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CLT and non-CLT groups of order p*g
by

S. Baskaran (Madras)

Abstract. A characterization of groups of order p%?, p, g, primes, which have subgroups of
all possible orders is given in this paper,

1, Introduction. In this paper, we consider only finite groups. A group G is
said to be CLT if it possesses subgroups of every possible order and non-CLT other-
wise. CLT groups are necessarily soluble (see [3]). The question arises as to which
soluble groups are CLT. As a first step one is naturally tempted to consider groups G
of order |G| = p*¢®, p, q distinct primes, o, f21, which are necessarily soluble,
and find out which of these groups are CLT. This general question does not seem to
be amenable, as far as the author can see, of being dealt with at one stroke. This
surmise sprouts out of the fact that the author’s treatment of the case |G| = p*q? in
the present paper differs considerably from the case |G| = pg® dealt with earlier
in [1]. To cite an explicit instance, every group of order 24%, q a prime, is CLT
(see e.g. [1]) whereas a group of order 44* may be CLT or.non-CLT.

2. Notations and theorem. In the sequel we employ the following notations:

Z,, = the cyclic group of order m,
V, = the Klein-four group = {e, u, v, uv}, '
A, = the alternating group on four symbols,
S, = the symmetric group on three symbols,
AutG = the group of automorphisms of G,
A® B = a semi-direct product of 4 with B, ®, denoting the operation in this
semi-direct product, :
Ng(K) = the normalizer of the subgroup K of G in G,
[G:K] = the index of the subgroup K of G in G,
{x)> = the subgroup generated by x.

I

When dealing with the direct product of two copies of Z, we write the two copies
as A, B where

A ={e,ad,..,a" 1}, B={eb, b, .., b1,
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A typical automorphism of 4xB will be denoted by o; o is determined by
X4, X, V1, Y2 Where a(ey, B) = (&, b™), o(a, ¢;) = (¢, b*®). We denote a gener-
ator of Z, by g and its identity by e. We prove here

THEOREM. Let G be a non-abelian group of order p*q®, p, q primes, p<gq. Then
for G to be non-CLT it is necessary and syfficient that one of the following conditions
. holds.

1. p is odd and p divides q-+1.

. p=2, g =3(mod4), G=(Z,xZ)RZ, and the semi-direct product is
induced by a monomorphism.

OI. G2 V,®,Zs or Vu®(Z3xZy).

The proof consists of a number of steps and is given in Section 3.

It is not known whether Theorem is independent of Chunikhin’s [2] results on
the existence of subgroups oris deducible from them.

3. Proof of Theorem.

Step (1). 1 is sufficient: Since p<gq and p and ¢ are not adjacent primes, G con-
tains a normal Sylow g-subgroup S,. Let, if possible, G contain a subgroup M of
order p*q. Then M contains a Sylow p-subgroup S, of G and

g = —1(modp)=>q # 1(modp) as p is odd
=8, is normal in M
=[G:Ng(S,)] = q or 1
=Number of distinct conjugates of S, in G = ¢ or 1
=S, is normal in G as g # 1(modp)
=G = §,x§,

and so G is abelian, a contradiction. This completes Step (1).

Step (2). For odd prime p, 1 is necessary: As in Step (1), G contains a normal
Sylow g-subgroup S, and the group product of S, with a subgroup of order p gives
a subgroup of order pg?. As G is non-CLT, G contains no subgroup of order p2q as,
otherwise, the intersection of a subgroup of order pg? and a subgroup of order p*g
would be a subgroup of order pg making G CLT. Consequently G contains no normal
subgroup of order g. Further this shows that S, is non-cyclic and so S, and hence G
contains exactly ¢+1 subgroups of order g. As every subgroup of order g is normal
in S, it is clear that [G: Ng(H)] is divisible by p for every subgroup H of order ¢ and
so g+1 should be divisible by p, a divisor of the greatest common divisor of the
number of distinct conjugates in G of various subgroups of order ¢ which equalize
the indices of the normalizers of these subgroups of order g in G. Step (2) is complete.

