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On uniform spaces with linearly ordered bases II
(o,-metric spaces)

by

P. Nyikos * (Chicago) and H. C. Reichel (Wien)

Absiract. The object of the paper are uniform spaces with linearly ordered bases, i.e. w,-metric
spaces. Necessary and sufficient conditions for the w,-metrizability of a topological space are
given, generalizing famous metrization theorems of Nagata, Bing, Frink, Morita, and others.
Moreover, a large number of necessary and sufficient conditions for the metrizability of a w,-metriz-
able space are presented, yielding new metrization theorems as well.

§ 1. Introduction. Although this paper is self-contained, it can be considered
as a continuation of a paper [15] by the same authors. It is mainly devoted to pre-
senting necessary and sufficient conditions for topological spaces to have a uniform
structure with a linearly ordered base, i.e. to be w,~metric in the sense of R. Si-
korski [18] (§ 4). It also provides a study of several special properties of @), metric
spaces and — as corollaries — a large variety of metrization theorems (§3), i.e.
necessary and sufficient metrizability conditions for several classes of topological
spaces, involving (locally) compact spaces, first countable spaces and others.

§ 2. w,~metric spaces. Let , denote the pth infinite initial ordinal number.
A linearly ordered abelian group (G, <) is said to have character w,, if there exists
a strictly decreasing w,~sequence converging to 0 in the order topology. A w,-metric
on a set X is a function ¢ from Xx X to (G, <) such that
(i) o(x,»)>0, o(x,)) =0 il x =y,
(i) e(x, ) = oy, %),
(iif) o(x, y)<e(x, D) +ez, N Vx,y,ze X.
(X, @) is then called a w,-metric space. As it is well known, the class of @y-metric
spaces coincides with the class of metric spaces (this will also be apparent from the
results in § 3) even when G is not R. Since an w,-metric space is first countable iff
= 0, w,-metric spaces are very useful in studying spaces of “high cardinality”.
Researchers who have studied coﬂ-mctric spaces include F. Hausdorff 51,
pp. 285, 286, L. W. Cohen and C. Goffman [1], R. Sikorski [18] (who was the first
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to devote extensive work to this field), F. W. Stevenson and W. J. Thron [20], Wang
Shu-Tang [23], P. Nyikos and H. C. Reichel [15], A. Hayes [6] and D. Harris [4].
In [20] the authors have shown that a separated uniform space (X, 1) is
o,~metrizable iff (X, U) has a linearly ordered base and &, is the least power of such
a base. Thus, for example, by a theorem in [6], every w,~metric space is para-
compact.
In order to present another characteri 1zat1on, let us recall the so-called natural
topology on the spaces 4%, as defined by A. K. Steiner and E.F. Steiner [19]:
" Let A be a set and B a well-ordered set. For each x & A® and each « € B define

x(0) = {y € 4% y; = x, for all f<ga}.

Then the natural topology M on A® is defined to be the topology generated by the
base {x(a)| x€ AP, acB}. (4% M) is 2 normal, totally disconnected, T,-space,
the topology of which coincides with the product topology iff B has order type <w, or
(trivially) 4 has at most one element. These spaces are generalizations of the well-
known Baire’s zero d1men510na1 sequence spaces QY (see. e:g. [12]).

The topology 9t can be induced bya umform.lty W with a linearly 01dered base

= {8, ae B}, B,={(,) xﬂ’.‘)’p for. p<a} .

Thus all spaces (AB, 9t) are w,~metrizable. As a partial converse, we have shown the
following [15]:

THEOREM 1. A non-metrizable space is cu,,-metrtzzzble if and only if X is homea-»

morphzc to a subspace of a suitable space (4%, N), B = @, p>0.
Since it is easy to see that x(e) ~y(f) = @ implies x(x) =p(B) or x(@)=>y(h),

Theorem 1 shows that every mon-metrizable o, ~metric space, i.e. u>0, is non-:
archimedean. In other words, such a space has a base Mt with the property that

either two basis sets are djsjoint or one contains the other [16].

