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Some quantitative properties of shapes
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Karol Borsuk (Warsiawa)

Abstract. Let 4 be a compactum lying in a space M & AR and B a compactum lying in a space
NeAR. If Uis a neighborhood of 4 in M and ¥ is a neighborhood of B in N, then one introduces
in a natural way the relation of U-domination (4 < B in M, N), the relation of (U, V)-affinity
of A with B (4 %, &h B in M, N) and the relation of (U V)-equivalence of 4 with B (4 anB
in M, N). Those relations allow us to define some shape invariant relations: the quasi-domination

q q [
A < B, the quasi-affinity 4 <> B and the quasi-equivalence 4 = B, weaker than the relatiuns

Sh(4) < Sh(B), Sh(4) < Sh(B) and Sh(B) < Sh(4), and Sh(A) = Sh(B) respectively. If A <B
then pu(A) < pa(B) and if B is movable, then 4 is also movable.

§ 1. Introduction. In the theory of shape one considers a classification of
compacta based on their global topological properties. In this way one obtains
the notion of shape, which has a qualitative character. Though in some cases we
can say that the shape of one compactum A is less than the shape of another com-
pactum B, we are not able to estimate how much the shape of 4 differs from the
shape of B.

In the present paper we introduce for a given neighborhood U of a com-
pactum 4 (lying in a space M € AR) a relation of the U-domination of 4 by another
compactum B (lying in a space Ne AR) and we define also, for given neighbor-
hoods U of 4 and V of B, relations of (U, V)-affinity and of (U, ¥)-equivalence.
These relations allow us to consider shapes from the quantitative point of view.
They allow us also to introduce the concepts of quasi-domination, quasi-affinity
and quasi-cquivalence, which are weaker than the relations of fundamental domi-
nation and of fundamental equivalence considered in the theory of shape.

We assume as known the basic notions and the most elementary results of
the theory of shape. The reader can find them in [1].

§ 2. U-domination. Let 4, B be two compacta lying in spaces M, Ne AR,
respectively, and let ¥ be a neighborhood of B in N. Two fundamental sequences

;f= {f;uA:B}M,N’ fl= {fl:: A:B}M,N
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. are said to be V-homotopic (notation: f & [y if the following condition is satisfied:
(2.1) There exists a neighborhood U, of A4 in M such that fi]Us=fi/Uy in V for
almost all k.
Tt is clear that
(2.2) If ff', then f3 f for every neighborhood V of B in N, and conversely.
23) If Jgf ad [z f" then _f%._]“’.
@4 IfveV', then f%_f’ implies _%’j'.
(2.5) Remark. ¥ V is an open neighborhood of B in N, then condition (2.1}

is equivalent to the following one:

@1 fld=fild in V for almost all k.

Proof. It is clear that (2.1) implies (2.1)’. On the other hand, if (2.1)" is satisfied,
then there is an index k, such that f,/4=f;/d in V for every k=k,. Since N e AR,
there exists for every kzk, a neighborhood Uy of 4 in M such that
2.6 fJUfilU. inV for  kzk.

But fand f are fundamental sequences, consequently there exists a neighborhood U’
of 4 in M and’an index k,=k, such that
fJU =f,JU in V
fJU =f U in vV
Consider a neighborhood U,cU’ n U, of 4 in M. It follows by (2.6) and
(2.7) that

(V)] for every kzk; .

flUo=filUs in V for every kzk;,

hence condition (2.1) is satisfied. .
Let U be a neighborhood of 4 in M. We say that A is U-dominated by B in
M, N (notation: 4 § Bin M, N) if there exist two fundamental sequences

2.8) f= {ﬁc:AaB}M,Ns f= {f/nB= A}N,M
such that f [fis U-homotopic to the fundamental identity sequence i4,m for 4 in M.

It is clear that:

29) IfUcU', then 4 s B in M, N implies A < B in M, N.
>
(2.10) If M, N are two AR-spaces containing A, then 4 < 4 in M, N for every
U
neighborhood U of A in M.

(2.11)  If Sh(A)<Sh(B), then A % Bin M, N for every neighborhood U of A in M.

(2.12) If A # @ is contractible in U, then A § B in M, N for every compactum
B # @.
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In fact, in this case for every two fundamental sequences (2.8) the relation
Jf 14 holds true.

