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The Lefschetz fixed point theorem for multi-valued maps
of non-metrizable spaces

by

Gilles Fournier (Montréal) and Lech Gérniewicz (Gdaxisk)

Abstract. Let ¢: X— X be a multi-valued map from a Hausdorff space X into itself; g is called
admissible provided the following two, conditions are satisfied:

(@i @ is upper semi-continuous and compact,

(ii) there exist a Hausdorff space ¥ and two continuous (single-valued) maps p, q: Y= X
such that p is a Vietoris map and g(p~(x)) C@(x) for each xe€ X,

A Hausdorff space X is called a Lefschetz multi-space (denoted by Xe £a0) if for every such
map @ and for every such pair (p, g)the Lefschetz number A(g, py 1y is defined and if A(g,py #0
for some such pair (p, g), then @ has a fixed point.

In this paper we prove the following results:

(i) a Hausdorff space X which is a-dominated, for every a € Cov(X), by a Lefschetz multi-
space Y is also a Lefschetz multi-space,

(i) every open subset of an admissible space (cf., [2]), and in particular every open subset
a locally convex topological space, is a Lefschetz multi-space,

(iii) every NES (compact) space (cf., [2]) is a Lefschetz multi-space.

It is known [3] that the Lefschetz fixed point theorem is true for admissible
multi-valued maps of arbitrary metric ANR-spaces. In this note, being concerned
with the extension of the above result to the non-metrizable case, we show that
for the following types of spaces the Lefschetz fixed point theorem for admissible
multi-valued maps is true:

(i) open subsets in admissible linear topological spaces (in the sense of
Klee [4]) or, in particular, open subsets of locally convex topological spaces,

(i) all NES(compact) spaces.

Tn the single-valued case these results were given by G. Fournier and
A. Granas in {2}.

1. Preliminaries. Let H be the Cech homology functor with compact carriers
and coefficients in the field of rational numbers Q from the category of Hausdorf
spaces and continuous maps. to the category of graded vector spaces over @ and
en iar maps of degree zero. Thus H(X) = {H,(X)} is a graded vector space, H(X)
being the g-dimensional Cech homology group with compact carriers of X. For
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a continuous map f: X—Y, H(f) is the induced linear map fo= { f*q}, where
ot HLOHLD).

A non-empty space X is called acyclic provided: (i) Hy(X) = 0 for all g1
and (i) Hy(X)=Q.

A continuous map p: Y—X is called a Vietoris map provided (i) p is proper
(ie., the counter image p~*(C) of every compact ‘subset CcX is also compact)
and (ii) the set p~*(x) is acyclic for every x e X.

We observe that

(1.1) Ifp: Y~ X is a Vietoris map, then for every subset A of X the contraction p
of p to the pair (p~*(d), A) is also a Vietoris map.

(1.2) ViEromss MappING THEOREM. Jf p: Y—X is a Vietoris map, then the
induced map p,: H(Y)>H(X) is an isomorphism.

Theorem (1.2) clearly follows from the original statement of the Vietoris Map-
ping Theorem for compacta (e.g., [1]). .

Let fi E— E be an endomorphism of an arbitrary vector space E. Let us put
N(f) = {xeE: fi(x) = 0} (f* is the nth iterate of f) and E= ]—\;%-) Since
f(N(f))cN(fl we have the induced endomorphism f: E— £ Call f admissible
provided dimE<oo. Let f= {f;}: E—~E be an endomorphism of degree zero of
a graded vector space E = {Eg}. Call fa Leray endomorphism if (i) all £, are admis-
sible and (ii) almost all E, are trivial. For such f we define the (generalized) Lef
schetz number A(f) by putting

Ay = (=D ().
q

The following important property of the Leray endomorphisms is a consequence
of the well-known formula tr(uov) = tr(v o u) for trace:

(1.3) Assume that in the category of graded vector spaces ‘the Jollowing diagram
commutes: ’

’ E' “ Ell
1 :

NG

Yoo

E'—T —

s

Then, if f' or f"" is a Leray endomorphism, then so is the other and in that case A

