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On stability and products *
by

J. Wierzejewski (Wroclaw)

Abstract. We investigate which properties connected with stability are preserved by product-
type operation on theories.

It is known ([2], [3], [20]) that if T, = Th() and T, = Th(B), then
Th (20 x B) is determined by Ty and T, ; we denote this theory by T; x T,. Similarly,
if & is a filter ever I and % is a filter ever I'x I, then T and Th(2%|%) determines
Th(U%|¥). We denote the last theory by T,%|%.

In the paper we characterize those product operations of direct and reduced
producls which preserve stability of theories. We also give a similar characteriz-
ation for Keisler’s finite cover property and other notions related to stability.
The results of the paper were announced in [19].

The author wishes to thank B. Weglorz for many stimulating discussions.

§ 0. Preliminaries. We use the standard notation. T’ (with indices if necessary)
always denotes a complete, countable first order theory in a language L with equa-
lity. We assume, that every theory under consideration has infinite models only.
2 denotes the two-element Boolean algebra. #(4) is the power set of 4. 4° = 4
and 4! is the complement of 4. The letters k,I,n, N are reserved for natural
numbers and %, A for infinite cardinals. X, 7, d, b denote finite sequences, 1h(X)
is the length of X. ®”4 is the set of all finite sequences of elements of A. If U is
a model of T, then S() is the set of all 1-types over . Let ¢ be a formula of L
with exactly xg, ..., x, free variables and let ay,...,a,€ 4. Then

0"y, v, @) = {ac 4] UE @la, a5, ..., a,]}

Taeorem 0.1 ([14]). Let St(T) = {x| T is x-stable}. Then St(T) is equal to one
of the following classes:
(i) O (in this case we refer to T as unstable),
(iiy {oel 2® = x},
(i) {oel 222"},
(iv). the class of all infinite cardinals.

* Most of the problems solved in this paper were stated by B. Weglorz.
1 — Fundamenta Mathematicae XCIII
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Theories which satisfy (i) or (iii) or (iv) are called stable, and those which
satisfy (iif) or (iv) — supersiable.
Tarorem 0.2 ([13], [14]). If T is unstable and x> w, then T has a saturated model
of power x iff w =Y x*
A<x

TreoreM 0.3 ([9], [14], [18]). If T is stable and x>w, then T has a saturated
model of power x iff T is x-stable.
We shall use Galvin’s autonomous systems [3]. Let ¢ be a formula with exactly
Xo, s X; free variables, % € Mod(T;), B eMod(Ty), ¢, € S(W), ¢, & S(B), 4, ...
w3 @, €4, by, ., b€ B. Let S, = (S5, %> be an autonomous system for ¢. Then
we define
ql((/’$<als ey an)) = l/’l(xO: ey X,,) B
‘12(‘/’:(171: sy bn)) = \bz(xo: sy xn)

where Yy, ¥, €8, and ¥,(xy, a3 ..., a,) € ¢, and Valxo, by, v, b) € ¢4
DEerNiTION 0.4,

ﬂ(qu 412)(%((‘11, b1>> ‘“:(an! bn>>) = nw(ql(q)’<a1: ey an>)5 ‘Iz((Pa<b1 ERLLE] bn))) .

gy X 4, is the type over U x B which contains all 7(q1, 42) (@,{<ay, by) a,, b,
for all formulas ¢ of L and all (ay, by), ..., <a,, b EIF’“")|1'1 :4>:B.,< " "»)

. []V;;e shall need the following lemma, which is a slight extension of Lemma 1.2
o .

Lemva 0.5. If WeMod(T,), Be Mod(T,) and pe S(UxB), then there are
4, € S(A) and g, € S(B) such that D =qy%Xq,.

8L .S.tability. In this section we prove that finite products preserve stability,
superstablht.y., and w-stability of theories. We also give an example which shows
that unstability is not preserved under finite powers.

t bITH}:OREM L1. Suppose that Ty and T, are stable theories. Then Ty x T, is also
stable. .

Proof. Since (3,,)" = Dop bY Theorem 0.1 T and T, are 2, -stable. Hence
by Theorem 0.2, T; and T, have saturated models of power 3 " say Q[' and SB’
By a theorem. of Waszkiewicz and Weglorz [17] 1.5, AW x B is :1;at11rated modei
of Ty xT; of power 3,,. Since 2. (200" >2,,, by Theorem 0.2 T, x T, is stable.