§ 3. (U, V)-affinity and (U, V)-equivalence. Let U be a neighborhood of 4
in M and V be a neighborhood of B in N, where 4, B are compacta lying in spaces
M, Ne AR, respectively. Then we say shortly that (U,¥) is a neighborhood of
(4, B) in (M, N). The compacta 4, B are said to be (U, V)-affinite in M, N if the
relations A4 § B in M,N and B § A in N, M both hold true. Then we write

4 < Bin M, N.

[X%)
1t is clear that

G IfUcU, VeV’ then A s Bin M, N implies that A <—>)B in M,N.

wwv)

3.2) ]fA((T})B in M, N, then B(ﬁ)A in N, M.

Two compacta A, B are said to be (U, V)-equivalent in M, N if there exist
two fundamental sequences (2.8) such that the following conditions are sa-
tisfied:

w,v

Jfe=iyy and Jf~igy.
Then we write 4 & Bin M, N.
Let us observe that

(33) 4 ,~ Bin M,N implies 4 (ﬁ)B in M,N.

W
(3.4) If Sh(d) = Sh(B), then 4 & B in M,N for every _neighborhood (U, V)
of (4, B) in (M, N). 4
(35) IfUcU, VeV, thn 4 5, B in M, N implies 4 g5, B in M,N.
(3.6) Ifd# Qis contractible in U and B # D is contractible in V, then A (z?fv)B
in M, N.

§ 4. Some examples. In order to illustrate the sense of the notions introduced
in § 3, consider the following examples:

(4.1) ExampLE. Let 4, B be two non-empty continua lying in the plane EZ,
Assume that E2~B is connected and E>A is not. Setting M = N = E?, consider
two fundamental sequences (2.8). If U is a neighborhood of 4 in E? containing
all bounded components of E>\4, then A4 is contractible in U and we infer by (2.12)
that 4 § B in E?, E*. Moreover, B is contractible in every neighborhood ¥ of B
in E% Hence B § 4 in E?, E* and consequently 4 B in E*, E*

If, however, U is a neighborhood of 4 in E? such that at least one bounded
component of E? 4 is not contained in U, then there exists in 4 a l-dimensional
true oycle y which is not homologous to zero in U. Consider two fundamental
sequences f, j given by (2.8). If we observe that every 1-dimensional true cycle in B
si null-homologous in B, we easily infer that the fundamental sequence _f f assigns
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to y a true cycle y” homologous to zero in U; hence y~y" in U and consequently
the relation fr z;,u fails. Thus in this case A is not U-dominated by B.

(4.2) ExampLE."Let 4 be a circle and B a dyadic solenoid, both lying in the
space M = N = E*, Let (U,V) be a neighborhood of (4, B) in (E® E*) such
that 4 is not contractible in U and B is not contractible in V.

Consider two fundamental sequences f, _f given by (2.8). One can easily see
that f assigns to each 1-dimensional true cycle y in 4 with integers as coefficients
a l-dimensional true cycle in B homologous to zero in ¥, Since there are in 4 one~
dimensional true cycles with integers as coefficients which are not homologous
to zero in U, we infer —as in Example (4.1) —that the relation j‘ Soeiy e Lails.
Hence 4 is not U-dominated by B in E3, E3.

On the other hand, B is not F-dominated by 4 in E*, E* because there exists
in B a 1-dimensional true cycle 9, with. rational coefficients, which is not homologous
to zero in V. The fundamental sequence _f assigns to § a 1-dimensional true cycle y
in 4, and f assigns to y a 1-dimensional true cycle in B which is homologous to
zero in V. It follows that f f is not homotopic in ¥ to the fundamental identity
sequence iz y and consequently B is not P~dominated by 4 in E?, E3.

(4.3) ExaMpLE. Let C, denote the circle in E* given by the equation x2+y?
=1, and let C, denote the circle given by the equation x*+y* = n/(n+1) for n
= 1,2, .. Setting '

A=Cu G,
n= g

we get & compactum in E?, If we add to 4 the point g = (0, 0), then we get another

compactum B. It is clear'that 4 is a retract of B and B is homeomorphic to a retract .

of 4. It follows that
Sh(A)<Sh(B) and Sh(B)<Sh(4)
and we infer by (2.7) that '
44 4 @B in E?, E? for every neighborhood (U, V) of (4, B) in (E%, E®).

Now let us consider an open neighborhood U of 4 (in E* and an .open
neighborhood W of the point a in E? such that U n W = @, It is clear that none
of the circles C,, is contractible in U and that ¥ = U u W is an open neighbor-
hood of B in E2

Suppose that 4 & Bin E? E2 Then-there exist two fundamental sequences
S={f 4, B} e, - J={},. B, A}pr
such that f f & iy g2 and £ & ippe. '

Since j is a fundamental sequence, there exists an open disk D= W containing
the point @ and such that

(4.5

fk(-D) «U

for almost all k.