= AU”)-

Let X be a Hausdorff space. A continuous map f: X X i$ called ¢ Lefschetz
map provided £, : H(X)— H(X) is a Leray endomorphism. Foy such f we define
the Lefschetz number A(f) of f by putting A(f) = A(f ). Cleatly, if f and g are
homotopic ‘maps, f~g, then A(f) = A(g). '

 in which

e ©
Im The Lefschetz fixed point theorem for multi-valued maps 215

2. Multi-valued maps. Let X and Z be two Hausdorff spaces and assume that
for every point x € X a non-empty subset ¢ (x) of Zis given; in this case we say that
¢ is o multi-valued map from X to Z and we write ¢: X—Z. In what follows the
symbols ¢, ¥, x will be reserved for multi-valued maps; the single-valued maps
will be denoted by f, g, h, P ¢, ... Let ¢: X-Z be a multi-valued map. We as-
sociate with @ the diagram of continuous maps

xer, 5z

Iy ={(x,4)e Xx2Z: 7€ ¢(x)}

is the graph of ¢ and the natural profections p, and g, are given by Pp(x,2) = x
and g,(x, z) = z. )
The point-to-set map ¢ extends to a set-to-set map by puiting o) = U o

acAd

«Z for AcX; @(A4) is said to be the image of 4 under ¢. If ¢(d)=B<Z, then
the contraction of ¢ to the pair (4, B) is the multi-valued map §: 4—>B defined
by ¢(a@) = @(a) for each ae 4. The counter-image of a subset BcZ under ¢ is
@ (B) = {xe X: p(x)=B}. .

A multi-valued map ¢: ‘X—Z is called upper semi continuous (u.s.c.) provided
() ¢ (%) is compact for each x & X and (if) for each open set Vo2 the counter-image
@~ Y(P) is an open subsct 6f X.

The following fact is evident:

(2.1) PrOPOSITION. If ¢: X~Z is a n.s.c. map and 4 a compact subset of X,
then the image @(A) of A under ¢ is compact. .

A multi-valued map ¢: X—Z is called compact provided the image @(X)
of X under ¢ is contained in a compact subset of Z. :

From (2.1) we deduce :

(2.2) ProposITION. Let @: X—X; and V: X,»X, be two us.c. maps. If ¢
or \/ is compact, then the composition o @ of ¢ and \ is gompact and u.s.c.

Let ¢: X—X be a multi-valued map. A point x & X is called a fixed point
for ¢ whenever x € p(x). Let ¢, : X—Z be two multi-valued maps. If ¢ ()= (x)
for each x € X, then we say that ¢ is a selector of W and indicate this by @<y

Let p: ¥—X be a single-valued map from the space Y onto X; we associate
with such p the multi-valued map @,: X— Y given by @,(x) = p~ (%) foreach x € X.

We have the following

(2.3) ProposirioN. If p: Y=X is a continuous closed map such that the set
P X(%) is a non-empty compact set for each x € X, then the multi-valued map ¢,: X—Y
s u.s.C. ‘ '

3. Admissible maps. A u.s.c. compact' map ¢: X—Z is said to. be acyclic
provided the set ¢(x) is acyclic for every point x € X. We observe that if @: ‘X—>Z
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is an acyclic map, then the natural projection p,: Iy—X is.a Vietoris map. Using
the Vietoris Mapping Theorem, we define the linear map

P, H(X)-»H(Z)
by putting
Oy = Doy ° P 5
¢, is said to be induced by the multi-valued (acyclic) map ¢. It is easily seen that
it ¢ =f (ie, ¢ is single-valued), then ¢, = f,.

Let @: X— Z be a multi-valued map. A pair (p, ¢) of single-valued continuous
maps of the form X Eyizis called a selected pair of ¢ (written (p, g) < @) if the
following two conditions are satisfied:

(i) p is a Vietoris map,

i) g(p~*(x))=(x) for each xe X.

(3.1) Remark. We observe that if ¢ is a compact map and (p, )<=, then
g is a compact map.

(3.2) PROPOSITION. If ¢: X~ Z is an acyclic map and (p, ) <o then q,py* = o,.

Proof. Let (p, g) be a selected pair of ¢ of the form x&¥32Z. Consider
the commutative diagram

F

Qw
N
I /Z
Y
in which /() = (p(»), ¢(»)) for every y e Y.
The condition g(p~*(x))=¢(x) implies that (p(»), ¢(3))el,. Applying to

the above diagram the functor H, we deduce that 9Py o q,,,*p;: and the proof
is completed.

§3.3) DE};‘IMTION. An us.c. compact map ¢: X-Z is called admissible
provided there exists a selected pair (p, ¢) of ¢.

. . . ey
Every acyclic map and, in particular, every continuous compact single-valued
map is admissible. Then, for exwmple, the pair (p,, qq,) is a selected pair of such
map ¢.