Step (3). II is sufficient: Let .G be defined viz the monomorphism and
Y(g) = e Aut(Z,xZ)), g a generator of Z,. Then o is of order 4y Since
g =3(mod4), ¢ is determined by x,,x, y;,y, Where x, & 0(modg),
%, = —yy(modg) and x;y, = —1—~p}(modg) (cf. Appendix (IIT)). Let, if possible,
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G contain a subgroup M of order 4¢. Since g is odd it is clear that there is no non-
trivial semi-direct: product of Z, with Z, and thus M cannot have a Sylow 2-sub-
group normal in it unless M is abelian. In any case, M contains a subgroup H of
order ¢ such that H is normal in M. By II G contains a unique Sylow g-subgroup S,
and H is normal in S,. It follows that H is normal in G. As S, and hence G contains
precisely g+1 subgroups of order g, H must be either the subgroup N = {(es, b, e)»
or the subgroup Hy = {(a, b", &)) for some integer k., Since x; # 0(modg), N is
not normal in G and so H # N. Thus H, is normal in. G which implies that the ele-
ment (e, €5, g) € Ng(H,). Hence

(e1 €2, 9)® (a, ¥, O)® ((ey, €2, 9) "' € H
=((e;, e))0(a, bk): 9)® ey, €2, g™ e H,
(@R Rk g e B
=y, +x,k = k(y, +x,k)(mod q)
=1k + x4(y) —x)k—x1 9, = 0(mod g)
=2 kP4 23,3, k—(—1—]) = O(modq)
=(x k+y)* = —1(modg).

Thus the residue class containing (x,k+y;) is an element of order 4 in the multi-
plicative group of non-zero residue classes modulo g and, by Lagrange’s Theorem,'
4 must divide g—1, a contradiction to IL :

Step (4). TIT is sufficient: Let, if possible G contain a subgroup M of order 18.
Then a Sylow 3-subgroup of G contained in M is normal in M and hence normal
in G since M is maximal and normal in G, a contradictiop.

Step (5). Necessity of 11 or HI for p = 2: .

(5.1) If G contains a normal Sylow q-subgroup S, (which will be the case whe_n
g>3) Sylow 2-subgroups of G should be cyclic: By a reasoning similar to what is
contained in Step (2), we can show that G contains no subgroup of order 4¢ anfl
S, & Z,xZ, = AxXB, say. Also G contains no normal Sylow 2-subgroup as G is
non-abelian. Thus, if Sylow 2-subgroups of G are not “gyclic, then properly
G & (4% BY® V4 The homomorphism W of ¥, into Aut(4xB) defining G must
map at least two of the three elements u,v, uv to automorphisms of order 2. Let
them be % and v and let ¥ (w) = 0.

Since none of the Sylow subgroups of G are cyclic; it is clear that the element
(ey, b, u) is of order 2 or 2g. Let, if possible, (ey, b, u) have order Zq.
It M = {(e,, b, u)) then K = {(ey, €, &), (e1, b, )7} is a subgroup of ord'cr 2 and. K is
normal in M. Also K is normal in a Sylow 2-subgroup of G in which it is contained.
It follows that Ng(K) is of index ¢ or 1. In the former case, G conFains a subgroup
of order 4g namely Ng(K), a contradiction. In the latter case, G/K is a group of or-
der 24 and so contains a subgroup of order 2¢ (see § 1). In this case also, G contains
a subgroup of order 4¢, a contradiction. ‘
1*
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The element (e;, b, ) must therefore be of order 2 which forces x, = 0(modg).
This in turn implies that each of (e;, ez, #), (ey, €2, v) (by a similar reasoning) nor-
malizes N = {(e;, b, €)>. It follows that Ng(N) contains a Sylow 2-subgroup of G.
As N is normal in S, also, it follows that N is normal in G and the group product
of N with a subgroup of order 4 gives a subgroup of order 44, a contradiction.
Hence (5.1).

(5.2) Under (5.1), the automorphism o which is the image of a generator g of Z,
under the homomorphism \ defining the semi-direct product, cannot be of order 2 and
so V is a monomorphism: Let, if possible ¢ be of order 2. Then we have

® Y1%1 4% %, = 0(modg) ,
(ii) , X1 V2+%5 = 1(modg).