©

icm
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Moreover, the relation JI o ip g in Vimplies that there is an index n, such that
S(C)=D

It follows by (4.5) and (4.6) that for almost all k the restriction -f,afk/C,,o is
null-homotopic in U. But this is impossible, because the relation Ir % g implies
that Jil Cyo = ¥/C,, in. U and C,, is not contractible in U. Thus 4 and B are not
(U, V)-equivalent in E?, E2,

It follows by Example (4.3) and by (3.3) that:

4.6)

for almost all % .

4.7y The relation of (U,V)-affinity is less restrictive than the relation of (U,V)-
equivalence.

§ 5. Role of spaces M, N. Let us prove the following

(5.1y THEOREM. Let A4, B, A', B’ be compacta lying in spaces M, N, M',N’
€ AR, respectively, and let A be homeomorphic to A’, and B homeomorphic to B’.
Then for every neighborhood U’ of A’ in M’ there exists a neighborhood U of A in M
such that A § B in M, N implies A’ § B in M',N'. .

Proof. Let Ay: 4 o2 A" and hy: Bo::’ B’ be homeomorphisms. Since M, M’,
N, N'e AR, there exist maps

w: MM, & MM, p:N-N', p: N-N

such that

a(x) = hy(x) 8(x") = Ay t(x")

BY) = hy(») BO) =110
It follows that there is a neighborhood U of 4 in M such that
(5.2) W),
Let us show that 4 § B in M, N implies 4' § B in M',N'.

for every xe 4, for every x" € 4',

for every ye B, for every y' € B'.

Consider two fundamental sequences

:f= {ﬁl’A’B}MyN and j:-{fk’B’ A}N'M’
satisfying the condition
(5.3) Jrs ian-
Setting
g=BA8, Ou=afip for every k=1,2,.,

we get two fundamental sequences:
9= {96 A By ,ne 4= {0, B, AYy 2
It follows by (5.3) that there is a neighborhood UycU of 4 in M such that

fflUo=ilUy in U for almost all k.

(5.4)
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Now let-us select a neighborhood ¥; of B in N such that

(5.5) F(V)eU, for almost all &,
and let ¥, ¥V, be a neighborhood of B in N such that
(5.6) BpIV,=ilv, in V.
Moreover, there exists a neighborhood U,<=U; of 4 in M such that
(5.7 fU)eV, for almost all k,
and there is a neighbo;llood Upc U’ of A" in*M’ such that
(5.8) 8(Ug)= U,
and that
(5.9), wdfUy=i/Ug  in U'.

One infers by (5.8), (5.7) and (5.6) that

BB&IUy=£,6/U,  in ¥y  for almost all k.

By virtue of (5.5) we infer that
fkﬁﬁﬁc &/Us szf;c &/Uq
Using (5.8) and the inclusion U,<=U,, we infer by (5.4) that
Fufib]Us =6/ Ug
The last relation, combined with relation (5.3), gives
5.9 Us = of BRA8IUS~a8/U, in U’ for almost all k.
It remains to apply (5.9) in order to obtain the homotopy
(5.10) ’ GeadUp=i/Uy  in U
Hence 4’ § B’ in M’, N’ and Theorem (5.1) is proved.

in UycU for almost all k.

in U for almost all k.

for almost all k.

, (5.’11) CoROLLARY. If 4, B, A', B’ are compacta lying in AR-spaces M, N,
M’, N', respectively, and if 4 is homeomorphic to A’ and B is homeomorphic to B'

then for every neighborhood (U', V') of (4', B') there is a neighborhood (U,V) of

(4, B) in (M, N) such that A @y B In M, N implies 4’ & B'in M', N'.

(5.'12) THEOREM. If 4, B, A', B’ are compacta Iying in AR -spaces M, N, M', N,
respecthIy, where A is homeomorphic to A’ and B —to B', then Jor every neighbor-
hood (U’, V') of (4',B’) in (M', N') there is a neighborhood (U, V) of (4, B) in
(M, N) such that A & B in M, N implies 4 = )B’ in M',N'.

w iy
?roof. Preserving the notation used in the proof of Theorem (5.1), consider
a neighborhood ¥ of B in N such that

BN=v".