A<y
o gf;%l:z Suppose that Ty and T, are Superstable theories. Then Ty x T, is
Proof. Let 2° = w,, Since Ty and T,
So, by Theorem 0.2., T and T,
As before, A xB is a saturate
Ty x T, is stable and has a sat
T, xT, is o,

are superstable, they are 'wam-stable.
have saturated models of POWEr W, 4, Say W and B.
d model of T', x T, of power W41 By Theorem 1.1
urated model of power ®, 4, Hence, by Theorem 0.3,
a+a-Stable. Consequently, by Theorem 0.1, Ty xT, is superstable.

icm°
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TuEoreM 1.3. Suppose that Ty and T, are w-stable. Then T, xT, is also
w-stable (*).

Proof. By [9] Ty and T, have countable saturated models, say 2 and 8. By
Lemma 0.5, |S(AxB)|<[SAW)]-|S(B)] = w. Let € be a countable model of
T xT,. AxB is a saturated model of Ty xT, ([17] 1.4), and hence a universal
one ([10]). So we may assume that €< x B. But then |S(€)|<|S(AxB)|. So
Ty x T, is w-stable.

Remark 1.4. Theorems 1.1 and 1.2 can be proved in the same way as Theo-
rem 1.3, but our proofs show the consequences of the existence of saturated models
for stability.

ExampLe 1.5. Now we shall construct a structure B such that Th(%B) is un-
stable but Th(B x W) is stable. Let B be the following structure:

B =L ov(oxwxw), W,C, D, R}
where :
W is a unary relation, and W(a) iff aew,
C is a unary relation, and C(a) iff 2 ¢ o,
D is a ternary relation, and D(a, b, ¢) iff

W(a) & W) & C(c) &Jkewc = {a, b, k>,
R is a ternary relation, and R(a, b, c) iff

a<b-dkewc = {a,b,k) &k even
D(a, b, c)&{azb——*':'lkea)c = {a,b, k) &k #0.

Let ¢ (xo, x;) be the following formula:

W(xo) A W(x1) Adyy, y2[ W (yy = ¥2) AD(xy, X1, Y1) A D(xg, X1, Y2) A
A _IR('xm X1, YA TR, X1, ¥2)1-

By the construction of the structure B we have: B F ¢[a, b] iff a, be w and
a<b. So B has an infinite linear ordering, and hence by [14] 2.13 Th(B) is
unstable.

On the other hand, it is not too difficult to show that:

(i) Th(B xB) has the elimination of quantifiers,

(i) Th(B xB) is w-categorical,

(i) (B x B) is countable,

(iv) Th(BxB) is w-stable.

Indeed, (i) follows from the Quantifier Elimination Theorem (see e.g. [15]),
(ii) follows by finding an isomorphism between any two countable models of
Th(B x B); (iii) follows by listing all 1-types over B xB. From (ii) and (iii) we
obtain (iv).

() After submitting this paper, the author heard through B. Weglorz that the same resglt
had. been announced in [7] and proved in a slightly stronger version in [8}.
ll
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§ 2. Some lemmas. Let % and B be structures in the same language L with
predicates {R;};; and without functions and constants. We assume that A n B=0.
We define

APB=(4UB, A4, B, R¥ U R, .

We shall use two auxiliary languages L*() and L*(B). The set of formulas
of L*(2A) contains atomic formulas of the form A A(x)AR(xo, ..., %) and is
i<ky

closed under the usual connectives and quantifiers restricted to 4. L*(%) is defined
in a similar way. L(2) denotes the usual language of 2. If ¢ e L*(), then § de-
notes the natural translation of ¢ into L(2). For the sake of simplicity we shall
write A F ¢ instead of AF @.

Let us notice that:

2.1. If o e L¥W) and ay, ..., a,€ A, then
ADBEkolay, ....a,] fFf Uk olag, .., a,).
LemMa 2.2. Let (%) e L(U @ B). Then there are formulas ¢, ..., ¢, € L*(20),
Yys e, Y1 € L¥(B), and a Boolean polynomial P such that:
U@ BE @) L(P1, vees Pps Y15 w05 YI(X) -

Proof. We proceed by induction on the complexity of ¢. The case of atomic
formulas and logical connectives is easy.