§ 3. Metrization-theorems. As an aid to determining for which w, a
uniformizable”.space is w,-metrizable, we will use the spaces Df. Each D} can be
characterized topologlcally either as @,+1 with the limit mdlrnls removed or as

@,+1 with all points except w, 1solatcd and the sets (2, @] = {f: e<f<w,} as

a local base, as & ranges over the ordmats smaller than w,. Another charactenzatlon,
used by D. Harris [4] is that they are point-sets of cardlnahty s,and a d1s1.1ngmbhcd
point w, such that all points other than o, are isolated and a set is an (open) neigh~
borhood of w, if, and only i, it contains w, and its complement is of cardinality < 0

Lemvia 1. Let X be a o,-metrizable space. For each non-isolated point x of X there.
is a closed embedding f of D* in X such that fi (co,,) = x. For no other regular cardina! %,
is D} embeddable in X.

Proof. Clearly, every non—lsolated point x has a totally ordered local base
{V¢| a<o,}, such that ¥,& ¥V, when a> . For each a<w, let f(o) be any point
in Vey\Vyr2, and let f(w,) = x. Since every intersection of <, open subsets of X
is open, it is trivial to verify that fis a closed: map, and contlnulty is also clear.

A B F A

a “linearly

iom®

_ subsets ¥, of f(DY), so that f~i(x) =
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. On the other hand, if f: D} —X is an embedding, then f(w,) is a non-isolated
point of X. But if @, <w,, then f(DY) is a discrete subspace of X; which yields a con-
tradiction. Hence w;>w,. But x = f(w,) is an intersection of s relatively open
1(ﬂ V) =Nf"4v) contams 1nﬁmte1y
many points of D,

With the aid of Lemma 1 we can prove a multitude of “metuzatlon theorems™.
The following theorem collects some, but by no means all, of the properties which,
in the presence of w,-metrizability, imply metrizability. (The reference numbers
indjcate papers with detailed studies of the properties in question):

" THEOREM 2. Let X be w,metrizable for some . If X is not discrete, then X is
metrzzctble if and only if some non-isolated point X is a Gs. Moreover, X is metrizable
if it is any of the following:

. l.a)- Fzrst countable; 1.b) perfectly normal; 1.c) semzstrat;ﬁable [13];
1.d) a o-space [13]; 1.e) stratifiable; 1.1) quasi-metrizable [13]; 1.g) @ 6*-space [13].

2.a) A k-space (“Kelley-space”); 2.b) sequential; 2.¢) Fréchet; 2.d) locally
compact; 2.€) campact.

3.a) A g-space [T]; 3.b) a wh-space [7].

4.2) A Z*-space [17]; 4.b) a E-space [13]; 4.¢) a wA-space [7]; 4.d) quasi-
complete; 4.¢). a p-space [13]; 4.f) an M-space [13]; 4.g) countably compact;

" 4.h) pseudocompact; 4.1) Cech-complete.

5.a) Not strongly zerodimensional [2]; 5.b) not totally dtsconnected 5.¢) locally
connected; 5.d) connected.

6.a) A ccc-space (1 e. every collectwn of disjoint open sets is countable);
6.b) separable; 6.c) hereditarily Lindeliff. :

Remark. Each of these results determines a metrization theorem like the following’
corollary. This family of results may be more interesting than Theorem 2 itself.

COROLLARY 3.1. 4 first-countable space X is metrizable if and only if its topology
can be induced by « separated uniformity W with a linearly ordered base.

(Herein “first-countable” can be replaced by any other property listed in’
Theorem 2). :

Thus we get for example:

COROLLARY 3.2. A compact space X is metrizable if and only if its (in fact unique)
uniform structure (i.e. the system of all open neighbourhoods of the diagonal in X x X)
has a totally ordered base.

. Moreover, since metric spaces 2 automatically share the properties labeled by 1“
2a,b,c; 3a,b and 4a,b,c, e, f, we can formulate corollaries like the following: ‘

COROLLARY 3.3. A o,~metric space X'is a Kelley-space if and only if u= 0.
(I{cre1n “Kelley-space” can be replaced by any of the above mentioned pro-
perties.} :

1'
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Remark 1. Theorem 2 can also be used for constructing uniform spaces which
do not have compatible uniform structures with linearly ordered bases. Asan example
ake the following

Remark 2. Let X be any non-metrlzable topological space and «X be any com-
pactification of X. Then the (unique) uniform structure 2 of «X has no linearly
ordered base.

. Proof of Theorem 2. If some non~1solated point x € X is a Gy, it follows by
Lemma 1 that g = 0, hence X is metrizable. The results headed by “1” follow from.
the fact that, if X is not discrete, then any of the listed conditions implies that X has
a nonisolated Gj-point, thus X is forced to be metrizable. In the other cases, all
properties labeled by a certain number imply the first property labeled by the same
number (sometimes with the addition of paracompactness, which every o, - 1metri-
Zable space has, § 2) Thus we only have to prove the results 2.a), 3.a), 4. a), 5.a)
and 6.a):

To prove 2.a), we note that every closed subspace of a k-space is a k-space.
Now in D}, u # 0, every compact subset is finite. Hence D¥\{w,} has a closed
intersection with every compact subset, but is not closed. So Dz is not a k-space
for p# 0.

