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On bouquets

by

Anna Gmurczyk (Warszawa)

Abstract. The paper concerns with bouquets of metric continua, in particular with spherical
bouquets and usual spherical bouquets. Some results are the following:

Every bouquet of ANR’s is movable.

A bouquet is FAR if and only if all its leaves are FAR's.

A bouguet of ANR’s is homeomorphic to the inverse limit of a sequence of finite subbouquets
with bonding maps being retractions. .

Every spherical bouquet is of the same shape as a locally connected spherical bouquet.

For usual n-dimensional spherical bouquets (# > 1) two fundamental sequences are homo-
topic whenever they are homologic.

The classification of spaces, in particular of compact spaces, into classes
called shapes is based only on global properties of those spaces, and thus it is far
less precise than topological classification. The question arises how to find the
singles possible space in each class. E.g., for the class of each plane continuum
there exists a representative which is a finite or countable bouquet of 1-spheres,
j.e., a set homeomorphic to one of the subsets

k- N N2
Xk = U {(x: y)EE2 (x“‘;,'> +J’Z = <‘;) } for k=1,2,..
i=1 '
v G foem (st - (]}
i=1 1 i

of the plane E?,
The aim of this paper is to study the properties of bouquets in more general
sense,

and

1. Basic definitions. In [1]-[5] K. Borsuk introduced the basic notions of
shape. We recall some of the basic definitions.

Let ¥ and ¥ be two compacta lying in an AR(M)-space M.

A sequence of continuous maps fi: M—M is said to be a fundamental sequence
from X to ¥ (notation: f= {f, X, ¥}) if for every neighborhood ¥ of Y there
is a neighborhood U of X such that

fdoferly iV for almost all k.
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Two fundamental sequences f = {f;, X, Y} and g = {g, X, Y} are said to
be homotopic (notation: ferg) if f01 every nelghborhood V of Y there is a neighbor-
hood U of X such that

flv=gy In ¥V

By the fundamental identity sequence from X to X we understand a funda-
mental sequence idy = {, X, X } such that f(x) = x for every xe X and
k=1,2,.

By the composition gf of two fundamental sequences f = {fi» X, Y} and
g = {g, ¥, Z} we understand the fundamental sequence {g,c i X, 2}

Tf there exist two fundamental sequences /' = {f;, X, Y} and g = {g,., ¥, X}
such that gf~idy and fg~idy, then we say that X and Y have the same shape
(notation:"S—hX = ShT).

Replacing in those definitions the compacta X, ¥ by the pointed compacta
(X, xp)=(M, xo), (¥, yoy=(M, o) and also the neighborhoods U, V' by the pointed
neighborhoods (U, x,), (V, y,) we get the notions of the fundamental pointed se-
quence f = {fy, (X, x,), (Y, yo)}, of the homotopy of pointed fundamental sequences
and of the shape of pointed compacta.

A closed subset A of a compact set X< M is said to be a fundamental retract
of X if there exists a fundamental retraction of X to A4, 'ie., a fundamental sequence
r={r, X, 4} satisfying the condmon rk(x) = x for every point xed and
k=12,

The fundamental retracts of AR-sets are said to be fundamental absolute
retracts (FAR-sets) and fundamental retracts of ANR-sets are said to be funda-
mental absolute neighborhood retracts (FANR -sets). ‘

All the spaces considered in this paper are metric and separable.

The symbols o, K(x, ¢), K(4, &) always denote the metric, the open ball with
the centre x and the radius ¢ and the set of such points y that inf o(y, a) <e, re-

ae A

for almost all k.

spectively.

2. The notion of a bouguet. The aim of this part is to give the definition of
a bouquet and to prove lemmas needed for studying the properties of bouquets.
(2.1) DeFmNITION: A pointed continuum (X, @) is said to be a bouguet if there

exists a family & = {X,},.4 of subcontinua of the sp'lcc X such that the following
conditions are satisfied:

M X=UXx,
Aed

(2) for every Ae the set X;~(a) is a component of X—(a),

(3)if 4, ped are different indexes, then there exist continua C,, C,
that X,<C;, X,=C,, X=C,UC,, and C; N C, = (a).

The elements of the family & are called the leaves and the point a the centre
of the bouquet (X, a).

(2.2) DerINITION. Let (X, ) be a bouquet, & = {X;},., the family of its
leaves and (Y, 4) a pointed continuum such that Y<X. Then (7, a) is said to be

such
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a subbouquet of (X, a) if it is a bouquef and the family of leaves of (¥, ) is con-
tained in Z.

It is casy to see that the intersection 'md the sum of an arbitrary finite family
of subbouquets of (X, a) are also subbouquets of (X, a).

(2.3) Lemma. If (X, &) is a bouquet and & = {X,},. 4 is the family of its leaves,
then jor every A A and for every neighborhood U of X, in X there is a subbouguer
(Y, a) of (X, a) such that the set (X—7Y) L (a) is compact and X,c Y<U.

Proof. Let A€/ be a fixed index and U a neighborhood of X, in X. For every
ued, p# A, let us denote by (B,, @) and (C,, 4) subbouquets of (X, a) such that
X,<B,, X;=C,, X¥=B,uC,und C,n B, = (a).

Since X, = ) C,, there is a sequence iy, f,, ...

e !
w A

of indexes different from A

such that

Since X, is a comp'\ct set, there is a natural number n, such that ﬂ C, U

i=1
The set ¥ = ﬁ , satisfies the required conditions.

1t follows dlrecLly from Lemma (2.3) that for every leaf X, of a bouquet (X, a)
the set X, —(a) is a quasi-component of X—(a).