Suppose that’ ¢(%) = Iyy¥ (X, y). By the induction hypothesis we may as-
sume that

)] 'lﬁ(f,y) '=;\</kl//i°(f’ DAY (X, )

where, for i<k, ¥,(X, y) e L*(A) and ¥,,(X, ) € L*(B).

Let /(%) be the formula obtained from (X, y) by replacing each atomic
subformula of it which contains y by a false sentence of L*(8B). We define the for-
mulas ¥,4(%) similarly. For i<k we have:

@ A @ BE[AO) AYu(®] = [AG) AV (E, )]
3 A D BE [BO) ATR)] < [BO) AoX, )] .

Note that /(%) and ;,(%) do not contain y. So using (1), (2), (3) by an easy
calculation we obtain: ‘

ADBE (%) HK\/"{[EIy(A(y) AYo(E, 9)) A (B)]v
v 3y (B(y) INZTEA y)) A lf.-o(f)]} .

This formula has the required form, and thus the proof is complete.

(?‘OROLLARY 23 (RD. D IF U=Ay and B =B, then AD B = Wo @ By.
(i) If A=A, and B<LB,, then A @ B<LUA, @ B,.

On- stability and products 85

Proof. Let 0 denote Vx(4(x)vB(x))A 13x(A(x)AB(x)). The corollary
follows from the fact that Lemma 2.2 can be reformulated by replacing everywhere
“9U @ BE” by “OF”.

Lemma 2.4, If o e L*(B) and ¢€°” A U B, then either "% [Eln A4 =0, or
P"®P[El n 4 = A

Proof. We proceed by induction on the complexity of @. We prove it only
for the case ¢ = 3y(BO)AY(z,»,%)). Fix €®” 4 u B. Suppose

A@BEI(BO)AVIa, y, 2))

Hence N @ Bk ya, b, &] for some aed and be B. Now by the induction hy-
pothesis we have y"®%[b, &l n 4 = 4. But

Y0, 5|3y (BO) AV [y, E)"O°,
and so ¢™®%[c} n 4 = 4.

LemMA 2.5, For every formula ¢ (x, 3) € L(% @ B) there are Sformulas @ 4(x, 7, 2)
e L¥) and py(x, 7,2) € L*(B) and functions f4,,, f5, such that for every sequence
ze™m0(4 U B) we have:

(@) 1h(f1,,E) =T (f5,4(®) = h(7)+1h(@),
) f1,0(D) €74 and f3,4(3) 7 B,

(iii) PULf @] = VO[] N A, P33, @] = ¢™*[E] N B.

Proof. We shall assume that there are two distinct elements dq, a4 of A and
two distinct elements by, by of B. It is obvious how to generalize the proof to the
other case. We define ¢4 and f ,. The definition of ¢ and f3,4 is similar.

Let 4 be an enumeration of all subsets of 1h(9),1e., k: (210 L IN{0} > 2 (L ().
By Lemma 2.2 there are @y, .., @ e LX), Yy, Wi e L¥(B) and a Boolean
polynomial -P such that

@ ADBEx, M S P(@y1s es Ores Yo woos ) (x, ).

We can always assume that the bounded variables of @(x, y) are different
from 7 = {Jos 0 YGy—10- Lot N = 2hG) and let Z = (g, -» Zy+1) DE & SC-
quence of distinct variables not occurring in @(x, y). For 1<s<I we put

Yilzos Zyes) = ((Zo = zy4.5) A4 (Z0) AA(Zy1d) -

Let 1<s<k and oc<Ih(7). Then ¢f is the formula ¢ in which every atomic

subformula 0 such that y; € Fr(@)and i o is replaced by (2o = Zy-1(a)) Ad(z) A

/\A(Zn-l(u))- '
For 1<s<k we put

for some ae A.