(3.4) TorOREM. Let @: X— X, and : X1—>X2 be two w.s.c. maps. Assume further
that (py, q.) =@ and (py, g)<\. o or Y is a compact map, then the composition
Vop: X>X, of ¢ and 1// is an admissible map and there exists a selected pair (p, q)
of Y o ¢ such that q,,p3.q1,p7; = GaPy

Proof. From (2.2) we infer that i o ¢ is w.s.c. and compact. Consider the
dlagram
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X«LY{JL»X,‘ <——112——Y2——"12;—>X2
\i \fn I" K q/
N4

in which ¥ = {(y;, y2) € Yix Yai qs(v) = pa(02)}; P01, ¥2) = pa(s)s 9015 32)°
= g,(2)s f1(1’1 , yz) =y, oV, ¥2) = Va2, 90’1=J’z) = q,(y,) for each (y;, ;)€ ¥.

Since fi~ (yl) is homeomorphic to py (ql(y,)) and p, is a Vietoris map, we
deduce that f, is a Vietorls map. Moreover, we have g(p™'(x))= (¥ ° ¢)(¥) for
each x € X. Applying to the above diagram the functor H, we obtain G24Pradi3Pin
= q,py" The proof of (3.4) is completed.

In particular, Theorem (3.4) implies that the composition of acyclic maps is
admissible.

(3.5) DeriNiTION. Let ¢, y: X—Z be two admissible maps. We say that ¢
and  are homotopic (written @~y) provided there exists an admissible map
x: XxI-2Z, where I = [0, 1], such that

y(x, o) and x(x,Dey(x) for each xeX.

(3.6) TrnoreM. Let @, : X—Z be two admissible maps. Then (p~1,l/ lmplzes
that there exist selected pairs (p, @)<=¢ and (5, =V such that 4Pyt = 7,0."
“Proof. Let (5, §) be a selected pair of . Consider the following commutative

diagram:.
Xt 54 (ip(X))
"’l Lh \
? 7
® Xx[¢——Y —>Z

J1 /

q

X<—:~—- B X))

Iy

in which i(¥) = (x,0), i(*) = (x,1) for each x& X, jo,Jjy are inclusions and
p, P are given as the fir ‘;1. coordinate of p(y) forevery ye p~ Yif(X))oryep ~(i, (X))
respectively, Then p,p are Vietoris maps and we have (p, g)=o¢, (B, <y We
observe that iy, = Iy, is a 1mcar 1somorph1sm This and the commutativity of the
above diagram imply q*p =, P, - This proves Theorem (3.6).

(3.7) DEFNITION. An admissible map ¢ X X is called a Lefschetz map
-provided for each selected pair (p, g)=¢ the linear map q.py H(X)—~HX) is
a Leray endomorphism.

If ¢: X~ X is a Lefschetz map, then we define the Lefschetz set A(p) of ¢ by
putting

A(@) = {A(g,p3"): (2, D=0} -
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Remark. If @ is an acyclic Lefschetz map or in particular ¢ = f is a single-
valued Lefschetz map, then from (3.2) we deduce that the set A(@) is a singleton
and in this case we shall denote it by A(¢).

The following two theorems are immediate consequences of (3.6) and the
above remark.

(3.8) THEOREM. Let ¢, : X— X be iwo admissible Lefschetz maps. Then (i)
oy implies A(p)cA(W), (i) o~y implies A(p) N A()) # @

(3.9) TueoREM. Let ¢, : X— X be two acyclic Lefschetz maps. If ¢y or

oy, then A(g) = AW).

4. Almost fixed points. Let X be a Hausdorff space and Y<X. By Covy(Y)
we denote the directed set of all open coverings of ¥ in X, We let Covy (X)
= Cov(X). Let Z be a Hausdorfl space and « e Cov(Z). Two multi-valucd maps
@, i X—Z are said to be a-close provided for each x e X there exists a member
U.ea such that ¢(x) " U, # @ and o) n U, # 9.
Let ¢: X—X be a multi-valued map and « e Cov(X). A point x & X is said,
to be an «-fixed point for ¢ provided there exists a member U e o such that (i) xe U
and (i) ¢ (%) N U # @. Clearly, if «, f € Cov.X and « refines B, then every «-fixed
-+ point for ¢ is also a f-fixed point for ¢.
(41) LemmA. Let @: X—X be a us.c. map. The statements are equivalent:
(i) ¢ has a fixed point,
(i) there is a cofinal family of coverings & = {a}=Covy(Y) of ¥ = ¢(X)
in X such that ¢ has an o-fixed point for every ue %.