(2.4) LEMMA. Let (X, a) be a bouquet and & = {X,},c 4 the family of its leaves.
If U = {Uzea is a family of open subsets of the space X such that X;=U, for
every A, then there exist finite sequences Ay, .., &, of indexes and {(B;, Y., of

 subbougquets of (X, a) such that the following conditions are satisfied:

(1) Xy<B;=U,, for j=1,...k
I
@) x= U5,
J=1

BYBnB;=(a) for i #j, L,i=1,...k

Proof. We can find, by Lemma (2.3), a family {(¥;, @)}, of subbouquets
of (X, a) such that for every A e A the set (X — Y;) U (a) is compact and X; < Y, < U,

It is clear that there is a sequence fiy, fis, ... of elements of A such that X

U ur

Wc define the sets A, 4,,, .. by the formulas

4, =17,

and
. i-1
Am = (Y/u - U

Y yuv(@ for i= 2,3, .

Let us observe that

k k
U Ay, = U Ym
=1 i=1

for every k. and X = UlA,“.
je=
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For every i the pointed continuum (A,,, @) is a subbouquet of (X, a), the set
A,,—(@) is both closed and open in X —(@) and (4,— (@) (4,,— (@) =0

for i#]J
Let & be a positive number such that A, #K(a, &)<

Since X = K(a,8) U U (A,“—(a)) and X is compact, we infer that 4,
i=1

<K(a, ) for almost all j. Let 1 =n;< ...<n, be a sequence of natural numbers
such that Aumz,tK(a, g) for i=1,..,k and 4, <K(a, g) for j s ny, o, .

i
Let us write A; = g, for i = 1,.., k. It is clear that X3 < U 4, for every
=1

1€j<gk.

Before we define the bouquets (B;,a) for i =1,
inductively an auxiliary finite sequence DY a),j= 2
bouquets of (X, a).

If X,,c4,,, then we put Dl = A4, and D} = 4,,.

If X,,¢4;,, then X; cA, and we infer by (2.3) that there is a subbouquet
(F,, a) of the bouquet (4,, N Y;,,d) such that X, cF,, X, ¢F, and the set
(4, n Y,,—F,) U (a) is compact.

We define D} = (4,,~F,) U (a) and D} = 4, U F,.

Let us suppose that for every 2<n<k we have defined a sequence (D{™%, a), ...
s (D’}“l, a), j = 2, ..., n, of subbouquets of (X, d) such that the following con-
ditions are satisfied:

(@), if 2<j<n and 1<i<y, then X, = Di"*cU,,

(b), if 2<j<n, 1<i,I<j and i # [, then DJ™' n D{™' = (a);

(9), for every 2<j<n and 1<i<;j the set Dj™'—(a) is both closed and open
in X—(a)

(), UAM— UDf Yfor j=2,.

The bouquets (D 1) (D,,H, a) we define in the following manner:
It X, ., =4,.,, then we put Df = Dj ' for i=1,..,nand Dy,y = dy,,,.

n
If X, . #4;,, then X; ., = U D{™* and there is such an i, that X,
=1

., k, we shall construct
Lk, I=1,..,J, of sub-

< Dj; . There is, by (2.3), a subbouquet (F,,, @) of the bouquet (ot
such that X, , cF4, X;, #F,,, and the set oyt
compact.

We define D} = D]™' for i +# iy, n+1, and D} =
Dpsy = A, Y Fyay. .

The bouquets (D}, a), where 2<j<n+1, i=1
(a)n+ 1'(d)n+ i

The required bouquets (D;, a) for i =1, ...

U Anj_

NYn®
n YZ.,-H": n+1) v (u) 18

(D} '~ Fy40) v (@) and
, -y Jo Satisfy the conditions

, k we define by the formulas

. .
B, =D\t u( Uzpi“‘) and By =Dt for j=2,..k.

J#EnL i=
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Tt is casy to verify that the bouquets thus defined satisfy conditions (D-(3) of
the lemma.

(2.5) Lemma, Let (X, a) be a bouquet and & = {X,},. 4 the fomily of its leaves.
If U = {U} a4 is a fumily of open subsets of X such that X,cU, for every AeA
and Ay, ., Ay Is afinite sequente of indexes, then there exist finite sequences Ay 1, .., I
of indexes and {(B;, d\}i= of subbouguets of (X a) such that the following con-
ditions are satisfied:

() Xy Bl fori=1,.,n

n

(2) X = ’U1Bi,
(3) BinBy=(a) for i #j, i,j=1,..,n
Proof. We can assume that X, 2 U, for i #j, i,j=1,..,k

There cxist, by (2.3), subbouquets (¥;,, @), I = 1, ..., k, of the bouquet (X, @)
such that for every 1<i<k the set (X'—Y,) v (@) is compact and X, = ¥,,=U,,.
i-1

We define By = ¥, and By = (Y;,~ U Y,)u (@) fori=2,.., k.
j=1

k k
Let us write £ = (X~ UB)u(a), # ={ded: X;¢ UB}, V,=U,nZX
i=1 i=1

for pe st and ¥ = {V,}eu-
The bouquet (£, ) and the families & = {X,},... and ¥ satisfy the conditions
of Lemma (2.4). Then if £ # (a), there exist finite sequences g4y, ..., 4, of elements

of J and {(By, &)}lugs of subbouquets of (£, a) such that X = U B;, X; B,

i=k+1
aV,cU, for i=Fk+1,..,n and B;n B; = (d) for i#j, i,j=k+l,..,n
All the bouquets (B, a), i=1,..,

n, are subbouquets of (X, a) and satisfy
conditions (1), (2) and (3).

(2.6) TreoREM. A pointed contimmm (X, a) is a bouguet if and only if there is
a compact set Z and a family & = {(Z,, a,)}ue.u of pointed continua such that the

Jfollowing conditions are satisfied:

(1) for every pe M the set' Z, is a component of Z,
2) for every pe # the set Z,~(a,) is connected,
(3) the set 4 = U (a,,) is compact,

(4) there exists u romznuous map f: (Z, A)— (X, a) such that f|z-4 is a homeo-
morphism of the set Z—.A onto X~(a).

Proof. First, let us assume that there exist: a comp’wt set Z and a family 2
satisfying conditions (1)-(4) of the theorem.

We define 4 = {pe.#: Z,~(a,) # @} and X, = f(Z,) for every ped. It is
casy to verify that conditions (1)-(3) of definition (1 1) are satisfied.