OUx, 520 wr ) = .\ (03x, F5 Z0s Za-s00)) Ao =2-1157) A (Z0) A A(Zh-100):
se®(h ()
Now we define

(5) (PA(x! 51"2) = P((p{, wery (P;‘, lﬁ'p sy ‘M)(xa jj’ Z)
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Note that ¢,(x, 7,2) € L*(). Let £e™O (4 U B). We are going to define
fA.az(E)'

@, it (€4 and i<Ih(5),

a, if (¢4 and i<Ih(y),

a it i=Ih(p),

a, if i=1h(P)+s for some 1<s<N and A(s) = {j| (©);e B},
(f1,,@) = {a, if i=Ih(})+s for some 1<s<N and h(s) # {j| (©),€ B},

ay if i=1h(H+N+s for some 1<s</ and AP Bk

E3x(4(x) AV x, 8)),
a;, i# i=1h(F+N+s for some 1<s</ and AP BF

E13x(40) AY(x, ) -

] It is seen that the conditions (i) and (ii) hold. Now we are going to verify (iii).
Fix 1<s<l By Lemma 2.4 and the definition of f; ,(¢) for ae 4 we have

, CADBEYfa, 8 i (S, @)ngrenes = 20
©® ADBEY[a, 8] if Uk Yila, £y, ,O].

Now let us fix 1<s<k and put o, = {j| (¢);e B}. Using 2.1 and the definition
of ¢Jo, for ae A, we obtain

ADBEga, ] if ADBEPra,fy, (O]laa = (fA,w(E))llx(;)+ll'1(nro) s
() it AP BF ¢Ja, 7], then Ak o, £, (O]
To prove the implication converse to (7) it suffices to show that
it Wk (p7(x, 1) AZme) = Zmgyen-1an) (2, F4,4()] then o = {j|(&), € B} .

But the last implication follows from the definition of the sequence fy ,(2).
So for ae A4 we have ’ ' ’

® ADBEofa, 2] iff Wk gila, £y, 0]
Now by (4), (5), (6), and (8) for ae 4 we obtain
UG BEgle, 8] il ADBE g4,/
This completes the proof.

§ 3.- The finite cover property. In this section we prove that the finite product
of theories does not have the f.c.p., provided they do not have the f.c.p. ().
I_.,et us recall some notions concerning the f.c.p.
@ A, formula (X, ) has the n-cover property (n-c.p.) with respect to T if
there arei a model U of T and &y, ..., 4,_; (d;€°” 4 for i<n) such that
Uk T35 A 0l%,a]

i<n

() The notion of the finite cover property was introduced by Keisler in [4].
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but for every j<n
AEAX A\ olX,a].
%] «
(ii) A formula ¢ (X, y) has the f.c.p. with respect to T if (X, 7) has the n-c.p.

for arbitrarily large ne .

(iif) T has the f.c.p. if there is a formula ¢(x, ¥) which has the f.c.p. with
respect to T.

Remark 3.1 (Shelah [14], 3.10). If a formula ¢ (%, 7) has the f.c.p. with respect
to T, then some formula v (x, y) has the f.c.p. with respect to T.

Lemma 3.2, If Th(2 @ B) has the f.c.p., then either Th () or Th(DB) has the f.c.p,

Proof. Suppose that ¢(x, ) has the f.c.p. with respect to Th(A & B). Fix
New and let k= min{/=2N]| ¢(x, 7) has the I-c.p. with respect to Th(¥ & B)}.
Let &, ..v» Gy—q DE as in the definition of the k-c.p. and let @4, @p,f4,0:/5,0 DC
formulas and sequences which can be obtained from Lemma 2.5. We shall write

> fp instead of fy 55,0
Let us define:
F={j<k| UF3x i/\k(PA[xsz(Ei)]}
<
i#]

and
F' = {j<k| BF ax/<\,, @plx, @1} -
i#j

If F=k or F' =k, then the Lemma is proved. Otherwise either |Fi=N or
|F'|=N. Without loss of generality we assume that F = {0,1, ..., 1-1} for some
I>N. Now by induction we define sequences D = (D, s<ay, C=<Cy s<a)
of subsets of k, such that for 0<s<a the following holds:

(i) D, D,y and C=Coyy.
(ily If je Dy, then
Ak Ax /} @lx, F4E)] -
i¢Cs

(iif) Ak Ax ﬁ/é @alx, 4]
16Cs
Le‘; DO == {0, 1, weey l'—l}, Co = 0, Cl = {l}’ and
D, = {j<k] AkIx é(pA[x,fA(E,)]}-
i¢gCy
%]

Then, as is easy to show, the conditions (i)-(iif) hold. Suppose that C,and D,

have been defined. Put:
E = {t<k| %Wk 13x /} o, fa(EN &1 C} .
i¢Cs
it .
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It E#0, then C,yy = C, U {minE} and
Dyyy = {j<k| UEF Hx'é/\ Q@ alx, f4(ED]} -

