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An example concerning the Whitehead Theorem
in shape theory

by

James Draper and James Keesling * (Gainesville, Fla.)

Abstract. Let F: (X, x)-+(Y, ) be a shape morphism with (X, x) and (¥, ») pointed mov
able metric continua of finite dimension. A theorem of M. Moszyriska states that if Fy: m(X, x
~ (Y, ¥) is an isomorphism for all &, then F is a shape equivalence. In this paper an example
is given to show that if X and Y are not finite-dimensional, then the above result may not hold.

Let T' be the category of pointed topological spaces and HT be the homotopy
category of pointed topological spaces with H: T->HT the homotopy functor.
Let S: T — ST be the shape functor to the shape category in the sense of S. Mar-
de¥ié [5]. If (X, x) is a pointed topological space, then there is for each n an inverse
system of groups associated with (X, x) called the n-th homotopy pro-group of
(X, x) (see [6]) which we will denote by =,{(X, x)}. A shape morphism F: (X, x)
—(Y, ) induces a unique morphism F,: m,{(X,x)}—n,{(Y,»)} in the category
of pro-groups. There is also associated with (X, x) a group =,(X, x) which is the
projective limit of m,{(X, x)}. This we will call the n-th shape group of (X, x). The
morphisms F, (and hence F) induce unique homomorphisms F, : 7,(X, x) - n,(¥, )
in the category of groups. These structures =,{(X, x)} and 7,(X, x) play the analog-
ous role in shape theory that the homotopy groups 7,(X, x) play in homotopy
theory.

An important result in homotopy theory is a classical theorem of J. H.
C. Whitehead.

TueorReM 1. Let f: (X, x)—(Y,y) be a continuous map with fi: n(X,x)
—n(Y,¥) an isomorphism for i<n, = max{l+dimX, dim Y} and an epimorphism
Sor i = ny where (X, x) and (Y, y) are connected CW-complexes. Then f is a homo-
topy equivalence.

In shape theory several analogous results of this theorem have been proved.
The first such theorem was due to M. Moszyfiska [10].

THEOREM 2. Let F: (X, x)— (Y, y) be a shape morphism where X and Y are
finite-dimensional metric continua and let F,: m{(X, x)} »m{(Y, »)} be the induced
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morphisms of homotopy pro-groups. If Fy is an isomorphism for 1<k <n,-+1
= max{l +dim X, dim Y}+1 and an epimorphism for k = ny+1, then F is a shape
equivalence.

Marde$ié [6] has generalized this theorem to show that one can replace the
assumption that X and Y are metric continua by the assumption that X is o Haus-
dorff continuum and Yis a metric continuum, What is more significant is the follow-
ing theorem in [6].

THEOREM 3. Let [ (X, x) - (Y, y) be a continuous map with X and Y connected,
Sfinite-dimensional spaces. Suppose that S(f): m{(X, %)} -7 (¥, 0} &5 an iso-
morphism of pro-groups for 1<k<ng+1 = max{l+dimX, dim Y}+1 and an
epimorphism for k = ny+1. Then S(f) is « shape equivalence.

Another theorem of Moszyniska [10] is a shape version of Theorem [ using
the shape groups rather than the homotopy pro-groups.

THEOREM 4. Let (X,x) and (Y,y) be finite-dimensional movable pointed con-
tinug and let F: (X, x) - (Y, y) be' a shape morphism such that F,: n,(X, x)~ m,( ¥, )
is an isomorphism for 1<k<ny+1 = max{l+dimX, dim Y}+1 and an cpi-
morphism for k = ny+1. Then F is a shape equivalence.

There appears to be a nontrivial gap in ths proof of Theorens 4 in [10].
However, this gap has been filled in [4]. The purpose of this paper is to give an cx-
ample of a continuous map f: (X, X)—(Y, y) where (X, x) and (Y, p) are movable
pointed metric continua such that S(f): m{(X, %)} »m{( ¥, »)} is an isomorphism
of homotopy pro-groups for all k and S(f) L X, X) - (Y, p) is an isomorphism
for all k21, but with S(f) not a shape equivalence. This example shows that the
assumption that X and Y are finite dimensional in cach of Theorems 2, 3, and 4
cannot be eliminated. It also shows that adding the condition that (X, x) and (Y, y)
be movable in Theorem 2 or Theorem 3 would still not allow one to eliminate the
requirement that X and ¥ be finite-dimensional. In [3] Keesling gave an example
of a pointed movable nonmetric continuum (X, x) with (X, x) = H(X)=0
for i>1, but with X not having the shape of a point. Thus the map e: x - (X, x)
is an example of a map inducing isomorphisms S(e) ! B = (X, x) and e, : Hi(x)
- Hy(X) for all i1, but with S(e) not a shape equivalence. However, in addition
to X not being metric, the map e did not induce an isomorphism of homotopy pro-
groups in dimension one. Thus, the counterexample presented in this paper is more
useful in defining the limits of Theorems 2, 3, and 4.

The example. In [2] D. S. Kahn has constructed for each odd prime p o se-
quence of compact connected polyhedra {Z;}{%, and maps hy;: Zp -2 for {20
such that:

(1) for i<j the map Ao ..ok Z1—2Z; Is essential;

(2) dimZ; = (2p+1)4+(2p—2)i; and

(3) each Z; is [2p—1)+(2p—2) i]-connected.
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This sequence was also described by J. F. Adams ([1], Theorem 1.7). Let Z be
the inverse limit of {Z;; h;} and let z e Z be a fixed point with z; € Z; the projection
of z in Z; for each i=0. We will use the sequence (Z;, z;) and bonding maps &;:
(Zip1> Z1e1) = (Z;, 2) in constructing the example proving the main theorem.

