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On group nil rings
by

E. R. Puczylowski (Warszawa)

Abstract. The main result of this paper (Theorem A) is a generalization of a theorem of
D. 8. Passman [9] saying that under some assumptions the group ring R{G] for commutative R
contains no non-zero nil ideals. Our result is then applied in § 2 to find some new statements equiv-
alent to the still open Koethe problem: if a ring R contains a one-sided nil ideal 4, is 4 contained
in a two-sided nil ideal of R? Finally, § 3 is devoted to an investigation, by means of Theorem 4,
of the N’-radical of certain group rings, where N’ is the ‘absolutely nil property defined by
S. A. Amitsur [2], [6].
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§ 1. Semisimplicity of gronp rings. Let R be a ring with unity and M its multi-

plicatively closed subset contained in the centre of R. Assume that M contains no

zero-divisors of R and consider the complete ring of right quottens Q for R. Then
(I8], Lemma 5, p. 160)

RM™' = {ge Q] EI qmeR}

is a subrmg of the ring Q. If M is an empty set, put RM ' = R. Every clement of
RM ™" can be written in the form rm™1, where r € R, m & M. Since (rm™*)" = r'm™
for any integer »n, R contains no nil ideals if and only if RM ~* contains no nil ideals.
Moreover, for any group G, rings (RM~Y)[G] and (R[G])M~* are isomorphic to
each other. )

For a group G we denote by G, the set of elements of G of order n. We shall say
that the groups G and H are forsion disjoint if for any integer n2 at least one of_ -
the sets G,, H, is empty. It is not hard to check that groups G and H are torsion
disjoint if and only if for any prime p one of the sets G,, H, is empty.

A nil ring R will be shortly denoted as a # -ring. It is well known that A" is
a radical property [4]. The 4 -radical of a ring R will be denoted by A (R).

PRrOPOSITION 1.1. If the additive group RY of a ring R is torsion disjoint with
a group G, then the additive group R* of R is also torsion disjoint with G, where
R = R/ (R).

2 — Fundamenta Mathematicae t. XCII
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Proof. If the set Ki is not empty for some prime p then the ideal
J = {xeR| pxe A (R} of R is not contained in #"(R) and therefore cannot be
a nil ideal. Hence there exists such an element x € R that x* # 0, (px)* = 0 for some
integer k. If [is the smallest integer such that pla¥ =0, then p'~'x* e Ry ; hence R} is
not empty. Therefore by assumption G, is empty, i.e., R* is torsion disjoint with G.

PrOPOSITION 1.2. Let R be a commutative A -semisimple ring with unity. If
the additive group R* of R is torsion disjoint with a group G, then the group ring R[G] is
A -semisimple. k )

Proof. Let M be the multiplicatively closed set generated by elements of R
of the form 7 -1, where # runs through orders of elements of G. Using the fact that R*
is torsion disjoint with G, one can verify that M contains no zero-divisors of R.
Since R and R[G] aré 4 -semisimple if and only if RM ™' and (R[GHM -1
~ (RM ™Y [G] are o -semisimple, one can assume without loss of generality that
elements from M are invertible in R. A commutative and 2 -semisimple ring R
can be represented as a subdirect sum of integral domains R,. Therefore R[G] is
a subdirect sum of the rings R,[G]. Since a subdirect sum of semisimple rings is
semjsimple [4], is enough to show that each of the Tings R,[G] is A -semisimple.
Let N be the set of non-zero elements from the ring R,. Since elements from M are
invertible in R and R, is a homomorphic image of R, the group G contains no ele-
ments the orders of which are divisible by the characteristic of the field R,N ™.
Now, applying D..S. Passman’s result [9], we obtain

H(RIGDN ™) ~ oA (RN HIG)) = 0.