Cs41
1 #j
Otherwise, if E = 0 then D = {D;| i<s) and C = (C|| i<s) (e, a =)
By the definition of & and the conditions (i)-(iii) we have: D, n C, =0, D, u C,
=k and |D,|>N. So we obtain: :

Ak _Iﬂxi/> @alx, f4@)],
but for je D,
Ak axi/b oalx, f4(E)] .
i#“j’

Therefore the formula @,(x, 7, Z) has the |D,|-c.p. and |D,|=N. Let

Gy = {new| g4x,7,2) has the n-c.p.},
Gp = {new| ¢p(x, ¥, 2) has the n-c.p.}.
Then G, or Gy is infinite. Hence, @4(x, 7, Z) or ¢z(x, 7, Z) has the finite cover
property. This completes the proof.
Levma 3.3. If Th(Ux B) has the fc.p., then Th(WA @ B) has the f.c.p.

Proof. We may assume that L contains only relational symbols. Let ¢(x, )
be a formula of L and assume that ¢ (x, 7) has the f.c.p. with respect to Th (2L x B).
Let § = (S, ) be an autonomous system for ¢(x, y), and let

FoG, e \ ofx,3) where ¢eS.
1<ig

=isn

For 1<i<n put:
Py={,m| ¥,neS and n(f, 1) = ¢} .
Then for k = 1h(¥)+1 and g, ..., @, € 4, and by, ..., b, € B we have:
UxBE ¢[Cdg, B s (@, D) iff '
V \ Wk (poldo, vvrs @l & B E (2)slbo, v B

1<i<n peP;
and

(®  UxBE o[lag, bod, ., <t b]  iff
AP inlsV V ((2)oag, s ad A(RYi[Bo s s Bi)

isn pePy;
where (p)o(x, Y1, ..., %) and (p)i(x', ¥4, ..., yi) are the corresponding translations
of (p) and (p), from the languages L(2), L(B) into L) and L*(B), respectively.
By (#) the following formula has the f.c.p. with respect to Th(X @ B):
Y0, %0, 7, 7) = \/ 'V (060, F) AA(x0) A(D)y(x5, 7') AB(x)] -

1<i<n pep;
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So by Remark 3.1 Th(% @ B) has the f.c.p.

TuEOREM 3.4, If Ty and T, do not have the f.c.p., then Ty xT, does not have
the fe.p. ().

Proof. By Lemmas 3.3 and 3.2. ;

Remark 3.5. Th(®B) defined in Example 1.5 is unstable, and so by Shelah’s

Theorem ([14] 3.8.) has the f.c.p. On the other hand, Th(B xB) does not -have
the f.c.p.

§ 4. The strict order property and the independence property. In this section
we prove, for the strict order property and the independence property (*) theorems
analogous to Theorem 3.4. Let us recall some definitions.

(i) A formula (%, ) has the n-strict order property with respect to T'if there
are: a model A of T, and &y, ..., &,y (€;€“” A4 for i<n) such that

U EAX(T@IX, ElrelX, &) iff
(i) A formula ¢(%, 7) has the strict order property with respect to T if it has
the n-strict order property with respect to T for all ne o.
(ii) T has the strict order property if there is a formula ¢ (x, §) which has the
strict order property with respect to T.
(iv) A formula ¢(%, 7) has the n-independence property with respect to T'if
there are: a model 2 of T, and &g, v, &gy (& € “7 A) such that for all wen

AFIZ(A ol%, Ei]/\i A ez, &b
lew en—w

i<j<n.

(v) A formula ¢(%, y) has the independence property with respect to T if it
has the n-independence property with respect to T for all new.

(Vi) T has the independence property if there is a formula ¢(x, ) which has
the independence property with respect to T. !

Let us note the following:

ProrosiTioN 4.1, () If ¢ (X, ¥) has the n-strict order property n-independence
property and m<n, then @ (X, y) has the m-strict order property (m-independence
property).

(i) If @(%,7) has the nm-strict order property (n-independence property) for
arbitrarily lavge ne o, then @(X, §) has the strict order property (the independence
property).

We shall use the following theorem, part (i) of ‘which is due to Lachlan ([6])
and part (ii) —to Shelah ([14] 4.6).