THEOREM. There are pointed movable metric continua (X, x) and (Y,y) and
« continuous map f: (X, x) - (¥, y) such that for all n=1 S(f) induces isomorphisms
of m X, %) to m,(Y,y) and m,{(X, %)} to m,{(Y, )} in the categories of groups and
pro-groups, respectively, but with S(f) not a shape equivalence.

Proof. Let {(Z;, z:j; h,} be the sequence of spaces and bonding maps described
"

above. Let (X,,x) =\/(Z,,z). Then let the bonding maps g,: (X1, %us1)
=0

—->.(X,,, x,) be defined by g,(x) = xforx e Z;, 0<i<nand g,(x) = h(x)forxe Z,,,.
Then g, is well-defined for all n and letting (X, x) be the inverse limit of {(X},, x,); .}
we have that (X, x) is 2 movable pointed metric continuum.

n
Now we define (Y,»). Let (¥,,») =V (Z;, z) = (X,, x,). However, we
i=0

define different bonding maps A, (Yus 1 Yus1) (¥, ¥,) than were used in defining
the sequence associated with (X, x). Let 4,(x) = x for x €Z;, 0<i<n anfi ﬁ,,(x)
=y, for x€Z,,,. Then h, is well-defined. Letting (Y, y) be the in'verse limit of
{(Y,, »); h,} we have that (¥, y) is a movable pointed metric continuum.

For each n>1 we now define & map

nt1 n

St \/ (Z1,2) = (K15 Xuw 1) > (X, 1) = _\/O(Zi: z)
i=0 i

by f(2) = z it ze\/(Z;, z) and f(2) = y, if z&Z, ;4. Then f, is well-defined and
i=0 .
the following diagram commutes.

on
(X, %) <— (X1, Xt 1)
fn—l\ |fn

(Yn—l s Y= 1) ﬁ;::; (Yns yn)

Consequently the maps {f,} induce a continuous map f: (X, x)-)('Y , ). \"Ve will
now show that this map is the one required in the theorem. Note that if S(f) induces
isomorphisms in the pro-group category between m,{(X, )} and =,{(¥,»)} for
all 21, then S(f) will automatically induce isomorphisms of 7,(X, x) to (Y, )
for all n. Thus we only need to show that S(f) induces isomorphisms of the homo-
to ro-groups.

pyFT;x Zfl ini)eger k and let m satisfy k<(2p—1)+(2p—2)m. Then let

n
r (Sk, *)_’(X;n xn) =_}/0 (Zi: Zi) 2
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then by property (3) of the sequence of Z/s, r is homotopic to a map r'; (S¥, %)
m

—(X,, x,) such that the image of r' is contained in \/ (Z;, z,) = (X,,, x,). Thus
=0

the pro-group m{(X, x)} which is equivalent to the pro-group {my(X;. X,); gu;
nzm} is equivalent to the pro-group:

1, 1, .
(X » X) < Tl Xs Xop) %= o0 = {nk(Xnu Xin)} I,«}

where 1: (X,,, %)~ (X,,, x,) is the identity map. Similarly, the pro-group = {(¥, »)}
is isomorphic to {m(Y,, »,); Aw; nzm} which is equivalent to {m(¥,,y,): 1,}
in the pro-group category where k<(2p—1)+(2p—2)m. Clearly, the pro-group
morphism S(f),: m{(X, 2} - m{(¥, »)} is the same as that induced by the identity
map 1: (X, %)= (¥, »,) and thus S(f), is an isomorphism of pro-groups for
all k>1.

. ! 1,
‘nk(Xm: Xm) e nk(X;lt: xm) ity

1y 1y
nk( Y;n’ m) («;‘” TEk( Yms ym) 4—;:’” o
*

Now we will show that S(f) is not a shape equivalence. Suppose that S(f) is
a shape equivalence, Then there is a shape morphism Q: (Y, y) - (X, x) such that
Q0 S(f) = 8(1(x,x)- Using the ANR-systems approach to shape theory [8], the
shape morphism @ can be thought of as a function g: N—N such that for nzm,
q(m)2q(m) and a system of continuous maps g,: ( ¥y, Yaon) = (Xy, %,) such that
the following diagram commutes up to homotopy

Tig(n)e e ohg(ne ty—1

(YQ(n) > yq(n)) e —— ( Yq(n+ 1)) » Y+t ))

n dnty

(X,,, xn) <‘_‘;"“““ (Xvn-l- 15 Xyt 1)

and such that for each n, there is an m>g(n) such that g, o ... o ¢! Xty Xpe 1)
—)(men) 18 honlo"opic to q" °pq(n) ° gq(n)+1 00 gm: (Armd-l: xm-&-l) "(A’nﬂ xu)'

n Gan)
(}{m xn) DR e (Xq(u)-i-ls xq(n)%-i)‘" o (Xm+1 » X 1)

X /pa(,q
(Yq(n)a yq(n))

However, g, ¢ ... ¢ g,[(Zy 41, Zus ) is an essential map onto (Z,, z,) by property (1)
of the sequence.{Zl; hy}. But the map g, o Jatw) © Gatny+1 ° o © Gul(Z 15 Zmirn) 18
& constant map since fy(,) takes (Zy(,), zyen) to the point y,q, € Yy This is a contra-
diction. Thus S(f) cannot be a shape equivalence.
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