©

icm
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It4 .~ B in M, N, then the fundamental sequences f and f may be selected

so that not only condition (5.3), but also the condition
_f_ f 7 gy
is satisfied. ,

In the proof of Theorem (5,1) it is shown that there exists a neighborhood U}
of A" in M’ satistying (5.10). By the same argument one shows that there is a neighbor-
hood V§ of B’ in N’ such that
(5.13) 98 VoifVy in V'
It follows by (5.10) and (5.13) that 4’ W B’ in M’, N’ and the proof of Theo-
rem (5.12) is concluded.

for almost all k.

§ 6. Quasi domination, quasi-affinity and quasi-equivalence. Let 4, B be two
compacta lying in spaces M, N € AR, respectively. We say that 4 is quasi-dominated
by B (in M, N)if 4 us B in M, N for every neighborhood U of 4 in M. Observe

that Theorem (5.1) implies that this relation is topological and the choice of spaces
M, N is immaterial. In fact, let 4, B’ be homeomorphic to 4 and B, respectively,
and contained in spaces M’, N’ € AR, respectively. Assume that 4 is quasi-domi-
nated by B’ in M’, N'. T U is any neighborhood of 4 in M, then a neighborhood U”
of A’ in M’ may be selected so that A’ L§ B in M', N’ implies A § B in M,N.
Hence 4 is quasi-dominated by B (in M, N). It follows that the words “in M,N”
are superfluous and we can say shortly that 4 is quasi-dominated by B (notation:

A é B). Moreover, we see that the relation 4 é B is- topological.

It 4 & Bin M, N for every neighborhood (U, V) of (4, B) in (M, N), then
we say that 4 and B are quasi-affinite (in M, N). Using Corollary (5.11) we see
that the words “in M, N” are superfluous. Thus we say shortly that 4 and B are
quasi-affinite (notation: 4 & B). Moreover, we see that this relation is topological.

It 4 & Bin M, N for every neighborhood (U, V) of (4, B) in (M, N), then
we say that 4 and B are quasi-equivalent (in M, N). Oae infers by Theorem (5.12)
that the words “in M, N are superfluous. Thus we say shortly that 4 and B are
guasi-equivalent (notation: 4 4 B). Theorem (5.12) implies also that this relation
is topological.

Using (2.11), we infer that

6.1) S1(4)<Sh(B) implies that A < B,
and using (3.4), we infer that
(6.2) Sh(d) = Sh(B) implies A = B.

Now let us prove a theorem which implies in particular that statements con-
verse to (6.1) and to (6.2) are not true.
(6.3) THEOREM. All 0-dimensional infinite compacta are quasi-equivalent.

4 — Fundamenta Mathematicae XCII1



GUEST


204 ' K. Borsuk

Proof. Let 4, B be two 0-dimensional infinite compacta. Since quasi-equiv-
alence is a topological relation, we can assume that 4 and B are subsets of the
1-dimensional Euclidean space E'. It is clear that for every neighborhood (0, %]
of (4, B) in (E*, E) there exist neighborhoods UcU and V<P of 4 and of B,
respectively, in E' of the following form: :

U is the union of  intervals I, = {x,, x;», where x,<x, for v = 1,2, .., n
and x,<x,4; for v =1,2,...,n—1, such that there exists a point a,e4 NI,
forv=1,2,..,n

V is the union of n intervals J, = <y,, ¥,», where p, <y, for v=1,2, .., n
and .y, <y, for v = 1,2, .., n—1, such that there exists a point b, & B nJ, for
every v= 1,2, ..,7 '

Setting

f(x) =b, forevery point xednl,, v=1,2,..n,
FO) =a, for every point ye BnJ,, v=1,2,..,n,
we get two maps f: 4—B and J: B—4 such that ff(x) = a, for every point

xed nl, and ff(y) = b, for every point ye Bn J,.
It readily follows that ff~i/d in U and Fff~i/B in V. One infers that f

={fi, 4, BYpp and J= {f,, B, A}p g« are fundamental sequences gencrated
by f and f, respectively, then

Ifgiam and  ffsipm.
Hence 4 % B in E', E* and consequently also (by (3.5)) 4 =~ B in E', B

@p
Hence 4 2 B and the proof of Theorem (6.3) is finished,

(6.4) CorROLLARY. There exist compacta A, B such that Sh(d)<Sh(B) and
44 B '

It is so, for instance, if 4 is a countable compactum and B is the Cantor dis-

continuum.