Proof. It is evident that (i) implies (ii). Assume that ¢ has no fixed points. '

Then for each x & X there are open neighbourhoods ¥, and Uyezy of x and ¢(x)
respectively such that ¥V, n Uy, = @. From the fact that ¢ is u.s.c. we deduce
that set ¥V = qo‘l(Uv,(x)) is an open neighbourhood of x in X, Let Wy=V,nV:
then @(W,)= Uy and W, 0 Uy, = @. Putting o = {W,}..y we get a covcrigg
of Y in X such that ¢ has no «-fixed point. If £ is a member of @ that refines
«, then ¢ has no B-fixed point and thus we obtain a contradiction of (i), The
proof of (4.1) is completed.

5. Lefschetz multi-spaces. A Hausdorff space X is called a Lefschetz multi-space
(denoted by X e #,) provided that every admissible map ¢@: X—X is a Lefschetz
map and if 4(¢) # {0}, then ¢ has a fixed point.

(5.1) Tueorem (cf. [3]). Jf X is a metric ANR, then X e Ly

(5.2) TuEOREM. Let ¥ be a Hausdorff space and X € &,,. Assume that pY-X
is a Vietoris, closed map and q: Y~X is a compact map. Then gyt is a Leray

endom)orphism and if A(g,p, 1Y 5£ 0 then there exists a point ye Y such that p(y)
=40 ‘

Theorem (5.2) clearly follows from (2.3). Moreover, from (5.2) we deduce

(5.3) COROLLARY. Let Y, X, p, g be as in (5.2). If X is an acyclic space, then
there exists a point ye Y such that p(y) = q(y).

e © '
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In particular, for acyclic Lefschetz multi-spaces we have

(5.4) TreoreM. Every acytlic Lefschetz multi-space has the fixed point property
within the class of admissible maps. ‘

Finally, from (3.9) we deduce _

(5.5) COROLLARY. Let X'& %y and assume that @,: X—X are wo acyclic
maps which satisfy one of the foilowing conditions:

() ¢ is a selector of V,

(ii) @ and  are homotopic.

Then A(p) = AQp).

Let X and Y be two Hausdorfl spaces. We say that X is r-dominated by Y if

“there exist two maps, st XY and ri Y- X, such that re s = Idy; let w e Cov X,

we say that X is a~dominated by Y provided there exist two maps, 5,: X—>¥ and
Fol Y- X, such that ryes Idy, ie., there exists a single-valued homotopy h
joining ry o 5, and Idy such that for every x € X there is a U, e« such that h(x, £)
€ U, for all tel Clearly, if £~ g, then f and g are a-close.

By (%) we denote the class of all Hausdoxfl spaces which are r—domina‘ted
by a spuce in &y. We say that X e Z(Z)y), if for every ae CovX there exists
a space ¥, € £y, such that X is a-dominated by Y. Clearly, #yc (L)<= P(L)-

(5.6) TuroreM. D(Ly) = A (L) = Lu.

Proof. It is sufficient to prove 2(Fy) < Ly. Let X € 2(Zy) and ¢: X_’?(
be an admissible map, Consider a selected pair (p, g) <. We prove that g, pplis

a Leray endomorphism. Let « € Cov(X). Then from the definition we obtain a space
Y, e &, and two maps s,: X ¥, and r,; Y,~X such that r, o 5, ~ Idy. Define

~ the map ¢,: Y,~ Y, by putting ¢ = S0 ¢ ° ¥4 Applying to ¢, Theorem (3.4),

we obtain a selected pair (p,s ¢.) <@, such that qu*p;*‘ = Sy Q4P Yryy. Since
Y, € %y, we infer that ¢, is a Lefschetz map, and 50 Gy, p;,‘1 is a Leray endomor-
phism. Since r, o s,~Idy, we infer that ruu s, = Wuw. and so from (1.3) we
conclude that g,p,* is a Leray endomorphism and