To prove 3.a) recall that in a g-space ([7]) a sequence each point x, of which
belongs to g(n, x) (an open set containing x) is required to have a cluster point.
But if X is not metrizable, every countable subset of X is discrete.

To prove 5.a) we need only note that every zero-set of a @,-metrizable space,
u # 0, is open.
6.a) follows from the observation that any non-isolated point in a Wy metrizable

space has a totally ordered local base {V,| a<w,} such that V,., &V, for all a.
Thus, if 4 # 0, {(V,\V,+)/a<w,} is a non-countable collection of disjoint open sets.

It remains only to show 4.a): ‘

A F*.space is a space having a cover & of countably compact subsets, and an
outer network {$,| ne N} for & such that each §, is hereditarily closure-preserv-
ing [17]. That is, given any $'<=$,,H = {H,] yeI'}, and any choice of subsets

4,<H,, the closute of |) 4, is the union of the closures of the 4,
yel

In a o, -metrizable space, p # 0, every countably compact subset is finite.
Hence & would have to be a cover of X by finite sets. Smce a-closed subspace of
a X*<gpace is a ZT*-space, we may assume X = Dt

Let K e K. By definition, it is required that for every open set U containing K,
there exists # and H € $, such that K< He U. It is trivial to obtain a subcollection &’
of &, such that [R'] = ,, and such that for each K & &' there exists a point py s w,
of X which is in no other member of &'. Well-order these points pg in a transﬁmte
sequenice {p,| «<w,}. For each o there exists H,e$, for some n such that p, e H,,
D, & Hy for all f<a.
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Since #, is uncountable and 1egu]ar there exists §, containing , sets of the
form H,. Now let 4, = {p,} for these a. Clearly, ®, is in the closure of |J A,, but
is not in the closure of any 4,. This completes the proof.

The result that DY is not a Z*-space is due to A. Okuyama ‘[17]. His proof
that D} is a X" -space obviously generalizes to all Dy.

§ 4. w,~metrizability theorems. Unlike the previous section, this one begins with
an arbitrary space X and establishes several necessary and sufficient conditions for
its w,~metrizability, most of which generalize classical metrization theorems though
completely different methods are needed. (As pointed out in § 2, all these theorems
yield necessary and suflicient conditions for X to have an uniform structure with
a linearly ordered base, as follows by the theorem of T.W. Stevenson.and
W. J. Thron [20]). Our principal such theorem will be based on the “generalized

"metrization theorem” of J, Nagata [12]:

THEOREM. 4 T'y~space X is metrizable if and only if for each point p of X there
exist .two sequences W = {U(p) n=1,2,..} and B = {V,(p) n=1,2,..} of
neighborhoods of p such that

@) {U)] n=1,2,..} is a local base at p,

(i) g & U,(p) implies V(@)  Vi(p) = B, and

(if)) g e V,(p) implies V,(q) =Up).

The 561’1014][2:\1’101‘1 will come by letting U be {U/p)] t<w,}, lettmg B be
{V{p) T<w,}, and adding condition (iv): ) U,(p) and ) V(p) is a neighborhood

<y Ty

of p for all y<w,. This condition clearly yields the same class of spaces'as (iv'):
every intersection of fewer than x, open subsets of X is open or (iv"") U(p) = U,(p)
whenever ©> 0.

Spaces satisfying our generalization of (i), (i) and (iv"') were introduced by
J. Vaughan [22] under the name of Nagata spaces over «.(« = o, for some w). Vanghan
also introduced the class of spaces stratifiable over « and showed that every Nagata

Space over o is stratifiable over a. In [14], P. Nyikos showed that every space strati-

fiable over o which is also suborderable — that is, embeddable as a subspace of a
totally ordered set with the order-topology — is w,-metrizable for w, = «. Con-
versely, every w,-metrizable space is stratifiable (and also Nagata) over w,, and
if ¢ % 0 it is suborderable as well.