§ 7. Transitivity. Let us prove the following

(7.1) THEOREM. Let 4, B be compacta lying in spaces M, Ne AR, respectively,
and let U be a neighborhood of A in M such that A < Bin M, N. Then there is
U

a neighborhood V' of B in N.such that for every compactum C lying in a space P € AR
the relation B § C in N, P implies the relation A < C in M , P
U

Proof. 4 § B in M, N means that there exist two fundamental sequences,
J= {fi. 4, B}M,N: j = {fk’ B, Ay
and a neighborhood U, of 4 in M such that
(7.2) FfilUs=ifUy  in U for almost all k.
Moreover, there exists a neighborhood ¥ of B in N such that
(7.3) AP)eU  for almost al] k.
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If B< Cin N, P, then there are fundamental sequences
v

g= {gk: B, C}N,P > Q = {ﬁk’ C, B}P,N
and a neighborhood ¥V, of B in N such that

(1.4) 89/ Vo=ilVy in ¥V for almost all k.

Now let us select a neighborhood Ugc=U, of 4 in M such that
(7.5 fllUg)<V, for almost all k.
Setting

b= gufy» mB=Fd Tfor k=1,2,..,
consider the fundamental sequences
h= Qf= {he, 4, Chyp s E = 14 = {Eks C, Ap -
It follows by (7.4) and (7.5) that o
G0l Ubfi/U,  in ¥V for almost all k.
Using (7.3), (7.2) and the inclusion UycU,, one obtains
Beh U = Fodngnf Us= fofil Up=ij/U  in U for almost all k,
and consequently
(7.6) ' Bhetiys  in UL
Thus we have shown that 4 S Cin M,P and the proof of Theorem (7.1) is

concluded. .

(7.7) CoroLLARY. If A4, B, C are compacta lying in AR-spaces M, N, P, re-
spectively, and if U is a neighborhood of 4 in M and W is a neighborhood of C in P
such that for every neighborhood V of B in N

A(ﬁ,)B in M,N and BG;T,}V)C in N,P,
then A & Cin M,P. ’
In, fact, 4 & B in M, N means that

(7.8) A%B in M,N,

(7.9) B%A in N, M.

B & C in N, P means that

(7.10) B§ C inN,P,

(7.11) e % B inP,N.

Using Remark (2.5), we infer by Theorem (7.1) that if the neighborhood Vot Bin N is
sufficiently small, then (7.8) and (7.10) imply that 4 % Cin M, P and (7.9), (7.11)

imply that C f‘, Ain P, M. Hence 4 < Cin M,P.

4
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(7.12) CorOLLARY. The relations of quasi-domination and of quasi-affinity are
transitive.

In fact, if 4 < Band B< C, then for any spaces M, N, Pe AR containing
A4, B, C, respectively, and for every neighborhood U of 4 in M and ¥ of Bin N
the relations 4 § Bin M, N and B § Cin N, P hold true. By Theorem (7.1) the

neighborhood ¥ can be selected so that these relations imply 4 § C in M, P.

Hence A é C.

Using Corollary (7.7), we show in the same way that 4 <> B and B < ¢ imply
adc

(7.13) ProBLEM. Is the relation of quasi-equivalence transitive?

§ 8. Relations of quasi-domination, quasi-affinity and quasi-equivalence as
shape invariants. Let us prove the following

(8.1) THEOREM. If Sh(d) = Sa(4') and Sh(B) = Sh(B'), then (A < B) =
(4' < B), (4> B)= (4’ & B and (4 = B)= (4' = B).
Proof. The first two implications are simple consequences of (2.11), (3.4) and

of Corollary (7.12). In order to prove the third implication, it suffices to establish
the following proposition:

(82) Xt A< B andif Sh(B) = Sh(C), then 4 £ C.
Let us: assume that the compacta A, B, C lie in spaces M, N, Pe AR

respectively. It suffices to show that if U is an open neighborhood of 4 in M and
W is an open neighborhood of C in P, then A &y C in M, P.

Since Sh(B) = Sh(C), there exist fundamental sequences
g= {gk’ B’VC}N,P and £7 = {gks C’ B}l’,N

such that gg ~ ipy and gg ~ icp. Then there is a neighborbood Wy W of C
in P such that

(8.3) GG Wo=ilW, in W for almost all k.
Moreover, there exists a neighborhood ¥ of B in N such that
(8.4) g <W, for almost all k.