Also the element (e,, b, g) has order a multiple of 4 and it can be supposed to have
order 4. Then we have '

(iii) %1 +y1 [ y1 +x0(L+x5)]+ 54 [ 5+ %51 +%5)] = 0(modyg) ,
(iv) 14254y, [ yo+ 21 (1+2)1 4 %2 [, y2 +25(1+x5)] = O(modg) .
Using (i) and (i) in (iii) we have

Xy 4+x; 71+ %1+ x,) = O(mod g) ,

- 2x;+(x; ¥ +x,%x,) = 0(modg),
Le.

‘ 2x; = O(modg) or X E'VO(modq) s
finally l?y (i)- Hence (ey, e;, g) normalizes N = {(ey, b, &)). As (e,, e, g) is of order 4
and N is.normal in S,, N is normal in G and this makes G' CLT, a contradiction.

(5.3) ¢ # 1(mod4) and so ¢ = 3(mod4): By Step (5.2), o is of order 2 and so

! - we have either of the following two sets of conditions (cf. Appendix (II)).

—1(modgq),
O(modg) .

[}

o, _ A
® Yitx1¥: = X+ x3
D1 +x2)y2 = (P +x5) %,

n

D) Y2 42x, 3,452 = 0(modg) ,
X172+ %)% = 1=} +x, y,)(modg) .

If g = 1(mod4), these relations help us-to conclude that the congruence equation
x K+ ~x)k—y, = 0(modq)

has an i.ntegral solution ’Scf. Appendix (IV)) which implies that the element (ey, €5, 9)
normalizes Hy = {(a, b*, ¢)> for some integer k. It follows that G contains H, as
a normal subgrouP. But then G is CLT, a contradiction, proving (5.3).
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The next stage is in the form of an interesting lemma which can be proved in
several ways. The proof given here is, however, elementary.

(5.4) LEMMA. Any group of order 36 has a normal Sylow subgroup.

Proof. Let G be a group of order 36 and suppose G has no normal subgroup -
of order 9 or 4. Then G has no subgroup of order 18. If P and Q are two subgroups
of order 9 then P~ Q = H is a subgroup of order 3 which is normal in both P
and Q and hence normal in G. G/H then has a normal subgroup of order 4 and G
has & normal subgroup M of order 12 containing H. Let S be a subgroup of order 4
contained in M. Since Ng(S) # S or M (as, otherwise, M would be self-normalizing)
and since Ng(5) # G by supposition, it follows that Ng(S) is a subgroup R of or-
der 12. Obviously R will not be normal in G. Now SH = M and since R contains .§
and R # M, R cannot contain H. Hence Rn H = {¢} and RH = G. It follows
that G & H® (R properly. Hence R cannot be isomorphic to 4, and so R containg
a subgroup X of order 6 where K n H = {e}. Then HK is a subgroup of order 18
a contradiction. Hence the lemma.

(5.5) For p = 2, II or III holds: From (5.1), (5.2), (5.3) and Lemma in (5.4) we
conclude that either I holds or G is a non-CLT group of order 36 with a normal
Sylow 2-subgroup. In the latter case, it is clear that the Sylow 2-subgroup of G
cannot be cyclic and thus IIT holds.

4. Concluding remarks, We observe that each of the classes of groups satisfying I,
11 or TII is non-vacuous. For, when I holds Aut(Z,xZ,) has order @P-D@*-9
divisible by p and so has an element of order p. If p = 2, we choose x, # 0(modg),
y, arbitrary, x, = —y(modg) and y, with x;, = —1—y%(mod,) to determine
a o Aut(Z,xZ,) of order 4. This determines the non-trivial semi-direct product
(Z,XZ)® ,Z, when g = 3(mod4) as in II. The class of groups satisfying LIl is
non-vacuous since Aut¥V, = Sj.

As regards the class of CLT groups we have an interesting phenomenon where
there exist two non-CLT groups whose direct product is CLT. Groups Gy, G, of
order 36, respectively satistying II and IIT, serve this purpose. ‘We note that G; has
a_subgroup of index 2 and G, has a subgroup of index 3.