Therefore A (R,[G]) = 0. )
A similar result for the Baer radical has been obtained by similar methods by
J. Lambek [8]. Considering the above argument, one can also show that RIG]
" contains no non-zero one-sided nil ideals.
Now we extend this result to non-commutative rings. g

THEOREM A [12]. Let R be a A -semisimple ring. If the additive group R* of R is
torsion disjoint with a group G, then the group ring RG] is A -semisimple.

n
Proof. Let us assume that # (R[G]) % 0. Take a non-zero element o = Z a4,
=t

a;e R, g, € G from A#-(R[G]) of the least length (i.e., n is minimal) and consider the
subring 4 of R generated by the elements a;, i = 1, ..., n. The ring 4 is commuta~

4
tive because for any i the length of the element f = aqyu—ua; = 3. (@;a;—a;0) ¢,
j=2

»€ A (R[G]) is less than n, B must be zero and therefore a;a; = g;a, i,/ =1, ..., 1.
‘We show now that the elements a;, i = 1, ..., n are nilpotent. It is sufficient to show
that o (4)[G] = # (4[G]) since « e A (R[G]) N A[Gl= A (A[G]). Since the fact
that R* is torsion disjoint whith G implies that A is also torsion disjoint With G,
we find by applying Proposition 1.1 that the additive group A" of A4 is torsion
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disjoint with G, where 4 = A/ (4). Let us extend A to the ring 4* with unity,
where 4*/2 is the ring of integers. It is easy to check that 4* is A& -semisimple
and (4*)* is torsion disjoint with G; therefore by Proposition 1.2 # (4*[G]) = 0.
Since 4 is an ideal of 4*, A[G]is an ideal of 4*[G]. It is well known [3] that # (4[G])
is an ideal of A*[G]; hence H (4[G]) A (4*[G]) = 0. Therefore

A[G] ) ( A )
ANl A |— [Gl])=0,;
<9f (AIa] A (4) [
which implies % (4[G])c A (A)[G]. The converse inclusion is obvious since 4 is
commutative.

Consider now the set I of ae R such that agl+b2g2+...+b,,g;,e&f(R [G]) for
some by, ..., b, R. If B =ag,+byg,+...4b,g, # 0, then B has the least length

_in A" (R[G)) and therefore a is nil. Such a set I is of course a non-zero ideal of R,

since a; & 1. Therefore a £ -semisimple ring contains a non-zero nil ideal J, which
is impossible.

§ 2. Remarks on the Koethe problem.

DerINITION (J. Krempa [7]). Let G be a group. We shall say that a radical
property S defined in the class of algebras over a field Fis G-invariant if for any F-al-
gebra 4

S(4[G) = S(4)[a].
Let 4 be an F-algebra and o such an F-automorphism of 4 that o® = id. It is

easy to check that the set of all elements of the form a+bx, a, b € A with operations
defined as follows:

(ay+byx)+{a,+b,%) = (ay+a;)+ (b +55)x,
(ay+b.x) (@r+8,%) = (a,a,+5,6(b))+ (by 0 (az)+a,5)x% ,
y(a;+byX) = ya;+ybyx,
dy, a3, by, bye 4, ye F is an F-algebra. This algebra will be denoted by A°[C,].

If ¢ = id, then this is the group algebra 4 [C,] where C, is the cyclic group of order 2.

ProrosiTION 2.1. Let G be a group and H its subgroup of index 2. If G contains
an element x of order two which does not belong to H, then for any ring R one can
establish an isomorphism between R[G] and (R[H1)°[C,), where & is the automor-
phism of R[H] induced by the inner automorphism h—xhx~*, he H of H.

Proof. Since G = H u Hx, every element o € R[G] can be written in a unique
way in the form a+bx, where a, be R[H]. Consider the cyclic group of order 2
C, = {e, y} and define the map @: R[G]-(R[H][C,] as follows:

p(a+bx) = a+by.
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Since
o ((a+bx)(a,+by X)) = @(aa,+bxby x™ " +bxa; x ™ x+abyx)
¢ (aa, +ba (by)+bo(a;) x+ab, x)
aay +bo (by)+ (bo (a;) +ab,)y
(ﬂ+bY)(“1+b1J’) = @(a+bx).p(a+b,x),

I

¢ is a homomorphism. Now

THEOREM B. For any field F of characteristic p # 2 the following conditions are
equivalent:

() for any nil F-algebra A the matrix algebra A, is nil;

(ii) the property A" is G-invariant for any finite G such that the characteristic p
of F does not divide the order of G if p # 0; '

it is easy to check that ¢ is also an isomorphism.