Now let us suppose that (X, a) is a bouquet and & = {X)}1a4 is the family
of its leaves.

For i = 1,2,... let us denote by «; = {4}, ...,
subsets of X such that

A%} a finite family of closed



GUEST


166 A. Gmurczyk

kt
@) Xx=U4}for I=1,2,..,
j=1

(if) A’,nJA’j, =(a) for j# i, joi =1k, 1=1,2, ..,

(iii) (4}, @) is a subbouquet of (X,a) for j = Lok, 1=1,2,..

It follows from Lemma (2.5) that we can find the sequence Ay, Ay, ... in
such a manner that the following conditions are satisfied :

() for every Ae o, there is Be s,y such that A< B,

(B) for every A4 e, there is an index A(A) e A such that 4<K(X,4y, 1/i).

We denote by B, ..., Bl a sequence of closed subsets of the Hilbert cube Q
such that the set B} is homeomorphic to Ay for j=1,..,%, and BinB =0
for i, i,j =1, s Ky

. kn
For every natural n the set ¥, = UJ By is compact and there is a continuous

i=1
map g,: Y,~X such that g,[p;isa homeomorphism of Bj onto A’} forj =1, ..., k,.

It follows from conditions (o) and (i)-(iif) that for every je {1, ., Ky} there
~ exists exactly one number [je {1, .., k,} such that A4y,
The maps p?*!: ¥,,;—~Y, and ¥ Y,—Y, defined by the formulas

P:+1(x) = (gn]B}‘)wigrﬁ-l(x) for x EB;+1) j = ]w L] kn+1
and
pr=prtt o, for n'>n

are continuous.
Let us write Z = lim{Y,, pl%, N} and denote by p,: Z— Y, the natural pro-
jection and by pg: Z—X the map defined by the formula

po(2) = g,py(z)- for every zeZ.

Let us observe that if A,ued and A # y, then the sets pg Y(Xx,) and pg 1(X,L)
lie in different components of the space Z and for every component S of Z the inter-
section S N pg '(a) contains only one point.

Let & = {(Z,, @)}.ex be the family of pointed components of Z, where a, is
the point in Z, N pg Y(a) for pe M, and we can assume that Z, # Z, if JTER
woue .

The map f: (Z, A)~(X, a) defined by the formula

@) =poz) for

where 4 = |J(a,), is continuous and satisfies the required conditions. Indeed,
ne# .

the map g: X—(a)—>Z—4, where g(x) = (g7%(x), (g.pD "), ..) for every

x € X—(a), is continuous and it is the inverse of f|,_ 4.

zeZ,

3. Some properties of bouquets.

(3.1) If a pointed contimuum (X, a) is a bouquet and & = {X,;},,4 is the family

- of its leaves, then dim X = supdim X,.
Aed

icm°®

On bouquets 167
Proof. It is clear that if supdimX, = o, then dimX = oo.
Aed
Let us suppose that there is a natural number n such that supdimX, = n.

Aed

Let us write Y, = X—K(a, 1/m) for m=1,2,... ¥ ¥, = @, then dim X,
= —1<n, and if ¥, # @, then since the dimension of each component of ¥, is
not greater than n, we infer ([8], p. 90) that dim Y, <n.

w .
It is clear that X = (a) ulU Y., and so we infer ([8], p. 30) that dim X'<n.
o= 1

Since X containg an n-dimensional subset, we have dimX = n.

It is casy to observe that

(3.2) If (X, &) is a bouquet, & = {X;},44 is the family of its leaves and h: X—Y
is a homeomorphism, then (¥, h(a)) is a bouquet and ¥ = {h(X;)}1e4 is the family
of its leaves.

It follows directly from (3.2) that if (X, &) and (¥, b) are homeomorphic
bouquets, & = {X;};c4 and & = {¥,},. . are the families of leaves of (X, @) and
(Y, b), respectively, then there is a one-to-one map ¢@: & — % such that for every
Aed the pointed continuum (X;,4) is homeomorphic to (¢ (X)), b).
~ (3.3) DuriNrrion. A bouquet (X, @) is said to be disperse if for every leaf X,
of (X, &) the set X, —(a) is open in X.

Let us observe that a disperse bouquet has a countable family of leaves.

(3.4) TuroreM. Let (X, a) be a bouquet and & = {X;}1c4 the family of its
leaves. Then (X, d) is disperse if and only if for every e>0 the condition 6(X,)<e
is satisfied for almost all A.

Proof. Let us suppose that the bouquet (X, a) is disperse and e is a positive
number. It is clear that there exists a finite sequence Ay, ..., 4, of indexes such that

k
X = K(a,3) v U X;,—(a). Then K(a, %¢) contains almost all leaves X;.
i=1

Now let us suppose that for every &>0 the condition §(X;)<s is satisfied for
almost all X, e &.

Let X, e be any fixed leaf, xe X;—(a) @ fixed point and >0 a number
such that o (x, @)>2¢ Let Ay, ..., &, be all indexes in A such that X, #K(a, ¢) and
Ay # A for == 1, ..., k. The number r = min(e, 0(x, X3, --) o(x, X)) is greater
than 0 and K(x,r) n X, = O for p+# A Then X,~(a) is a neighborhood of x
in X.

Then the bouquet (X, &) is disperse. .

(3.5) TunoriM. If (X, @) and (¥, b) are disperse bouquets and % = {X2hreas
Y = { ¥}, qu are the fumilies of leaves of (X, d) and (Y b), respectively, then (X, a)
is homeomorphic to (Y, b) if and only if there exists a one-lo-one map ¢: A A
such that for every A e £ the pointed continua (X, a) and (Yp(y> b) are homeomorphic.