- - _ -1
A(q*p;U = AO.“*“‘H*(I*F* 1) = A(su* Q*P*lra*) - A-(qa,ypa* )
(e, @ is a Lefschetz map). ‘ o N
Assume that A(p) # {0}; then there exists a selected pair (p, q)-c(p suc
that A(g,py ") # 0. This implies (Y, & L) that @, .has a fixed point. .Sulllce
Fao s, ~ Idy, we infer that ¢ has an a-fixed point for arbitrary o € Cov(X). Finally,
13

from Lemma (4.1) we infer that @ has a fixed point and ‘the proof is completed.
6. The Lefschetz fixed point theofem for admissible spaces. Let Ube a neighbour-

hood of the origin in a linear topological space E. Then U is shrinkable provid:d
for any x € cl(U) and 0<i<1 the point A+x lies in U. It is known (cf., Klee; 4D
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that shrinkable neighbourhoods form the base of E at 0. It follows that given an
arbitrary neighbourhood W of 0 there is a shrinkable neighbourhood ¥ of 0 such
that ¥+ V< W and such that any interval tx+(1—1£)y (0<:<1) with x and y in ¥
is entirely contained in W. From this, since the topological structure of E is
determined by a base of the neighbourhoods of the origin, we deduce the following

(6.1) LemMa (ct., [2]). Let U be an open subset of a linear topological space E.
Then for each o€ Cov(U) there exists a refinement f e Cov(U) such that any two
B-close maps of any space X into U are stationary o-homotopic, i.e., there exists
an a-homotopy h such that hy(x) is constant (0<t<1) whenever f(x) = g (x).

(6.2) DepNITION, Let E be a linear topological space. We say (following
Klee [4]) that E is admissible provided for any compact K< E and any a € Covy(K)
there is a map n,: K—E such that (i) n,(K) is contained in a finite-dimensional
subspace of E and (ii) the inclusion i: K—TE and 7,: K— E are a-close.

(6.3) TueoreM. Let E be an admissible linear topological space; then every
open subset of E is a Lefschetz multi-space.

Proof. Let V=E be an open set and let ¢: V=V be an admissible map. De-
note by K a compact subset of ¥ which contains ¢(V). Let # = {a} be a cofinal
family of coverings in Covy (K) such that each-member of o € 4 is of the form y+ U,
where y € K and U is a shrinkable neighbourhood of the origin in E. Let a e 4,
and take n,: K— E satisfying n(K)c E"<E for some n and such that i; K- E and
7! K— E are o-close. Define the multi-valued map ¢,: V' n E"-¥ n E" by pulting
@,(x) = n:,,((p(x)). Lew (p, q) be a selected pair of ¢ where p, g1 Y—V; define:

P p (VA EYSV A E,
q:p7 (V0 E)-K,

q": Y-K,

n,: K=V E"

as contractions of the respective maps. Since p’ is a Vietoris map, (p’, 7, ¢) is
is a selected pair of @,, which is therefore admissible. Let i ¥ n E"+V, iy: K=V
and j: p™*(¥ n E")— Y be the inclusions. In view of Lemma (6.1) we may assume
without loss of generality that i o 7, is homotopic to iy, and hence that Igy = i*n[, "
We have iop’ =poj, and so p i, =j,p,~*. Since ¢ = ixoq" and ¢" oj = ¢,
we obtain

__1=. L SR AN I | ’ A ’ Pt ’ r_ e
Q*P* lK*q*p* - l*ﬁz*qayp* a.l'ld‘ nu*q*p* l* = nu*Q*]*p* ! = na*%upt 1'

So by (1.3) q,p;" is 2 Leray endomorphism and Alg,p;*) = Alg,p,” ). Hence
@ is a Lefschetz map and 4(p)=A(p,).

icm®
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Now A (p) # {0} implies 4(p) # {0}, and so by Theorem (5.1) ¢, has a fixed
point and, since 7, and i are ¢~-close, ¢ has an «-fixed point for every « € 4. Finally,
from (4.1) we deduce that ¢ has a fixed point.

7. The Lefschetz fixed point theorem for neighbourhood extension spaces.
A Hausdor(f space X is a neighbourhood extension space for compact spaces (resp,
for compact metric spaces) provided for any pair (Y, 4), where Y is a compact
‘Hausdorfl space and 4 a closed subset of ¥ (resp. ¥ is a compact metric space
and A a closed subset of ¥), and any map fo¢ A— X there is an extension f: U—» X
of f, over an open neighbourhood of 4 in ¥. The class of the neighbourhood ex-
tension spaces for compact spaces (resp. for compact metric spaces) will be denoted
by NES (compact) (resp. NES (compact metric)). Clearly, NES (compact = NES
(compact metric).