The hypothesis 4 & B implies that 4 & B, ie., there exist fundamental
sequences '

) f= {fes 4,Bly,y and f= {fk: B, A}N,M
and a neighborhood (U’, V)= (U, V) of (4, B) in (M, N) such that
(8.5 FS U ~ijU

in U for almost all k,

. (8.6)
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STV =iy

Setting hy, = gifi, T =fk§k for k=1,2,.., we get two fundamental se-
quences

in ¥ for almost all k.

h={h,A4,Clyp=gf and h={h,C,dbpy=74.
Since j : B—A4, there is a neighborhood ¥, of B in N such that

8.7 Fv)eU  for almost all k.

Since gg=ip y, there is a neighborhood ¥, of B in N such that
(8.8) Gv9x/VailV, in V¥, for almost all k.
Moreover, fi,(d)=V, for almost all k, and we infer by (8.8) that

GunfilA=fi/ld in-V, for almost all k.

Using (8.5) and (8.7), one infers that ’

8.9) RhA = FidgfidA=fifilA~ilA in U  for almost all k.

Moreover, §,(C) =¥’ for almost all k. It follows by (8.6) that

LifddC=gJC  in Vv

Using (8.4), we infer that g, f.f.di/C=g.4,/C in W, for almost all k. Since W, c W,
we infer by (8.3) that

(8.10) hjC = gffidlC=ilC
Relations (8.9) and (8.10) imply that A ~ C in M, P and thus the proof

wy)
of Proposition (8.2), and hence also of Theorem (8.1), is finished.

for almost all k.

in W for almost all k.

§ 9. Case of ANR-spaces. In the case of ANR-spaces the relations of quasi-
domination, of quasi-affinity and of quasi-equivalence reduce to the well-known
relations for shapes. In order to show this, let us first prove the following

(9.1) Lemma. Let A, B be compact ANR’s lying in M, N € AR, respectively.
Let U be a closed neighborhood of A in M such that A is a retract of U. Then for
every fundamental sequence f = {fy, A, B}y, y there exists a fundamental sequence
f' = {fi» A, B}y, homotopic to f and such that f(U)<B for k =1,2, ...

Proof. Since Be ANR, we can assume that f is generated by a map f* 4— B.
Let r: U— 4 be a retraction. Since U is closed in M and N € AR, there is a map
f's M—N such that f'(x) = fr(x) for every point x € U. Sstting f; = f* for every
k=1,2,.., we can casily see that f= {fe» A4, B}y, y is a fundamental sequence
satisfying the required conditions. :

(9.2) TuroreM. If 4, B are two compact ANR-spaces lying in' M, Ne AR,
respectively, then there exists a neighborhood U of A (in M) such that 4 § BinM,N
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implies Sh(A4)<Sh(B), and there exists & neighborhood (U, V) of (4, B) in (M, N)
such that 4 &h B in M, N implies Sh(4) = Sh(B).

Proof. Since A, B are compact ANR-sets, there exist a closed neighbor-
hood U of 4 in M and a closed neighborhood ¥ of B in N such that 4 is a retract
of U and B is a retract of V.

Let f= {fi» 4, Bhun» J = { Ji» B, A}y e be fundamental sequences satistying
the condition N

©3) SIENE

Using Lemma (9.1), we‘mz& assume that

9.4) f{theB . and  f(V)cd forevery k=1,2,..

We infer by (9.3) that there is an index k&, such ﬁ1at

9.5 FeofrolA==il4- i U,

Setting @ (x) = fi,(x) for xe 4 and Y (¥) = fko(y) for ye B, we get two maps,

@i A>B and Y: B—d,

such that

Vo = fifild=ild in U.

Hence 4 is homotopically dominated by B. Thus Sh(4)<Sh(B).
If we assume also that the relation ff 5 Iy, y holds true, then the index ko can
be selected so that not only condition (9.5) is satisfied, but also the condition

foFe/B=i[B i V.

Then.we show, by an analogous argument, that the maps ¢, ¥ satisly the two con-

ditions Yevi/4 and ¢y =i/B. Hence 4 and B are homotopically equivalent and
consequently Sh(4) = Sh(B).

§ 10. Betti numbers. We use here the Vietoris homology theory based on the
notion of the true cycle (compare [1], p. 35). In the sequel we consider only true
cycles with rational coefficients. By the n-th Betti number p,(4) of a compactum 4
we understand the maximal number of n-dimensional true cycles of 4 which arc
homologically independent in 4, ie., a linear combination of those true cycles
with integer coefficients is null-homologous in 4 only if all coefficicnts vanish.

First let us prove the following

(10.1) Levma. Let A be a compactum lying in a space M. If 11, Y25 vues Y GF€
n-dimensional true cycles in A which are homologically dependent in ev-éry 7zef;:7/1bor—
hood U of A in M, then they are homologically dependent in A.