Proof. Lot us assume that there cxists a one-to-one map @ A—»# such that
for every e/l there is a homeomorphism hy: (X;, @)~ (Ypmys b)-
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1t is easy to verify that the map h: (X, @)= (Y, b) defined by the formula
h(x) = hy(x) for every x € X, and Aed
is a homeomorphism.
The second part of the theorem we obtain from (3.2)
(3.6) If (X, a) is a disperse bougquet, then each leaf of (X, @) is a retract of the

space X. .
Proot. Let X; be any leaf of (X, @). Since the set X—(X;—(a)) Is closed in X,

the formula
x if
A

xeX,;,
xe (X=X v (@
defines the retraction r;: X—=X;. ) }

(3.7) If (X, a) is a disperse bouquet, then X is locally connected if and only if
each leaf of (X, a) is locally connected.

Proof. Let & = {X;};c4 be the family of leaves of (X, a).

Ii X is locally connected, then it follows from (3.6) that for every Ae A the
leaf X, has the same property. ]

Now let us assume that each leaf of (X, ) is locally connected.

It x € X—(d) is any point, then x € X, —(a) for some 4 e 4. Since the set X, —(a)
is open in X, and in X and X, is locally connected, we infer that X is locally con-
nected at the point x. )

Let ¢ be any positive number and let 4y, ..., A be all the indexes such that
X,,#K(a,¢). There are connected sets Uy, ..., U, such that for every 1<i<k the
set U, is a neighborhood of ¢ in X, and U,=K(a, &).

The set U = C) U,u U X, isa connected neighborhood of a in X con-

i=1 A% Ay yeany
tained in K(a, &). Thus X is ‘alsok locally connected at a.

(3.8) If (¥, d) = {(¥,, @), P, N} is an inverse sequence of finite bouguets lying
in the Hilbert cube and if, for every natural n, ¥,= Y,y and pitt: YooY, s
a retraction such that p:“(Y,,H— Y,) = (a), then the inverse limit (Y, 8) of (Y, q)
is a disperse bouquet and there exists a one-to-one map ¢ of the family & of leaves

-]
of (Y, &) onto the sum ¥, of the families of leaves of (Y, 4), form=1,2, ...,
=1

such that every leaf Zc ¥ is homeomorphic to ¢(Z).

Proof. We can assume that @, = {X, ..., X.}.

Let i": (¥,, @)~ (Y, a), for n'>n, be the inclusion, and i,: (Y,, @) —(Y, &)
the map defined by the formula:

(@y ey @, Y, Y, ) foryeY,—Y,_4

o) =< w1 for n>1
In-1() for ye Y,y
LG =@,y,..) for ye¥;

and let p,: (¥, 4)—(Y,, d) be the projection of the inverse limit (n>1).

iom®

On bouquets 169

It is clear that for every natural n the set Z, = j,(X,) is homeomorphic to X,
. ne

Let y = (y1,¥3, )€ Y be an arbitrary point.

If y % & = (a, 4, ..), then there is an n, such that y, = Yno # @ for nzn,

and y, = a for n<n,. Thus y, € X, andy =i, (y,) e UZ,. If y =4, then evi-
w s n=1
dently ye U Z,.
nes

<]
Then Y = () Z,.
1

n=
Since the set Z,~(4) is homeomorphic to X,—~(g), it is nonempty and con-
nected.
n—1
Let n and m be fixed natural numbers and n>m. The sets C,, = {J Z; and
J=1
o
C, =JU Z,; are continua (C, is homeomorphic to the inverse limit of the inverse
=

sequence {(X, U v U Xk, @) Phlxpu ... oXnays, ay» N, Since, moreover, Z,=C,,
Z,eC,, Y= C,uC, and C, N C, = (8), we infer that (¥,8) is a bouquet
and the sels Z,, for ne N, are leaves of (Y, 4). '

’I‘1he bouquet (¥, 8) is disperse, because for every Z, the set Z,—(@) = Y-

n- © « o
—-(jULZ g Ul Ul 1Z ) is an open subset of Y. The function ¢: &~ U %, defined

| e n=1 :
by ¢(Z,) = X, satisfies the required conditions.

(3.9) A leaf of a bouquet (X, d) is a retract of the space X if and only if it is
a neighborhood retract of X.

Proof. If the leaf X, is a retract of X, then it is evidently a neighborhood
retract of X.

Now let us assume that there are: a neighborhood U of X in X and a re-
traction #: U—X,. Let (B, a) be a subbouquet of (X, a) satisfying the conditions
of Lemma (2.3). The formula

") = { px) it

a it

xeB,

xe(X-B)u (a)

defines o retraction r: X X,
It follows from (3.9) that
(3.10) If X; @ ANR is o leaf of a bouguet (X, @), then it is a retract of the space X.
(3.11) Exampri, Let us write

Py = {(x,y,2)e E*: z =0},

P, = {(x,y, ) e E* xty—nz =0} for n=1,2, ...

I ={(x 2ek x=0and 0<y<2},

1
do = {(xay: 2)eE% 0<x<l and y = sin;},
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4, ={(x y, ) e E%: _1_<x<1 and y = 1+sin }fornwl 2,.

1
B, = {(x,y, 2)eE3 y=1 and Osxéﬁ} forn=1,2,..,

Y, =JuUd,uB, forn=1,2,.., YO=IUA0’ X,,=P,,ﬂ Y, forn=1,2,..,

X =UKX,.
n=1

Tt is easy to verify that the pointed continuum (X, (0,0,0) is a bouquet, &
= {X,}2 ¢ is the family of its leaves and the leaf X, is not a retract of the space X,

4. On movability of bouquets. K. Borsuk introduced ([4], p. 223) an important
notion of movability of pointed compacta.

(4.1) DerrTiON ([4], p. 223). A pointed compactum (X, xo) lying in thc
pomted Hilbert cube (Q, xo) is said to be movable if for every neighborhood U
of X there is a neighborhood ¥ of X such that for every neighborhood W of X
there is a homotopy ¢: ¥x(0,1>—-U such that ¢(x,0) =1 and ¢(x,De W
for every point x € ¥ and @(x,, 1) = x, for every 0<r<l.