(7.1) Lemma (cf. [2]). Every Tychonoff cube is a retract of a locally convex
topological space.

(7.2) TuEOREM. Every open subset of a Tychonoff cube is a Lefschetz multi-space.
Theorem (7.2) clearly follows from (5.6), (6.3) and (7.1).
(7.3) THEOREM. NES (compact) =% .

Proof. Let X & NBES(compact) and let ¢: X—X be an admissible map. De-
note by K a compact set containing ¢(X). Embed K into a Tychonoff cube T' and
denote by s: KK the homeomorphism of K onto K<T. Let i: K—X be the in-
clusion. Consider ios™*: R—X; since X e NES (compact), there exists an open
subset U of T containing K and an extension h: U— X of ios™" over U; thus if
it RU is the inclusion, we have hoj = iss™*. Define y: U-U by putting
W = joso oh, where ¢ is the contraction of ¢ to the pair (X, K). Let (p, q) be
a selected pair of @, where p, q: ¥~ X. Let ¢’ be the contraction of g to the pair
(Y, K). Then the pair (p, ¢") is a selected pair of admissible map @. By Theorem (3.4
we infer that ¢ o & is an admissible map and has a selected pair (P, ) such that
q,P, = TPy th, . Since (p,josoq)is a selected pair of W, we conclude that y is
an admissible map and therefore, in view of (7.2), ¥ is a Lefschetz map. Wclhave
5 =180,y heand b5, gyt = 15 0y = B4R = 4,0y and
so by (1.3) we conclude that ¢, py 1 i3 a Teray endomorphism and A(g,p,")
= A(j*s*ij *p; 1). Hence ¢ is a Lefschetz map and A(@)=AW). :

TE A(p) # {0}, then A(}) # {0}. So by (7.2) there exists a point y & U such
such that yey(y) = (joso §oh)(y); hence h()) eh(y(») = (hojose §oM0)
= o (h(»), Le., h(y) is a fixed point of ¢.

(7.4) TueoreM. Let X e NES (compact, metric) and let ¢: X=X be an admissiblg
map such that ¢(X) is contained in a compact metrizable subset of X. Then ¢ is
a Lefschetz map and A(p) # {0} implies that ¢ has a fixed point.

The proof of (7.4) is strictly analogous to that ‘of Theorem (7.3).
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Some problem in elementary arithmetics *

by
D. Jensen ** and A, Ehrenfeucht (Boulder) :

Abstract, Three different questions concerning peano arithmetic P are considered. (1) How
large can the set of theories of the submodels or end extensions of some fixed non-standard model
of P be? (2) What are the properties of the partial ordering of embeddibility between complete
extensions of P? (3) How is the isomorphism type of a model of P related to the “isomorphism
types’ of its reducts? ' :

This paper is concerned with (complete) extensions of elementary arithmetic P.
The bulk of the paper is contained in §§ 2, 3, 4 and each one of these sections is

concerned with a separate idea. }
Let M be a non-standard model of P, and let M ’ be a submodel or end ex-

‘tension of M, What can Th(M") be, and. how well does this family of theories

characterize M7 These questions are considered in § 2. )
Tn § 3 a partial ordering of complete extensions of P is introduced. (Ty<T;
if each model of Ty is embeddable in a mode} of Tj,) This ordering is shown to be

‘a tree, and several of its other properties are considered.

Tt is well known that for elementary arithmetic the. similarity type of the lan-
guage used is relatively unimportant. In § 4 a study is made of the relationship
between the isomorphism type of a model of P and the isomorphism type of certain
of its reduets. i ' .

The paper is completed by § 1, which contains the required preliminaries,
and § 5, which contains a collection of open problems.

§ 1. Preliminaries.
1A, P denotes the theory of elementary Peano arithmetic. ‘When technicalities
arise we may assume that the basic language L for P is suitably formalized with

variables, logical symbols (e.g. 71, A, 3, =), and the traditional symbols <, 0, ’

* This paper \was prepared by Don Jensen during 1973 at the University of Waterloo and

the University of Aberdeen. Tt resulted from work he had done in collaboration with Professor

Ehrenfeucht. The paper was near completion when Don Jensen was killed. §§ 1,_ 2, 3,4 had been
completed and § 5 was in the form of an unfinished manuscript. This last section has been left

‘unfinished. The introduction was written by FL. Simmons.

% This research was supported in part by the National Research Council of Canada grants
A-5267 and A-5549. ' C
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