Appendix. Tn this appendix we reduce the study of Aut(Z,xZ,) to the study
of the linear group Ly(Z,) where Z, is now the prime field of characteristic g. This
reduction becomes possible because of the association UHG i i 22> where o is deter-

mined by Xy, X, Yy, ¥y, integers modulo g¢.
We have the following resulis.
M IE= (yl Y 2) has order 2 then one of the following two sets of conditions
CA\YL X

holds.
(1) yio= %y = —1
(2) Xy = =)y and

and Xy = Yy = 0,

x1)2 ‘—“1“3‘% :
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Proof. Since E? = I we have

@ Vitx oy, =1,
(i) y1+a)x =0,
(iin) G1+x)y, =0,
(iv) X4xy,=1.
From (i) and (ili) we have either x, = —y, or x; =y, = 0.
From (i) and (iv) we have x5 = y} and so x, = £y;. If x, = —y, then (2) holds

by (). If x, = y; then x; = y, = 0 and so (1) is seen to hold by using (i) and (iv)
and noting that E # I, the unit matrix.

() IfE= (y 1Y 2) has order 4 then one of the following two sets of conditions
. 1

X X
holds.
@ Yi+xiys = X +x19, = —1,
O1+x)%; = (1 +x)p, = 0.
: 2 2
yi+2xy,+x; =0,
®

X 320+ 55 = 1= +x,32)" -
These conditions are got at once by applying (I) for the matrix E? which has
order 2.

) If £ = (11 iz) has order 4 and q = 3(mod4) then x; #0, x, = —yq
1 X2 :

and %y, = —1-3%. 1
Proof. Since E has order 4, (o) or (B) in (I) holds. Let, if possible, (B) hold.
Then 2x,y, = —(y3+x2) and
X1 72(p1+%2)* = 1—(J’i+x1J’z)2
= 4, p3 (11 +%2)° = 4—(2y1+2%,7,)
=20+ ) (1 +2%)* = 4—(1~x3)?
= 1+ X)) RO+ —(y —x,)%] = —4
b(y1+x2)4 = ~4, '
Whicl} .is impossible when ¢ = 3(mod4). Hence (o) holds and we have the required
condition arguing as in (I) and noting that x; =0 or x; = y, = 0= ¥ = -1,
which is impossible when g = 3(mod4).
V) f E= (ﬁ 11 i z) has order 4 and q'="1(mod4) then the equation x,1*+
+(r —x3)t—y, = 0 has a solution for t in the field Z,.

'Proof.ASince E has order 4, (a) or (B) in (II) holds. Suppose («) holds. Then
arguing as in (T) we have either x, =y, = 0 or x, = —y; and x,y, = —1=¥3.
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In the former case, ¢ = 0 is obviously a solution. In the latter case, the equation
becomes X 12+2y 1=y, = 0, Now if x; =0 then x,y, = —=1—pi =y} = —1
=y, # 0 and so the equation has a solution in Z,. So let x; # 0. Then
X242y, t~y, = 0 for some teZ,
x5 24 2% pyt -1y, =0 for some teZ,
< (X, 14+Y)? = x,y,+y} for some teZ,
< (g t+p)* = =1 for some 1€ Z,

which is {rue since ¢ = 1(mod4) and x; #0,

Now let (B) hold. If x; = 0 then y—x, # 0 as, otherwise, we have from the
first part of (B) y, = 0 = x, and so the second part of (B) does not hold. Thus
it x; = 0 then the equation has a solution in Z,. So let x; s 0. Then we have
2%,y = —(}+x3) and ‘

X2y —x,)E—y, =0 for some teZ,
<> 4x2 12 44y (yy —x2)t—4dx(y; = 0
< [2x 14 (= %) = 431y, + (= %)
- 23 1 (= x)P = =207 43) + (g —xa)?
o [ty —xp)]2 = —(py+x,)*  for some teZ,,
which is true since g = 1(mod4) and x{ 5 0.

Added in proof. Steps (2), (3), (5.2) and (5.3) can be treated without explicit computa-
tions too.

for some teZ,
for some teZ,

for some teZ,

it

]
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