The following question arises: what is the relation between the movability
of a bouquet and the movability of its 1c<wes" In order to answer it, let us observe
that:

(4.2) If X is a closed subset of the Hilbert cube Q, xo € X is a fixed point and
for every >0 there is a closed subset A, of X containing x, such that (4,, x,) is mov-
able and there is a continuous map f,: (X, xo) —(d,, xo) satisfying the conditior;
o(fx), x)<e for every xe X, then (X, x,) is movable.

(4.3) LemMA. Let (X, a) be a bouquet and & = {X,},. 4 the family of its leaves.
If for every A e/l the leaf X, is a retract of X, then for every >0 there is a finite

sequence X, , ..., X, of leaves and there is a retraction r,;i X— U X,, satisfying

the condition g (r,(x), x)<e for every xe X.

Proof. For every A € 4 there is a neighborhood U, of X in X and a retraction
g;: Uy— X, such that ¢(g,(x), x}<e for every xe Uj.
There are finite sequences X, ..., X, of leaves and {(B;, a)}j=y of sub-
bouquets of (X, a) satisfying conditions (1)-(3) of Lemma (2.4).
n

The map r,: X— U X, defined by the formula
i=1

r(x) = q;(x) for xeB,i=1,..,n
is the required retraction.

From Lemmas (4. 2) (4.3) and Borsuk’s theorem ([4], p. 224, Th. (2.8)) results
the following

(4.4) THEOREM. Let (X, a) be a bouguet and % = {X }iea the family of its leaves.
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If for every Aed the leaf X, is a retract of X and (X3, a) is movable, then (X, d) is
also movable.
Particularly we get
(4.5) CoroLLARY. If (X, a) is a bouquet and each of its Ieaves is an ANR -set,
then (X, a) is movable.
The movability of a bouquet does not imply the movability of its leaves.
(4.6) ExampPLE. Let Sy, Sz, ... be a sequence of 1-spheres such that S, n Sy
=(a) for i %, i,j=1,2,.. and let af**: (S,u1, D) —>(S,, ), n=1,2,... be
continuous maps with the degree 2. Let X, =S, u..uS,, n=1,2,.., and
P (Xypys @)~ (X, @) be the continuous map deﬁned by the formula
n + l(k) (x:'”(x) if X € Sn+1 >
it xeSu..uSs,.

= Lim{(X,, ), py, N} is movable ([l1],

. x if

The pointed continuum (X, 8)
pp. 250-252).

It is easy to verify that (X, 4) is a bouquet and the set S= Lim{S,, o, N}
is one of the leaves of (X, ).

It is known ([3], p. 138) that S is not movable.

(4.7) TororeM. Let (X, a) be a bouquet and & = {X,};. 4 the family of its
leaves. Then Sh(X, a) = Sh(a, @) if and only if Sh(X,, @) = Sh(a, d) for every 1 A.

Proof. It is known ([6], Chapter VIII, Corollaries (4.6) and (4.7)) and comp.
(12], pp. 7273, Th. (9.1) and (9.8)) that the following conditions are equivalent:

(1) X is an FAR-set,

(2) for every a e X and for every neighborhood U of X in Q there is a continu-
ous map ¢: Xx{0, 1> —U such that ¢(x,0) = x and ¢(x, 1) = a for every x € X,

(3) for every a e X and every neighborhood U of X in Q there are: a neighbor-
hood V¥ of X in Q and a continuous map ¢: ¥'x<0,1)> —U such that ¢(x,0)
=x, @(x, 1) = a for every xe V and ¢(a, ) = a for every 1&0,1),

(4) Sh(X, @) = Sh(a, a).

Let us agsume that Sh(X, a) = Sh(a, d). Let X, be a fixed leaf and let W be
an open neighborhood of X, in Q. The set U = W n X is a neighborhood of X,
in X. There is subbouquet (Y, @) of (X, a) satisfying the conditions of Lemma (2.3).

The map r: X—Y defined by the formula

N X it xeY,
rb) = { ¢ it xe(X-Tu@
is a retraction,

Then the et ¥ is an FAR-set and there is a continuous map i: ¥Yx (0, 1> -U
such that W(x,0) = x, ¥(x,1) = a for every xe ¥ and ¥(a, ) = a for every
te<0, 1>,

The map ¢: X3 %<0, 1> =U defined by the formula

o(x, ) =(x, 0 for every xe X, and £€40, I).

- is continuous and condition (2) is satisfied 7
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Then Sh(X),, a) = Sh(a, a). .

Now let us assume that Sh(X,, @) = Sh(a, d) for every Ae and let U be
an arbitrary neighborhood of X in Q.

For every Ae A there are: a neighborhood U, of X; in Q and a continuous
map @;: U;x<{0,1)—U such that ¢,(x,0) = x, @,(x,1) = a for every xe U,
and ¢,(a, £) = a for every te {0, I).

There are finite sequences: Ay, .., 4, of indexes and {(Bj, a)}j.; of sub-
bougquets of (X, a) satisfying conditions (1)-(3) of (2.4).

The map ¢: Xx{0, 1) —U defined by the formula

o0, ) =g, ) i xeB, te0, 1),

is continuous and satisfies the conditions: ¢(x,0) = x, ¢(x,1) = a for every
xe X and o(a, f) = a for every te {0, 1).
Then condition (2) is satisfied and Sh(X, a) =

i=1,..,n

Sh(a, a).

5. Bouguets and inverse sequences of finite - bouquets. It is convenient in the-
theory of shape to consider continua as inverse limits of inverse ANR -sequences
([93, pp. 41-42).

We shall prove that some bouquets are homeomorphic to inverse limits of
inverse sequences of finite bouquets.

(5.1) Levma. Let (X, a) be a bouguet and % = {X,},. 4 the family of its leaves.
If for every A€ A the leaf X, is a retract of X, then there are sequences Ly, Ay, ... of

indexes and k,<k,< ... of natural numbers such that for every n there exists a re-
Kin

traction r,: X— U X, satisfying the condition o(x, r,,(x))<1/n Jor every xe X.