(*) After the theorem had been proved the author was informed by B. Weglorz about Fhe
following result of Shelah: 7' does not have the f.c.p. iff Tis 4-minimal (4 is Keisler’s ordering
from [4]). From this Theorem 3.4 easily follows. : )

(%) The notions of the strict order property and the independence property were introduced
by Shelah in [141.
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Treorem 4.2. () If (%, 7) has the strict order property with respect to T, then
some formula i (x, ) has the,strict order property with respect to T.

(i) If ¢ (%, 7) has the independence property with respect to T, then some formula
W (x, ) has the independence property with respect to T.

Lemva 4.3. () If Th(UxB) has the strict order property, then Th(Y @ B)
has the strict order property. x

(i) If Th(AxB) has the independence property, then Th(WU © B) has the
independence property.

Proof. Since the proof is similar to that of Lemma 3.3, we omit it. (The main
difference is that one uses Theorem 4.2 instead of 3.1).

Levma #.4. If Th(A @ B) has the strict order property, then either Th(20)
or Th(B) has the strict order property.

Proof. Let ¢ (x, 7) have the strict order property with respect to Th(% @ B).
Fix New and let &, ..., v~y be as in the definition of the 2N-strict order
property. Let us note that the definition implies (+):

) If i<j<2N, then ¢"®%[¢]¢0"®%[c,].
Let us define for i<2N—1:
C; = (" ®%[Ei Ne"®®[ED) N 4,
D; = (" ®®[¢; N0" 2D 0 B,
C={i| C;#0}, D={il D;#0}.

Then by () either |C|=N or |D|>N. Without loss of generality we assume
that |C|] = Ng>N. Let C = {ko, .., ky,-1}. Let ¢,4(x, 7, 2) be a formula and let
f4,, be a function which satisfy the conclusion of Lemma 2.5. Then, of course,
@4x, 7,2) and 1y, o(Ce)s s Fu, Gy ) satisfy the definition of the Ny -strict order
property. Let:

® Gy ={new| pix,7,%) has the n-strict order property),
Gy = {new| pg(x, 7, 2) has the n-strict order property} .

Then either G, or Gy is infinite, and so by Proposition 4.1(ii) either ¢,(x, 7, 2)
or ¢y(x, j,Z) has the strict order property.

THEOREM 4.5. If Ty and T, do not have the strict order property, then Ty x T,
does not have the strict order property.

Proof. By Lemmas 4.3(1) and 4.4.

Lemma 4.6, If Th(U @ B) has the independence property, then either Th(2)
or Th(DB) has the independence property.

Proof. As'sume that ¢(x, y) has the independence property with respect to
Th(% @ B). Fix Ne o and let &, ..., Ey_, be as in the definition of the 2N-in-
dependence property. For. i<2N, let us define C; = ¢¥®%[¢,] and

k = {minl| i, ..., -1 <2N3fe2(C{V n .. n ¢V A d = O) v

VICIP A aCl8 N aB=0).
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If k>N, then. Cyn A4, ..., Cy n A are independent subsets of 4. Hence, if
@a(x, 7,2) and J4, are taken from Lemma 2.5, then @4(x, 7, 2) and fy (%), -
wees S, 0(Cx) satisfy the definition of the (N+1)-independence property.

On the other hand, if k<N, then take Cj, ..., C;,., such that ciO A
0 CL¥ Y = Dcd for some fe*2. For 1¢ {io, ..., i~} define sets D, = DAC,.
One can easily see that Dycd and {D) 1e2N\{iy, ..., {—4}} are independent
sets. Since k<N, we have [2N\{y, -, -1 }|=N. So again ¢(x, ¥,2) and
{Fao(@| 1€2N\{ip, s e~y }} satisfy the definition of the [2N\{io, ...y Bt }=
independent property.

‘We complete the proof in the same way as that of Lemma 4.4,

TreoreM 4.7, If Ty and Ty do not have independence property then Ty x T, does
not have the independence property.

Proof. By Lemmas 4.3(ii) and 4.6.

Remark 4.8. One can see that Th(B) from Bxample 1.5 has the strict order
property. On the other hand, Th(B xB) is stable, and so by Shelah’s theorem
([14] 4.1) does not have the strict order property.

Remark 4.9. Using the same method as in Example 1.5, one can construct
a theory T, such that T has the independence property, but Tx T does not have
the independence property.