To simplify the proof of our generalization of ngdta s theorem, we introduce
the following definition:

DeriNTION. A set {2,] yeI'} of covers of a set X is locally ultrg-starring
for X it for each x & X and cach neighborhood U of x, there exists a set ¥ such
that x& V< U and a y eI such that St(V, ) = V.

As usual, the expression St(4, B), where B is a collection of sets, denotes the
union: U{Ve®B| 4n ¥V # 3}

In the definition, it is not required that ¥ be an open set. However, if each I,
is an open cover, or merely a family of sets whose interiors cover X, or a locally
finite closed cover, then any ¥ for which St(V, 1) = ¥ will actually be clopen.
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Remark. In this doctoral thesis, P. Nyikos proved that a T, space X is non-
archimedeanly metrizable if and only if there is a countable system of open covers
which is locally ultra-starring for X. One aspect of the following theorem is an ana-
logue of that result.

TaroReM 3. Let X be a T,-space and o, a regular initial ordinal. The Sollowing
are equivalent:

(A) X is w,metrizable.

(B) There are two systems W = {U(p)] t<w,} and. B = {V(p)| v<w,}
satisfying:

@) W is a local base at p,

(i) 9& ULp) implies V{(q) " V(p) = @

(iii) g€ V(p) implies V(q)=U(p),

(@) N ULp) and ﬂ V{p) are neighborhoods of p for all yzw,.

<y
© X is metrzzable if u=0, and if p 0, then there exists a system
= {VAp)| T<w,} of neighborhoods of each p € X such that V{p) = V,(p) whenever
o <t and such that {8,| t<w,}, B, = {V(»)| p € X}, is locally ultra-starring for X.

Proof. (A)=-(B): If p = 0, X is metrizable and we can take the spheres with
center p and radius ¥ = 27" for Uy(p) and r = 270D for V,(p) respectively. I
u>0, we let {a,| T<w,} be a w,-sequence of elements of (G, <) converging to the
neutral element, and a,+1+a,+1<a for all t<w,, and let

U,(p) = {ge X| olp, 9)<a;} and

(Compare §2.)
(B)=(C): I p = 0, this is Theorem VI. 2 in the book of Nagata [12]. So let
u>0. We can replace U(p) by ﬂ U,(p) and analogously, V,(p) by ﬂ Vz( P), so that

we may assumc U,(p)c:U,,(p) and V{p)=V,(p) whenever t2¢. For a given

U(p)=:U,(p) and V,(p) =:V,,(p) we can find a U,,(p) € ¥ such that U, (p)=V,( p)
by propetty (i). Now take the correspondmg V..(p) € B and repeat the constructlon
Inductively, for each t=t;, we obtain sequences {U,(p)| n =1, 2,. ..} and
{7, ) n=1,2,.}. Let

Ut(p) = Ol

Vdp) = {ge X| o(p, q)<a,+1}

V. ) =F\1 V(o).

which is a neighborhood of p by property (iv). Now let a, = sup{z,| n = 1,..}.
We shall show that St(U", 8,) = U". Let qe X. Suppose ¥, (¢q) n U* # . Then
V,n(q)n wlp) # @ for all n, by (ii). Hence ge U, (p) for every n, implying
V@) < U, (p) for all n, and so ¥, (g)<U". Hence the collection of all

B, = {V.(»)l pe X},
is. locally ultra-starring for X.

(C):;(A): Obviol-ls if b= 0. If u>0, we define, for each pe X and
<0, V(p) = {g| g is chained to p by B} (in other words, there exists a finite

T<O,,

On uniform spaces with linearly ordered bases I 7

sequence ¥y, ..., ¥, of member of B, such that (a) PeVy, (® Vin Vies # @ for
i=1,..,n-1, (C) ge Vo)

For each z, {V7(p)| p € X} is a partition of X'into (closed and) open sets. (Indeed,
if g € V¥(p), then V.(¢) < V"(p). Hence the sets are open; and moreover V()= V(p);
symmetrically, p e V¥(g), and so V¥(p) = ¥*(g).) Furthermore, V(p) refines V’(p)
whenever 7>g. By the local ultra-starring property, the union of all the partitions
is a base for the topology on X. Indeed, if St(V, mt)’ = ¥V, then for each
peV, Vi(pcV.

Letting B, = {(p, P| V(p) = V'(q)}, it follows that {B] 1<w,,} is a totally
ordered base for a uniformity on X. Thus X is w,~metrizable by the theorem of
Stevenson and Thron, mentioned in § 2 ([20]).