Proof. If g,: X - X, for A€/, denotes a retraction, then there are nelghbor-
Hoods W}, for Ae A, such that g(g,(x), x)<1 for every xe W},

There exist finite sequences 1y, ..., 4, of indexes and {(B}, a)}:
quets of (X, a) satisfying conditions (1) -(3) of (2.4).

The formula

L, of subbou-

ri(x) = ¢,(x) for every xe B} and i = 1,..., k,
ky
defines a retraction r;: X— U X3

Let as assume that we 11ave defined natural numbers k; < ...

ki
Xigs e X‘kn—l and retractions r;: X-» U X, i=1,..,n-1

< Ky-y, leaves

Let W}, for Aed, be a nexghborhood of X, in X such that g (g,(x), )<1/n‘
for every potnt xe Wj.

If X— U X 2 # 9, then there are: a natural number k,>k,_, and sequences
=1

. lkn_,ﬂ,.. lk" of indexes and {(B}, @)}{z{ of subbouquets of (X,d) satisfying

conditions (1)-(3) of (2.5).
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The formula
r(x) = q;(x) for xeBl, i=1,..k,,

defines the required retraction r,: X— U Xj,.
=1

(5.2) Lemma. If X is a continuum, A; <A, < ... is a sequence of subsets of X
such that for every n there is a retraction r,: X-—A, satisfying the condition
0(rx), X)<1/n for every xe€ X, then there is a sequence k,<k,<.. of natural
numbers such that the space X is homeomorphic to Lim{Y,, pif, N}, where Y, = 4,
and pitt = rk»'*‘k,.ﬂ

Proof. We define &k, = 1.

Let k,>4 be a natural number such that

2(ryrg(), () <272

Let us assume that we have defined a sequence k;<k,<..<k,_; of natural
numbers such that k;>i? and

for every xe X.

0 (Pegees T T (X)s P iy () <j™2  for every xe X and i=1,2,..,n—1.

There is a natural number k,>max(k,_,,n*) such that

0 (Ppeon Thoe T (3)5 Ty ons Ty (X)) <™ for évery xeXandj=1,..,n~1.

We shall prove that X is homeomorphic to Y = Lim{¥,,p;, N}, where
Y, =4, 0t =qly,,, and g, =1, forn=1,2,
o

We define the metric ¢ .in P ¥, by the formula
w=1

o(x, ) = Z 2770 (X ¥)

n=1

for every x = (x);%1, ¥ = ()€ P 7,.
n=1

The maps #,: X— P Yy, for n =1, 2, ..., defined by the formulas
k=1

FX) = (@1 oo Qa1 GnX)s @2 o Gue 19X s eors a1 G5 Gn), G109, o0)

are continuous.
Since

o (B, (%), By 1)) <n™2  for every.xe X and n=1,2, ...,

0
there exists a continuous map h: X— P Y, such that & = lim#,.
k=1 n=o

We shall prove that 4 leads X homeomorphically onto Y. .
If xe X, then A(x) = (x;, X5, ...), where x;, = limg ... qn(x); hence

My 00

qn(x)) = X,

*(limgyy ..

n-r0

i 1(xk+ )= Ft

and thus h(x)e Y.

2%

qn(x))‘= limP,l:+1(9k+1
n—+oo
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If ye ¥, then y = (¥, ¥a,...) and y, = p2*i(y,.() forn = 1,2, ... There is
a yp€ X such that y, = limy,, because o(¥,, ¥+ )<n~? for every n and X is

n-+w
compact.
The formiila
g1, ¥y, ) =limy, for every (yy, y5, .)€ Y
n-* oo
defines the map g: Y—X.
It is easy to verify that

" gh(x) = x for every xe X,
hg(y) =y for every ye Y.

- Then the continuous map 4: X—Y is a homeomorphism of X onto Y.

Lemmas (5.1) and (5.2) directly imply

(5.3) TuroreM. Let (X, d) be a bouquet and & = {X,},., the family of its
leaves. If for every e/ the leaf X, is a retract of X, then the bouguet (X, a) is
homeomorphic to (Y,8) = Lim{(Y,, a), py, N}, where for every n a pointed con-
tinuum (Y, a) is a finite subbouguet of (X, a), ¥, < Y, 11 =X and p"** is a retraction.

(5.4) CoroLLARY. If (X, a) is a bouquet and each of its leaves is an ANR-set,
then there is an inverse sequence (Y, a) = {(¥,,a),pl, N} of finite subbouquets
of (X, @) such that Y,c¥,,, for every n, all maps ply are retractions and (X, a) is
homeomorphic to (LimY, a).

6. Spherical bouquets.

(6.1) DEFINITION. A bouquet (X, @) is said to be spherical if for every leaf X,
of (X, a) there is an n, such that X; is homeomorphic to a subset §™ = {x ¢ E"*1;
{x| = 1} of the Euclidean space E"*1.

Corollary (4.5) implies

(6.2) TaEOREM. Every spherical bouquet is a movable pointed continuum.,

(6.3) DeFINTTION. Let (X, a) be a spherical bouquet and % = {X,},. 4 the
family of leaves. The sequence n = (ny, ny,..) (it may be finite) of all dimensions
of leaves of (X, a) is said to be the type of (X, a).

By the character. of (X, ) we understand the sequence M = (M, M,, ...) of
cardinal numbers such that for every i there exist in & exactly I, n,-dimensionals
leaves. ‘

(6.4) DerINITION. If 2l leaves of the bouquet (X, a) are n-spheres, then (X, d)
is said to be a wsual n-dimensional spherical bouquet.

Theorem (3.5) and (3.7) imply
(6.5) THEOREM. Two locally connected spherical bougquets are homeomorphic if
and only if they have the same type and character.

(6.6) THEOREM. If (X, a) and (Y, b) are locally connected Spherical bouquets,
then Sh(X, a) = Sh(Y, b) if and only if (X, d) and (Y, b) are homeomorphic.
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Proof. If (X,d) and (Y, b) are homeomorphic, then Sh(X, a) = Sh(Y, &).

If Sh(X, a) = Sh(Y, b), then X and ¥ have the same Betti numbers and then
they have the same type and character. It follows from Theorem (6.5) that (X, a)
and (Y, b) are homeomorphic.