§ 5. Morley rank. In this section we estimate the Morley rank of pxgq. We
write CB-rank for the Cantor-Bendixon rank, rank for the Morley rank and d%,
D* for the corresponding ath derivatives (see e.g. [12]). It x has no CB-rank (rank),
then we write CB-rank (x) = co (rank(x) = c0).

We need some topological facts:

PrOPOSITION 5.1. Let X, ¥ be compact Hausdorff spaces. Then:

() If f: XY is a continuous onto map and a is an ordinal number, then d*(Y)
SA(d(X)).

@) ([16]) Thm.2) [f xe Xandye ¥, then CB-rank((x, y)) = CB-rank(x)(+)
CB-rank(¥) (%).

Lema 5.2, Let f: S(U)xS(B) S xB) be a map defined by fKp, )
= pxq. Then f is a continuous and onto map.

Proof. By Lemma 0.5 fis onto. Let U = {peSAxB) @ (x,{a, BoY» ) ep}
be a basic open sct of S xB). Let' S = (S, 7> be an autonomous system for ¢.
Without loss of generality we assume that ¢ € S, Let

P ={Cn, ¥ 1, ¥ S and n(n, Y) = o}

Then

Yy = U (g S n(x, a0, ) €qi} x {2 € S(®)| Y(x, b, ) € 42}
(myreP
is an open set in S() x S(B).

(®) (+) denotes the patural sum of ordinals, see e.g. [S].
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THEOREM 5.3. If p € S(Ax B), then
rank (p) <lw.b. {rank(g,) (+)rank(g;)| ¢, € S(X) and g, € S(B) and g, % q, = p} .

Proof. First assume that % and B are w-saturated. By [17] 1.5 A x B is also
w-saturated. So by [12] 31.3

(*) if peSEN(S(B), S(UAxB)), then rank(p) = CB-rank(p).
Let pe S(UAx B). Then by (x) and Proposition 5.1 we have:

rank(p) = CB-rank(p)<lu.b.{CB-rank({q;, 920)| ¢4 X4, = p}
= Lub.{CB-rank(g,)(+)CB-rank(q,)| ¢;x ¢, = p}
= lLu.b.{rank(g,)(+)rank(g;)| g;xq, =p}.

Now we are going to eliminate the assumption that 2 and B are w-saturated.
There are €3> and B>B such that € and B are w-saturated. Fix g & S(A x B).
By the basic properties of the Morley rank (see [9] or [12]) there is a p € S(Ex B)
such that p2g and rank(p) = rank(g). Therefore

rank(q) = rank(p)<Lu.b.{rank(g,)(+)rank(g,)| ¢; % ¢, = p}
<Lub.{rank(g; | %) (+)rank (¢,IB)| 4: %4, = p}
<lub{rank(g,) (+)rank(g)l ¢1x g, = ¢}

where ¢4|% (g,|B) denotes the subtype of ¢;(g,) which belongs to S() (S(B)).

COROLLARY 5.4. 0tp,x1, <ty (+)or, () provided that T, and T, are w-stable,

In [9] Morley asked what model-theoretical conditions on T imply that oy is
finite. In [1] Baldwin proved that if T is o, -categorical, then oy is finite. By Cor-
ollary 5.4 we have the following result:

COROLLARY 5.5.(i) If T is a finite product of w,-categorical theories, then oy
is finite. )

(i) The class of all theories for which ay is finite is closed under finite products.
_ Exampie 56. Let % = ([02], Ry, R,), where R,(a) iff ae[0,1] and Ry(a)
iff 2 € [1,2]. Let T = Th(). It is not too difficult to show that T'is w-stable, oty = 2
and T is not a finite product of w, -categorical theories.

PROPOSITION 5.7. For each ordinal O0<w, f<w,, there are theories T, and T,
such that: (i) T, and T, are w-stable, (ii) ay, = a+1 and op, = f+1, (iii) O, x Ty
= ag(+)or,~1. :

Proof. We prove this only for «, 8 w. We consider Morley’s Example III
from [9]. Let X and ¥ be closed subsets of the Cantor set such that a1

= min{¢] 4%(X) = 0} and f+1 = min{¢ |d*(¥) = 0}. Let T, be a theory con-.

structed by using X, and let T} be a theory constructed by using Y. Note that if

(*) For the definition of ar see [9].
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AET, and BE T, then for Ky, Kysw ( AR A A TRY® is infinite iff we
. ieK) JeKg
have {f,g> e Xx Y such that

(D, 9@ =<1,1>  for iek,
and ‘
{fW), 9@ # 1,1y for ieK?.