Proof (by induction). Let m = 1 and let

N =7= %,
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be an n-dimensional true cycle in 4. If the system consisting of y is homologically
dependent in every neighborhood U of 4 in M, then y~0 in U and we infer that
for every £>0 the cycle y, is for almost all k the boundgry of an ¢-chain lying in U.
We infer that there exists a sequence of indices j; <j, < ... such that for j,<i<f,4+;
there is in 4 a 1/v-chain x; such that y; = dx;. For i = 1,2, ..., j; —1 we define x;
as an arbitrary chain in A4 satisfying the condition dx; = y;. It is clear that »x
= (%y, %3, ...) is an infinite chain in 4 with d» = y. Hence y~0'in 4 and the proof
in the case of m = 1 is finished. B -

Assume now that the statement is true for a natural number m and consider
the system of n-dimensional true cycles in A4:
(10.2)

21: 22’ (k) Zm: Ymet1

Let U;oU,>... be a sequence of neighborhoods of 4 in M shrinking to 4. If
system (10.2) is homologically dependent in every neighborhood U of 4 in MM,
then for every r = 1, 2, ... there exist integers {7, I, ..., I 1, not all vanishing
and such that the true cycle

m+1
Z lgr)')’t
i=1 -

is homologous to zero in U, If /7%, = 0 for almost all r, then we infer that the
SYStEM Y1, V2, «rs Y IS homologically dependent in every neighborhood U of 4
in M; hence the hypothesis of induction implies that it is homologically dependent
in A. Then also the system (10.2) is homologically dependent in 4.
Thus we can assume that there exists a sequence of indices r; <r,< ... such

that I, 5 0 for v = 1, 2, ... Stting
7o)
ng) = "—(ir*)“"

ImYl-l
we get rational numbers such that

2,,,+1~w({')-21+...+wf,f"2,,, in U, for v=1,2,..

If there exists a system of rational numbers (y, Wy, ..., W,) such that (w{?, ..., w)
= (Wy, .., W) for an infinite number of indices v, then we infer that wy y;+..
v F Wy Y=Y+ 1 15 @ true cycle homologous to 0 in every neighborhood U of 4
(in M); hence it is also homologous to zero in 4. Then system (10.2) is homologically
dependent in A.

However, if such a system of rational numbers (wy, Wy, ..., w,,) does not exist,
then for every v = 1,2, ... there exists an index a(v)>v such that

W, WS, ooy WD) 2 WD, WS, e, W)
It follows that

W =Wy o+ WS = WGyt W —wley-y,~0  in T,,
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and consequently, by the hypothesis of induction, the system (y;, y,, s P) 18
homologically dependent in 4. Hence also the system (10.2) is homologically de-
pendent in A and the proof of Lemma (10.1) is finished.

N q . q
(10.3) THEOREM. If A< B, then p,(A)<p,(B), and if A+ B, then p,(4) = p,(B).
q

Proof. In order to prove that 4<B implies p,(4)<p,(B), we can assume that
Po(B) = m is finite. Then there exists in B a system y1, y3, ..., ¥, of n-dimensional
true cycles such that each n-dimensional true cycle 9 in B is homologous in B to
a linear combination

Wy '211+W2 2’2 o +W,,, z:(n

with rational coefficients Wis Waseeey Wy

Let y be an n-dimensional true cycle in 4 and let M be an AR-space con-

- q
taining 4, and let N be an AR-space containing B. If 4 < B, then for every neighbor-
hood U of 4 in M there are two fundamental sequences
.f= {ﬁu 4, B}M,N’ I:“' {fx, B, A}N,M

such that :

(10.4) If 5 tape-
The fundamental sequence f assigns to y an n-dimensional true cycle y’ in B.
Then there exist rational numbers w,, w,, ..., W, such that

,
WitYi-

Mz

Y~
T

1

It follows by (10.4) that f assigns to y"a true cycle in 4 which is homologous in U
to the true cycle y. If y; is a true cycle assigned by f to y;, we infer that

M=

y~ ) Wy, in U.
Lo 7

1

]

Thus we have shown that for every neighborhood U of 4 in M there exisls
in 4 a system of m true n-dimensional cycles y,, Y25 ees ¥ Such that cvery n-di-
mensional true cycle y in 4 is homologous in U to o linear combination of that
system. It follows that every system consisting of m+1 true n-dimensional cycles
in A is homologically dependent in every neighborhood U of 4. We infor by
Lemma (10.1) that a such system is homologically dependent in 4; hence PulA)<m,

q q 4
It A B then 4< B and also B<4; hence p,(4)<p,(B) and also PiB)<p,(4),
and thus p,(4) = p,(B).

