

A hereditarily indecomposable non-metric Hausdorff continuum

b

A. Emeryk (Katowice)

Abstract. Recently there were given examples (e.g. Bellamy's paper [1] and Bellamy and Rubin [2]) of indecomposable non-metric Hausdorff continua. However these continua are not hereditarily indecomposable. The aim of this note is to give a series of such examples based on author's construction given in [4].

Construction. Let X be an arbitrary non-degenerated metric continuum. For each $x \in X$, let M_x be a metric non-degenerated continuum and let T_x : $M_x \stackrel{\text{onto}}{\to} X$ be a continuous map. Let $S = \bigcup \left\{ \{x\} x T_x^{-1}(x) \colon x \in X \right\}$. For each $x \in X$ and an open subset U of M_x which intersects $T_x^{-1}(x)$, let R(x, U) denote the subset of S to which (t, P) belongs iff either t = x and P is in $U \cap T_x^{-1}(x)$, or P is in $T_t^{-1}(t)$ and $T_x^{-1}(t) \subset U$. The collection of all such subsets of S generates a topology in S. Let π denote a map (projection) of S onto X such that $\pi^{-1}(x) = \{x\} \times T_x^{-1}(x)$.

LEMMA 1. There is no countable base in S.

Proof. Let β be an arbitrary base in S. The collection $\mathscr P$ of all subset of S of the form R(x,U), being multiplicative, is a basis of the topology in S. Thus there is subfamilly $\mathscr P$ of $\mathscr P$ such that $\mathscr P$ is a basis in S and $\operatorname{card}\mathscr P'\leqslant \operatorname{card}\beta$. Let $x\in X$ and let R(x,U) be an open subset of S such that $T_x^{-1}(x)-R(x,U)\neq\emptyset$ and that $R(x,U)\cap(\{x\}\times T_x^{-1}(x))\neq\emptyset$. Then there is an R_x in $\mathscr P'$ such that $R_x\subset R(x,U)$ and that $R_x\cap(\{x\}\times T_x^{-1}(x))\neq\emptyset$. Hence $T_x^{-1}(x)-R_x\neq\emptyset$. This implies that $R_x\neq R_y$ for $x\neq y$. Hence $\operatorname{card}\mathscr P'\geqslant \operatorname{card} X\geqslant \mathfrak c$. This ends the proof.

Note 1. In [4] the author showed that (i) if for each $x \in X$, $\lim \operatorname{diam} T_x^{-1}(t) = 0$ and $T_x^{-1}(x)$ is connected then S is

- a separable first countable continuum,
 - (ii) π is an atomic map,
- (iii) for each $x \in X$ there exist M_x and T_x : $M_x \stackrel{\text{onto}}{\to} X$ such that $\liminf_{t \to x} T_x^{-1}(t) = 0$ and $T_x^{-1}(x)$ is a given arbitrary metric continuum.

Note 2. It is known (cf. Cook [3]) that if $f: X \xrightarrow{\text{onto}} Y$ is an atomic map onto a hereditarily indecomposable continuum Y and the preimage under f of any point of Y is a hereditarily indecomposable continuum, then X is a hereditarily indecomposable continuum.

A. Emeryk

64

THEOREM. There exist non-metric hereditarily indecomposable continua.

Proof. Let, in the above construction, X and $T_x^{-1}(x)$ for each $x \in X$ be hereditarily indecomposable metric continua; e.g. pseudo-arcs. By Lemma 1, Note 1 and Note 2, we infer that S in this construction is a non-metric hereditarily indecomposable continuum.

References

- [1] D. P. Bellamy, A non-metric indecomposable continuum, Duke Math. J. 38 (1971), pp. 15-20.
- [2] and L. R. Rubin, Indecomposable continua in Stone-Čech compactification, Proc. Amer. Math. Soc. 39 (1973), pp. 427-433.
- [3] H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1967), pp. 241-249.
- [4] A. Emeryk, An atomic map onto an arbitrary metric continuum, Fund. Math. 77 (1972); pp. 145-150.

SILESIAN UNIVERSITY, Katowice

Accepté par la Rédaction le 19.8, 1974

Paracompactness of topological completions

b

Tadashi Ishii (Shizuoka)

Abstract. Let X be a completely regular T_2 space, and $\mu(X)$ a topological completion of X (that is, a completion of X with respect to its finest uniformity agreeing with the topology of X). If $\mu(X)$ is paracompact, then X is said to be *pseudo-paracompact*. In this paper some remarkable properties of pseudo-paracompact spaces are studied.

1. Introduction. The purpose of this paper is to give detailed proofs for the author's abstract [6]. Throughout this paper all spaces are assumed to be completely regular T_2 . For every space X, we denote by μ its finest uniformity agreeing with the topology of X, that is, μ is the family of all normal open coverings of X. Concerning pseudo-paracompactness, the following results are known.

THEOREM 1.1 (Morita [13]). For every M-space X $\mu(X)$ is a paracompact M-space.

Theorem 1.2 (Howes [5]). A space X is pseudo-paracompact if and only if every weakly Cauchy filter in X with respect to μ is contained in some Cauchy filter with respect to μ .

- Let $\{\mathfrak{U}_{\lambda}|\ \lambda\in\Lambda\}$ be the family of all normal open coverings of a space X. A filter $\mathfrak{F}=\{F_{\alpha}\}$ in X is weakly Cauchy with respect to μ if for any $\lambda\in\Lambda$ there exists $U\in\mathfrak{U}_{\lambda}$ such that $U\cap F_{\alpha}\neq\emptyset$ for every $F_{\alpha}\in\mathfrak{F}$. In other words, a filter \mathfrak{F} is weakly Cauchy with respect to μ if for any $\lambda\in\Lambda$ there exists a filter \mathfrak{F}_{λ} stronger than \mathfrak{F} such that L=U for some $U\in\mathfrak{U}_{\lambda}$ and $L\in\mathfrak{F}_{\lambda}$. In this paper we shall study further results related to pseudo-paracompactness. § 2 contains other characterizations of pseudo-paracompact spaces and another proof of Howes's theorem. Furthermore it is shown by an example that there exists a strongly normal (i.e., countably paracompact and collectionwise normal) space which is not pseudo-paracompact. § 3 is concerned with the following:
 - (1) The sum theorems of pseudo-paracompact spaces.
- (2) The sucffient conditions for the preimage X of a paracompact space (or a paracompact q-space [10]) Y under a closed map f to be pseudo-paracompact.

(3) The invariance of strongly normal pseudo-paracompactness under a perfect map.

(4) Characterizations of pseudo-locally-compact and pseudo-paracompact spaces.

5 — Fundamenta Mathematicae t. XCII