By this, reasoning as in Example III [9] and Proposition 5.1 (ii) we have
dpyxr, = min{¢] dXx ¥) = 0} = (r(+)eg,)—1.

§ 6. Infinite powers. In this section we investigate properties connected with
the stability of theories of reduced powers.

TaEOREM 6.1, Let & be a filter over I. Then the following conditions on the
filter F are equivalent:

W) 2% is finite.

(II) For any theory T, if T satisfies (x), then TL satisfies (x), where (¥) denotes
one of the following conditions:

A) T is stable,

B) T is superstable,

C) T is w-stable,

D) T does not have the f.c.p.,

B) T does not have the strict order property,

¥) T does not have the independence property.

Proof. The implication (I) = (IT) follows from Theorems 1.1, 1.2, 1.3, 34,
4.5 and 4.7. To obtain the converse implication take T = Th(), where A
= ¢{0,1} U w,<) and x<y iff x = 0 and y = 1. Now note that if B is a Boolean
algebra, then B has property (x) iff B is finite.

TuEorEM 6.2. Let & be a filter over 1. Then the following conditions on the
filter &F are equivalent:

) & is an ultrafilter. ‘

(T) For any theory T, if T satisfies (%), then T satisfies (x%), where (k%)
denotes one of the following conditions:

A) T is unstable,

B) T has the fep.,

C) T has the strict order property,

D) T has the independence property. .

Proof. The implication (I) =() is obvious. Tt isa matterr of eazsy calcula'.aon
to show that if [25%|>2 and B is from Example 1.5, then Bj = B*. Hence it T
= Th(®), then T% is unstable iff & is an ultrafilter. For the other cases the proofs
are similar; for the independence property see Remark 4.9.

Remark 6.3. Since T5|# is determined by T and 2%|%, we have the same
characterization for limit reduced powers.
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§ 7.-Final remarks. The product-type operations depend on the choice of the [13] S. Shelach, Finite diagram stable in power, Ann. Math. Logic 2 (1970), pp. 69-118.
language. We are going to show that, if we expand the language, then unstability [14] — Stability, the f.c.p. and s.uperstab.ilit.v, Ann. Math. Logic 3 (1971), pp. 271-362.
and other properties are preserved under reduced powers and.finite products. [151 J.R. Shoenfield, Mathematical Logic, 1967. .

. P formul f the language of T there is [16] R. Telgarsky, Derivatives of Cartesian product and dispersed spaces, Collog. Math. 19 (1968),

We say that 7" is neat (') if for every formula ¢ o nguag pp. 59-66.

a predicate P, such that TF g—P,. {171 J. Waszkiewicz and B. Weglorz, On w,-categoricity of powers, Bull. Acad. Polon. Sci.

PrOPOSITION 7.1, Let Ty and T, be neat theories. Then: Sér. Sci. Math. Astronom. Phys. 17 (1969), pp. 195-199.

" : ; 18] J. Wierzejewski, Remarks on stability and saturated models, Colloq. Math, 34 (1975).
tisfies (x*). [ 8
((1% g ;1 :ZZS;;ZS ii':;fymg;*)';:fifs” a]‘]:t}l;:riwil)l' l;ﬁ th e(n fl)qx satisfies (v%), where [19] — A note on stability and products, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.
if s E s & > .

22 (1974) pp. 875-876.

(##) denotes one of the following conditions: [20] A. Wojciechowska, Generalized limit powers, ibidem 17 (1969), pp. 121-122.

A) T is unstable,

B) T has the fc.p. INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK, Wroctaw
C) T has the stri t’ der property INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES, Wroclaw Branch
as the strict order property,
D) T has the independence property. ) o Red 7. 10, 1574
Accepté par la laction le 7. 10.
Since the proofs are easy we leave them for the reader. pie p

It is not difficult to notice that for most of the results the assumption of
countability of L is not necessary.

We close this section by mentioning an open problems similar to Problem 7
in [9]. .

ProBLEM. Find a possibly small class K of theories such that the class of

all finite products of elements from K is equal to the class of all w-stable theories T
for which oy is finite.
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