(10.5) ProBLEM. Is it true that AL B imy

plies that every homology group
I;,,(A, M) of 4 over an arbitrary Abelian group U is isomorphic with the group
(B, A2 o

©

icm
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§ 11. Movability. Let us prove the following

(11.1) TuEOREM. If AéB and if B is movable; then A is movable.

Proof. Assume that 4 =M, Bc N, where M, Ne AR. Let U be a neighbor-
hood of 4 in M. Then there exist two fundamental sequences,

f={fi4,Bly,y and f= {Fie B, AYns
such. that

(112) I b

It follows by (11.2) that there exists a neighborhpod WecU of Ain M such that
(11.3) FSdW=ilW in U
Moreover; there exists a neighborhood ¥ of B in N such that
(11.4) fmev

Since B is movable, there is a neighborhood Vo< ¥ of B in N such that for
every neighborhood ¥’ of B in N there exists a homotopy

Y Vox{0, 1>V

such that ¥(y,0) = y and ¥(y, 1)e V' for every point y ¢ V.
Now let us select a neighborhqpd U, W of 4 in M such that

(11.5) SfUp) =V,

If U’ is an arbitrary neighborhood of 4 in M, then we can select the neighbor-
hood ¥’ of B in N so that

(11.6) F(vHeU A w  for almost all k.

Consider an index k, such that for k = k, conditions (11.3), (11.4), (11.5)
and (11.6) are satisfied. It follows by (11.3) that there is a homotopy

9: Wx0,1>-U

for almost all k.

for almost all k.

for almost all k.

such that 9(x,0) = x and 9(x,1) = fko Jio(x) for every point x e W. Setting
@(x, D = 9(x,20)
@, 1) = Jiol (fio®), 26=1)

we get a homotopy

for xe U, and for 0<t<t,

for xe U, and for 3<t<1,

o Uyx{0,1>-U
such that ¢(x,0) = x and ¢(x, 1) e U’ for every point x € U. Thus 4 is movable
and Theorem (11.1) is proved.

a e
(11.7) Remark. In the same way one can show that if A< B and if B is mov-
able in dimension n (see [2]) (or, more generally, is 4-movable, see [3]), then 4 is
movable in dimension n (or A-movable).
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Characterizations of real functions by continua
by

M. H. Miller, Jr. (University, Ala.)

Abstract. For a real-valued function f with domain an open interval, definitions for the
functional concepts of Darboux at a point and connected at a point are examined and two-sided
conditions in these definitions are reduced to one-sided conditions. The existence and character- .
izations of two new subclasses of Darboux functions are obtained and several examples are given
to indicate that none of the four classes mentioned above are equivalent.

1. Introduction. This paper deals with properties of real functions which can
be characterized by the types of continua which they intersect. A function f is said
to be a Darboux function if f(C) is connected whenever C is a connected subset
of the domain of £, Equivalently, a real function f is a Darboux function if every
horizontal interval which meets f(+) and f(~) meets f. A function which has
a connected graph is called a connmected function. In a paper published in 1965, [3],
Bruckner and Ceder define what it means for a function to be Darboux at a point
and in a paper published in 1971, [4], Garrett, Nelms, and Kellum define what
it means for a function to be connected at a point. The main theorems in this paper
reduce these definitions and still retain the results of [3] and [4]. Also, we exhibit
two new classes of real functions each of which are subclasses of the class of Dar-
boux functions and each of which contain the class of connected functions. The
author wishes to express his appreciation to Harvey Rosen for many helpful ideas.

2. Notation. If M is a subset of the plane E then (M)x denotes the X-projection
of M and My denotes those points of M which have X-projection in K where K is
a subset of the X-axis. We denote the vertical line through the point (x,0) by L.
It Fis a real function with domain a subset of the real line R then f(+) denotes
the subset of E consisting of all ordered pairs (x, y) where x is in (f)x and y>f(x).
‘We define f(~) similarly. A contimuum is a closed connected subset of E. A horizontal
segment is a bounded open connected subset of a horizontal line and a horizontal

_interval is the closure of a horizontal segment, Unless otherwise stated, all functions

considered are real functions with domain an open conneoted subset of R. No
distinction will be made between a function and its. graph.
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