But a simple direct proof is also available: let (G, <) an ordered group with
a transfinite well-ordered sequence {a,| T1<w,} converging to the identity element,
with a,<a, whenever T>0. Now let o(p, ) = inf{et| (x,») € B}. It is trivial to
verify that ¢ is a (non-archimedean) w,-metric for X. Ml

Remark 1. A o,-metric ¢ is non-archimedean if it satisfies the “strong” triangle
inequality : ‘

e(x, y)<max{e(x, 2), 0z, )} Vx,y,ze X.

We just have scen (Theorem 3) that every non-metrizable, w-metrizable space
(i.e. u>0) has a compatible non-archimedean w,-metric.

In valuation theory certain w,~metrics on fields have been studied (mostly without
requiring commutativity of G); for an account e.g. see the book of Jacobson [8],
Chapter V.

Remark 2. Theorem 3 is a dramatic illustration of how the uncountable case
is often simpler than the countable case. It is instructive to compare its relatively
brief proof with the combined proofs of the Alexandroff-Urysohn metrization theorem
and Nagata’s general metrization theorem [12, pp. 184-191], keeping in mind that
the former is used in proving the latter, and the latter employs the deep theorem
that a space is paracompact if every open cover has a g-cushioned open refinement.
Even the more recent proofs of this theorem [7] are much longer than the proof of
Theorem 3 in the uncountable case. With the help of Theorem 3 we can prove several
additional w,-metrization theorems. All of them have their “classical” analogues
in metrization theory (i.e. for u = 0). (Compare e.g. the book of Nagata [12])
For instance:

THEOREM 4. A Ty-space X is o,~metrizable iff for each p € X there exists a local
base {W.(p)| t<w,} such that:

(i) ﬂ W.p) is a neighborhood of p for all y<o,, and

(if) for every © and p there exists o(z, p) such that W,(p) 0 W, " (q) # O implies

Wg) = Wp)- :

Remark 1. Since (i) is satisfied automatically if g = 0, this theorem is a gen-
eralization of a metrization theorem of A.H. Frink [3], [12].


GUEST


8 . P. Nyikos and H. C. Reichel

Proof. Theorem 4 is a corollary. to Theorem 3. Necessity follows completely
analogously, and sufficiency can be shown as follows. Let W, = {W,(p)| pe X}
and let U(p) = St(p, B, and Vi(p) = Woep(p), 1<w,. Then the condmons
(i)-(iv) of Theorem 3 are- _satlsﬁed Hence X is o,-metrizable.

Remark 2. Using Theorem 3 for y = 0, Nagata [12] presented a proof of the
famous result of A. M. Stone [21] that the image § of a metrizable space R under
a closed continuous mapping is metrizable iff the boundaries of all sets f~1(3), y & S,
are compact. Similarly, we can prove a generalization of this theorem, using a lemma
which can be proved exactly using the arguments of our paper [15].

LemMa. Let X be a w,~metric sp.dce and f: XY a closed continuous mapping
onto Y such that each pointy € Y has a o,- compact [18] preimage. Then Y is o~ metri-
zable, (In analogy to the “classical” case we could call such a mapping - perfect.)

} PROPOSITION 4.1. Let X be'a w,-metric space (u>0) and let f: X—Y be a closed
map of X onto Y such that f ~*(y) has a ®,~compact boundary for each y e Y. Then ¥
is @ w,~meiric space. ‘

Proof, If ~%(y) has empty boundary, we let g(y) be any point of ).
Otherwise, we let g(y) be any point of f~(y). Otherwise we let g(y) be the
boundary of f~1(y). Now let X’cX be the image of ¥ under this “multivalued
function”. The restriction of f to the (w,-metric) space X' is clearly w,-perfect and
the result follows from the lemma cited. above.

Another corollary of Theorem 3 is

THEOREM 5. A Ty-space is w,~metrizable iff there exists a w,-sequence {W,| t<w,}
of open coverings of X such that

@ NSt(p, W) is open for all y<w,, and

<y

(ii) the stars {St(St(p, W), W) 1<w,} form a local base at p.
Remark 1. Condition (i) is satisfied if for every system
{UJ peU,elY,, asy<w,}

the intersection of this system is open ().

Remark 2. For u = 0, (i) is satisfied automatlcwlly, and 1110 theorem coincides
with a metrization theorem of K. Morita [11], {1

Proof. In order to prove necessity for u>0, ta,ke B = {V(plpe X}, 1<y,
where V'(p) denotes the sets defined in the proof of Theorem 3 (C=A). Clearly,
St(St(p, B, B") = St(p, B7) = V(p).