(6.7) THEOREM. Every spherical bouquet has the shape of some locally con-
nected spherical bouquet.

Proof. Let (X, a) bea spherical bouquet and Z the family of its leaves.

If & is finite, then X is locally connected.

Let us assume that & is infinite. There exists, by Corollary (5.4), an inverse
sequence (X, @) = {(4,, a),ps, N} of finite subbouquets of (X,a) such that
A,c A, for every ne N and all the maps p" are retractions.

It is easy to observe that we can assume that 4, 5 4,,, and 4, = S, U ...
WS, forn=1,2,.., where S;e&, i=1,2,...

We define the inverse sequence (Y, a) = {(¥,, a), g5, N} by the formulas

Yn = An 2
" x if xe¥,,
e = {a it xe(¥u—T) U@,
and ¢¥ = ¢"*. g%_, for w'>n.

It follows from (3.8) that the pointed continuum (¥, 4) = Lim (Y, a) is a loc-
ally connected spherical bouquet.

We shall prove that Sh(X, d) = Sh(Y, a). For this purpose we shall define
sequences of continuous maps

¢ fii (Siv..uS,,a—>(S,v.uS,,d,
gp: (Squ..uS,a)=(Sv..uS,, 0

satisfying the conditions
T G e AT 0 (S0 U S, 0,

(2)11 P;:+ 1gn+1§gnqz+1 in (Sl (ST S,,, a): ’

(3)1: gnfnzid(sxu,..us,,.a) ill (Sl V..y Sn: a),

B, [o90=1d (s 0. 0smay 10 (1 U . U Sy, 4).

We define fi(x) = x for every x e Sy.

Let us assume that we have defined maps f;: (S;U...US;, )—=(S; U...US;, @)
satisfying the conditions (1);, for j=1,..,n—1. Let us denote by f,: (S,,,.a)
=(S,u..uS,,a ard by it (S;U..US,,D)=>(S V.. US,, @ the. in-
clusions, and by a: (S,, @)~ (S; U ... U S,, d) a continuous map such that if we
denote by [¢] e m,(S; U ... U S,, a), where dim S, = [, the element of the homotopy
group generated by «, then [o] = [ify—1Pn-18]° [Ld

We define

fiei(®) i xeS;u..uUS,_q,

A = {a(x) it xes,.
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Since
[gn- 1] = [Gh-10] = [Gh-1 -1 Ph1Bd © [gn-18] = [fu-1Ph-10}
there is 2 homotopy y,: S, % <0,1> = (S; U...uS,~ )} joining the maps f,.,ph. sy
and gp—1fils, 0 (S; U U S,_q,4).
The homotopy ¢,: (S; V.. u S)%x<0,1>~8; U ..U S, defined by the

formula &
o, D) = Ju-1(x) for every xe Sy u...u S,-, 0K,
1%, ) for every x& S, and 0<1<1

Jjoins the maps f,_ypy-4 and g1 f, in (S; U .. U Sy, a).
Let g,(x) = x for every xe S,.
It is clear that f1¢,(x) = x and g(x) = x for every xe §,:
We define the maps Ay, py: Sy %<0, 1> =S, by the formulas

& s,

A(x, ) = py(x,0) = x for every xe§; and 0<r<1.

Let us assume that the following continuous maps are defined:

g5 (S v US> (S U..U Sy, d),
Apy gt (Sp U USHYK0, 1> —8, U .. U Sy

or j=1,..,n—1, satisfying the conditions A%, 0) = f19,(x), Afx, 1) = x,
Bi(x, 0)-= g,£1(x), pi(x, 1) = x for every xe S, U ...u Sy and Afa, ) = uya, ?)
= a for every 0<1<1.

Let B: (S,,a)~(S; U ..U S,, a) be a continuous map such that °

81 = [lzp:—lin}-l ° [in] .
We define the map g,: (S; U...US,,d)>(S; U ... U Sy, @) by the formula

) = { gui(%) it

xeSHV.US,_,
xesS,.

B(x) if

) ;t 1's< gasls; to ;erify that [p}_,g,1,] = [g,—14"_4,). Then there is a homotopy
nt 5, X<0, 15> =>8; U ..U S,_; joining the maps p"._, g and "
S G S, n e 1 nl(S,.,a) In—1 q,.-1|(s,.,a)

The map ¥,: (S; U ... US)% (0, 1>~ Sy v.. U S, defined by the formula

In-1(x) | it
X, 1) =
Lk {?n(x, y it
is a hf)motopy joining the maps p?_,g, and Gn-1Gn-1 10 (S; U ..U S,_y, ).
SSmce [figut]l = [5,] and [g,£,i] = [.], there exist homotopies 1,: S, %<0, 1>
21V U S, and g0 5,x€0,1>-5; U .. U S, such that I(x, 0) = f,9,(x),

2,(%,0) = g,£,(x), L(x, 1) = x, Li(x, 1) = x for ever S, ) =
2 tor overy 0ernl ¥y x€S8, and Afa, 1) = f(a,d

xeSiu..us,_, 011,
xeS, and 0<rgl
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The maps Ay, iyt Sy V..U S)x{0,1>>S; u..uS, we define by the
formulas

A i
Al Z)—{i,,(xl, T

Mp—a(x, 1) if
I"n(x’ t) = {ﬂn(xy [) if
It is easy to verify that A, and u, satisfy the required conditions.
It follows from conditions (1),-(4),, for n = 1, 2, ..., that f = ((f;),idy) and
g = ((9.), idy) are maps of inverse sequences ([9], p. 41-42) and the conditions
Jo= idy g and gferid iy, are satisfied.
Then' Sh(X, a) = Sh(Y,4) ([10], p. 62 and [9], pp. 41-44).

X€ES{ V..U 8,1, 0511,
xe S, and 0<s<1,
xeS;vu..US,_y, 011,
xe S, and 0<1<1.