(i) the property A" is G-invariant in the class of F-algebrds, where G, is the

transformation group of a square, i.e., the group of 2 x 2-matrices of the form

G2 (o)

where A, 1,0, ¢ are equal +1.

(iv) for any nil F-algebra 4 and for any involutive automorphism o of A the algebra
A°[C,] is also nil.

Proof. Since 2£"(4) [G] can be isomorphicaly embedded into (4" (4)),,, where m
is the order of G, then by (i) #'(4)[G] is nil. Therefore " (4) [G]< A (4[G]). But,
on the other hand, by the assumption on the characteristic in (i) we get that the addi-
tive group of A/ (4) is torsion disjoint with G. Therefore from Theorem A we have

A[G A

(%’ (A[G]
ie., o (4)[Gl24 (4[G).
The fact that (i) implies (ii) is obvious.

We show that (iii) implies (i). Let A4 be a nil algebra. Since &~ is Gy-invariant,

A[G] is also nil. Let us consider the map ¢: 4[Gol—4, defined as follows:
o(Cag) = ;ai Gis

where a;-g; on the right-hand side are undeérstood as products of ¢; and matrices g,.
Such a map is then an F~-homomorphism. Since the characteristic p of Fis # 2,
¢ is an onto mapping. Therefore 7" (4,) = 4,, i.e., A, is nil.

The implication (i)=-(iv) follows immediately from the fact that the map

a b '
Slatb) = (a(b) a(a)) ’

where a,be 4, is a monomorphism of A°[C;] into the nil algebra A4,
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Now we show that (iv) implies (jii). Since the characteristic of F is # 2, we
can apply Theorem A. Therefore, for any F-algebra A4,

A[Go] 4
e ~ ol ) =Y,
(1’ (4) [Go]> f(f (4 (@ ]) °

which means that & (4[G,l)< # (4)[Gy]. To prove the converse inclusion it is
enough to observe that if 4 is a nil algebra, then 4[G,] is also nil. Since G, contains
a normal subgroup H = C, x C, and an element of order 2 which does not belong
to H, hence by Proposition 2.1, 4[G,] and (4[H])’[C,] are isomorphic to each
other. The set I = {a—ax| a e A} is a nil ideal of A[C,]. Since 4A[C,)/I ~ A is nil,
so is A[C,]. But, on the other hand, (4[C,DIC,] ~ A[C,x C,] = 4[H], which
means that 4[G,] is nil.

It is well known [6] that the condition (i) is equivalent to the open Koethe
problem. :

§ 3. Absolutely nil rings.

DEFINITION (S. A. Amitsur). We call a ring R can absolutely nil ring if for
every n>0 the ring R[x,, ..., x,] of polynomials in commutative indeterminates
Xy, s, X, 18 a il ring.

One can easily observe that a ring R is absolutely nil if and only if the ring
R[xy, %3, ...] of polynomials in a denumerable set of commutative indeterminates
Xy, Xg, ..o is a nil ring. :

An absolutely nil ring R will be denoted shortly as an A4"-ring. It is not hard to
check that 4 is a radical property [7]. The 4 -radical of a ring R will be denoted
by A4'(R). If Ris an 4 -ring, then for any m>0 the polynomial ring R [x, ..., X,]
is also an A -ring. )

ProPOSITION 3.1. If R is an N -ring, then for any n>0 the matrix ring R, is
also an N '-ring.