Sufficiency? Let St(St(p, U)U,) = UL p), and St(p, U,) = V(p) for every
7<®,. And the conditions in (B) of Theorem 3 are obviously satisfied.

We can also prove an analogue of another theorem by Morita [12, p. 192], [11],
on locally finite (or even -closure-preserving) covers, almost exactly as in Nagata’s
text. The only differences are that the covers are indexed by ordinals <am,, and

(*) This is a consequence of the axiom of choice; more exactly, of the general distributivity
of (Y and U in set theory.
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that, to prove necessity for u>>0, we note that {V'*(p)| p e X}, being a clopen partition,
is a locally finite closed collection for each r.

R. Sikorski, in his paper [18], defined w,-additive spaces: spaces such that for
any system {0,] t<y}, y<w,, of open sets O,, their intersectien is open again (2).
Clearly, w,~mefric spaces are ,~additive,

Applying the theorems above to o,-additive spaces, we may drop condition (iv) in
Theorem 3 and conditions (i) in Theorems 4 and 5. In this way we obtain W,~melri-
zation theorems for w,- additive spdces which are formally analogous to class1ca1
metrization theorems. (Obviously, every topological space is wg-additive.)

So, for example, we could prove a @, ~analogue of the Nagata~Smirnov metri-
zation theorem, using Theorem 3, similarly as in Nagata’s text. We do not carry out
this possibility, because such a theorem was proved by Wang Shu-Tang [23], who,
however, used completely different methods.

R. Sikorski [18] proved another c,~metrization theorem, analogous to Ury-
sohn’s metrization theorem:

A regular w,-additive space X is w,~metrizable if there is a w,-sequence of open
sets {0 t<w,} forming a base for the topology on X.

We also have an analogue of Bing’s metrization theorem:

A regular space is w,-metrizable if it is w,-additive and has a w,-discrete base
(a base which is a union of a w,-sequence of discrete collections).

In other words:

THEOREM 6. A regular space X is o, metrizable iff X has a base B which is a union
of a w,sequence of discrete collections B, (v<w,) such that

N {BLp) peBp)eB,},

<y

where  y<w,,

is always open.

Remark. Obviously, the last condition is satisfied whenever u = 0 or X is
w,-additive.

Proof. Necessity: we may assume u>0. Since all properties are hereditary,
we may assume X is homeomorphic with a space (4%, B), B = ®,, by Theorem 1.
For such a space, the natural base W = {x(a)| xe A, o€ B} is a o,-sequence of
clopen partitions {x(a)| x e 4"}

Sufficiency: Any such space satisfies the hypotheses of Wang Shu-Tang’s
analogue of the Nagata-Smirnov theorem [23].
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A note on tangentially equivalent manifolds
by

Adil G. Naoum (Baghdad)

Abstract. Let M, M be two closed 1-connected smooth manifolds which are tangentially
equivalent. B. Mazur proved that, for large values of k, k > m--2, there exists a diffeomorphism
F: M x D*-—Mm"x D,

In this note we define an obstruction theory for the existence of such a diffeomorphism in
the metastable range, k = (m+4) and for m > 5.

Recall that two closed oriented smooth manifolds M’ and M7 are called tan-
gentially equivalent iff there exists a smooth homotopy equivalence
fr Mi-M3,
such thatf*#(M,) = (M), where T(M,) is the stable tangent bundle of M(i = 1, 2).
B. Mazur in [6] proved that if MY and MF are two closed simply connected tangen-
tially equivalent manifolds, then for large k, k>m+2, there exists a diffeomorphism
F: M?x Db M7 x D*
such that the following diagram is commutative up to homotopy:
Mmx D5 My D ‘
M 4P
M—L s, :
where the vertical maps are projections on the first factor, and f the tangential
equivalence. In this note we define an obstruction theory for the existence of the
diffeomorphism for values of k in the metastable range, i.e. for kzt(m+4) and for
1-connected manifolds, m>35.
Let f: MP—M3 be a tangential equivalence between the 1-connected closed
manifolds M, and M,. Consider the composition map iof=f"

I i
MP5 ME > Myx D,
i is the inclusion map, f* induces an isomorphism between the homotopy groups in

all dimensions, hence by Haefliger theorem, for k>4 (m-+4), 2], /' can be approxi-
mated, within its homotopy class, by an imbedding

g: MP>MyxD*.
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