continuum X be aréwise connected and HI(X) # &, If Sc X is
a simple closed curve and pq is an arbitrary arc which is irreducible between p and §,
where pe HI(X), then N(X) n S<{g}.

Proof. By Theorem 3 the continuum X is hereditarily arcwise connected.
Suppose,bn the contrary, that x, & N(X) n S and x, # ¢. Let xy¢ be one of two
arcs in S irreducible between x, and g. The continuum X is not locally connected
at x,; therefore there is a closed neighbourhood E of the point x4 such that if Cis
a component of E which contains x, then x, & EXC. We infer that there is a se-
quence {x,} of points of X such that

)} limx, = Xxq,
n—w
) %, ENC.

Let p e HI(X). Since X is smooth at the point p and (1) holds, there is a se-
quence {px,} of arcs of X such that
3) Lim px, = pg U gxg .

n—rco

Take, for each n = 1, 2, ..., a point z, of the arc px, such that if z,x, is an arc
in px, then z,x, N (pq U px,) = {z,}. Let z, be a cluster point of the sequence {z,}.
Then there is a subsequence {z,} of the sequence {z,} such that
@ lim z,, =z .

i

There is an arc ax, in the arc gx, such that a # x, and q¢ axocIntE. If
zo € axo\{a}, then, by Lemma 5, z, x,, is contained in E for indexes i larger than
some i, because Lim z,.x,, = zoxy, where zyx, is an arc in gxy. Thus x,,&C

I+

for i>i, — a contradiction. Therefore z, ¢ axo\{a}. This implies that
(5) the arc ax, is a continuum of convergence of X.

Takelthe arc ag in xoq(a # ¢), and the arc I(x,, ), irreducible between X,
and. g, which'is contained in $\xo¢. Then pq U ag and pg U I(xy, ¢) are both itre-
ducible between p and the continuum ax,. It follows from (5) and Theorem 4
that @ = g — a contradiction. The proof of Theorem 9 is complete.

COROLLARY 11. Let a continuum X be arcwise connected and HI (X) # Q. The

continuum X Is @ smooth dendroid if and only if for each constituent C of the set X\N(X)
the closure T is a dendroid.

icm°®
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Indeed, by Theorem 3, X is hereditarily arcwise connected. If X is a dendroid,
then any subcontinuum of X is a dendroid. In particular, the closure of any con-
stituent C of the set X\N(X) is a dendroid.

Conversely, if for each constituent C of the set X\N(X) the closure C is a den-
droid, then, by Theorem 9, X fails to contain a simple closed curve. Therefore, by
the hereditary arcwise connectedness of X (cf. Theorem 3), X is a dendroid.
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