Proof. Since R[xy,...,Xy+q] 18 nil, therefore, as it is well known,
(RI[x1, oos Xppg 1 D & (Ru[Xq, oo, X, [Xm4+1] is @ Jacobson radical. Now applying
S. A. Amitsur’s result [1] we find that R,[x,, ..., x,,] is nil, which means that R, is
also an A -ring.

DEerINITION. We shall call a group G an A -group if for any 4 -ring R the
group ring R[G] is an A -ring.

Let R be an .4"-ring which is not locally nilpotent (examples of such rings have
been constructed by E. S. Golod [5]) and let W be a free group generated by at least
two elements. Let P be a free semi-group with the same set of generators as W.
Then R[P]= R[W]. Now applying A. Sierpifiska’s result [11], we obtain that R[W]
is nil if and only if R is locally nilpotent. Therefore W is not an .4 -group.

The class of all A -groups is homomorphicaly invariant and any subgroup
of an. A"-group is also an A -group. It is easy to check that every abelian group is -
an A -group and every locally A -group is an 4-group.
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ProOPOSITION 3.2. A discrete direct sum of N'-groups is also an- N '-group.

Proof. Let Hy, H, be 4 -groups and let R be an A -ring. Since (R[H])[H,]
~ R[H, x H,], Hyx H, is an A -group. By simple induction arguments one can
prove that the direct sum of finitely many A4"-groups is also an 4"-group. Now let G
be a discrete direct sum of any family of A -groups. Then G is a locally 4 ~group,
i.e., an A -group.

PRroPOSITION 3.3. If a group G contdains an N -subgroup H of finite index in G,
then G is an N '-group. "

Proof. Let R be an A-ring. Since R[H]is an A -ring, by Proposition 3.1 the
matrix ring (R[H]), is also an 4 -ring for any integer n. If we extend R to the ring R*
with unity element, then R*[G] is a right free R*[H]-module of rank k, where / is
the index of H in G. Now we can take a regular representation of the ring R*[G] into
the ring of R*[H]-endomorphism of the right’ R*[H]-module R*[G]. Thus R*[G]
can be embedded into the matrix ring (R*[H]), i.e., R[G] can be embedded into
the A "-ring (R[H]),. Therefore R[G] is an A -ring, which means that G is an
N '-group.

COROLLARY. Any finite group is an N '-group.

For a group G by 4(G) we shall denote the set of those.elements from G which
have only finitely many conjugates [10].

PROPOSITION 3.4. If G = A(G), then G is an A -group.

Proof. If H is a finitely generated subgrouyp of G, then the centre Z(H) of H
has a finite index in H ([10], Lemma 2.2). Thus Z(H) as an abelian group is an
A -group. Therefore by Proposition 3.3 H is an 4 -group. This means that G is
a locally A -group, i.e:, G is an A "-group.

Tueorem C. If the additive group R* of a ring R is torsion disjoint with an
N '-group G, then

A RIG) = #(RIG].

Proof. The inclusion A4 (R)[G]S A4 (R [G]j is obvious since G is an A ~group.
Conversely, by 8. A. Amitsur’s result [1], o (R[xy, X3, ...]) = A" (R) [xy, X5, ...];
hen<':e the ring R/ A (R)[x1, X,, ...] is o -semisimple. It is easy to check that the
additive group R[xy, x5, ...]* of the ring R[x,, x,, ...] is torsion disjoint with G.
Now from Proposition 1.1 it follows that the additive group R/A" (R)[x;, X3, ..]*

of the rmg
Rlxy, x5, ..]

~ R[xy, x5, ...]
A (R[xq, X, ...])

R
N R)xps x50 ] H (R
is also torsion disjoint with G. Applying Theorem A implies that the ring

(S 1) 1 (2
H(R) 1> 42 el ™ mj[xbxb"-])[(;]

[x1, Xa, ...]
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is A -semisimple. Therefore the ring

RG] R
H¥ (RG]~ K (B

is 4 -semisimple, which means that 4 (R)[G1=2 A4 (R[G]).

[G]
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