7. Fundamental sequences of usual #-dimensional spherical bougquets, with
n>1. In this part we shall classify the fundamental sequences from usual n-di-
mensional spherical bouquets to usual n-dimensional spherical bouquets, where
n>1.

(7.1) THEOREM. If (X, a) and (Y, b) are usual finite n-dimensional spherical
bougquets, n>1, and f, g: (X, @)~ (Y, b) are continuous maps, then f and g are
homotopic if and only if they induce the same homomorphism f,, = g,: H,(X) - H(Y)
of homology groups with integer coefficients.

Proof. If fazg, then fy = gq.

Let us assume that f, = gy. ‘

Let {S}, ..., S} and {P,, ..., P,,} be the families of leaves of (X, @) and (¥, b),
réspectively, and let o;: (S;, a)—(S; V... U S;, a) be the inclusions.

The homomorphism ¢;: 7,(Y, b)— H,(Y) defined by the formula

@[BD = Bule)  for every [Blem(Y, D),

where e; is the generator of the group H,(S), is an isomorphism for every i

([71, p. 208).
Since

ol[fa]) = faledale) = galedsle) = odlga)
for every i = 1, ..., k there is a homotopy
2 §,x 0, 1>=¥
joining the maps fo; and ga; in (¥, b).
The map y: Xx <0, 1>~ Y defined by the.formula
AGe, ) = Ax, )
is a homotopy joining the maps f and g in (Y, b).
(7.2) Turorem. Let (X,d) and (Y, b) be two usual I-dimensional spherical
bouguets I>1. The fundamental sequences

[={f (X a,(V,b} and g={g, (X a), (¥, b)}

for every xe Sy, 0<t<1,i=1,..,k
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cm

are homotopic if and only if they induce the same homomorphism Jo = gu: H(X) These relations and the relation

— H(Y) of Vietoris homology groups with integer coefficients. 5 ‘
Proof. It is known ([1], p. 242) that if feeg then f, = Ix- ‘ rif;.P|(Vn,a)~"1g,.pl(yo,,,) in (U, b)
Let us assume that fi = g,. We shall show that foeg. give the required relation
Let U be any ﬁxed“neighl—aorhood of Y in the Hilbert cube Q. There exists £l gl o (U, b

an ¢>0 such that K(Y, &= U and we can find, by (4.3), a finite sequence ¥, ..., ¥, . o, ¥ Inlwey 10 (U, D).

of leaves of (¥, b) and a retraction #: Y- Y, U ... U ¥, satisfying the condition: This proves that S~g.

e (F(), y)<e for every ye Y.
There are: a closed neighborhood W of Y in Q and a continuous extension
r: WY, u..u Y, of f such that ¢{r(z2), z)<e for every ze W, References
Let Vo be a neighborhood of X in Q and n; a natural number such that

£(V)=W and g,(V)<W for every nn [11 K. Borsuk, Concerning homotopy properties of compacta, Fund, Math. 62 (1968),
V)= a i Zhy.

‘ ) pD. 224-254,
There is a 6>0 such that K(X, §)= V. We can find, by (4.3), a finite sequence [2] — Fundamental retracts and extensions of fund ! seq , Fund. Math. 64 (1960),
Xy, X,, of leaves of (X, @) and a retraction p: X-»X, u..U X, such that pD. 56-85.
0(p(x), x)<5 for every x€ X. B3] — On movable compacta, Fund. Math. 66 (1969), pp. 137-146.
Let ¥, be a neighborhood of X in Q such that there is a continuous extension [ p_p 5:;’2”118 2: Sm“r ks concerning the shape of pointed compacta, Fund. Math. 67 (1970),
P Vo= X, L. U X, of p satisfying the condition: Q(p (%), x) <6 for every x € V. [5] — A note on the theory of shape of compacta, Fund. Math. 67 (1970), pp. 265-278.
It is clear that [6] — Theory of Shape, Warszawa 1975. .
o . -+ [71 Hu Sze-Tsen, Tieorija Gomotopij, Moscow 1964.
(1) p fld(VG'") in (¥, a) . [8] W. Hurewicz and H. Wallman, Dimension Theory, Princeton 1948,
and ' [91 S.Mardesié and J. Segal, Shapes of compacta and ANR -systems, Fund. Math. 72 (1971),
. ) pp. 41-59. .
@ reidigyy  in (U, D). [10] — Equivalence of the Borsuk and the ANR -system approach to shapes, Fund. Math. 72 (1971),

pp. 62-68. :

Let ry: Q—Q be a continuous extension of r and ty=ry for n=1,2,.. [111 ~— Movable compacta and ANR-spstems, Bull. Acad. Polon. Sci. 18 (1970), Iﬁp‘ 649-654.

The sequence r = {r,, (¥, 5),(¥, u.. U Y, b)} is a fundamental sequence. Lot
i={i,,(X; ..U X,,a), (X, a)} be a fundamental sequence such that 7,(x) = x
for every xe Q and 1 = 1,2, ... Accepté par la Rédaction le 4. 11. 1974

Since fy = gy, then (rfi), = (rgi)s.

The set ¥, U ..U ¥, is an ANR-set, thus the fundamental sequences 7fi
and rgi are generated by maps ([1], p. 228). Let us denote them byf: (Xyu..LUX,, ll)
(YU VY, b) and g1 (X u..UX,, )= (Y,u..U T, b), respectively,

Since fi = (rfi)y = (rgi)y = g, (1], p. 242) it follows from Theorem (7.2)
that f~g and then rfi~rgi.

Thus there is an n,>n, such that

(3) rlf;xl(xlu...uxm,a):rignl(xlu...u]{,,.,a) ill (Yl Vo Yk’ b)

for every nx=n,.
Let n2n, be any positive infeger.
Since relations (1)-(3) are satisfied, we have

Tl oy =fnid(vo,a)ﬁﬁ’PI(vn,a)ﬁhfnPl(Vg.a) in (U, b)

and

gn|(VD',n) = gnid(Vg,u)ggllpl(l’o,n)grlgnpl(Va,a) in (U, b).
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