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Theorem 2.4) an isomorphism between of (.%(A)) and A. That is, &4 is naturally
isomorphic to the identityfunctor on R-IGA. On the other hand, for a reduced
pair (B, 8, #(+(B)) = Bp and & = ¢4. Thus - A/ is naturally isomorphic to the
identity functor on (BVRD>.

We conclude by considering some special cases. In paltlculzu the collection of
Boolean R-pairs (B, 8,y where ed; = 0 if € # 0 and 05, = R are the objects of
a full subcategory of (% R). Since this subcategory is isomorphic to the category of
Boolean rings, we denote it by Borng. If R has only the trivial idempotents then
{B, 8 is reduced. The following corollary is a generalization of a result of McCrea
for the special case in which R is the ring of integers.

COROLLARY 4.8. If R is a ring with only the trivial idempotents then the category
of R-torsion free idempotent generated R-algebras is equivalent to the category of
Boolean rings.

CorOLLARY 4.9. If R is a ﬁeld R-IGA is equivalent to Borng.

Thus for fields F; and F,, F;-IGA and F,-IGA are equivalent. In particular,
for prime integers p, we obtain the result of SergalI [10] that the categories of p-rings
are equivalent.
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3-dimensional AR’s which do not contain 2-dimensional ANR’s

by
S. Singh* (Altoona, Penn.)

Abstract. There exists an upper semicontinuous decomposition' G of 3-dimensional cell B?
such that the decomposition space B%G is a 3-dimensional AR which does not contain any 2-di-
mensional ANR. )

1. Introduction and terminology. By an AR (ANR) we understand a compact
metric absolute retract (compact absolute neighborhood retract). One may consult [9]

‘for additional information on AR’s (ANR’s) and related terminology.

If G is an upper semicontinuous decomposition oft a topolo gical space X we de-
note the associated decomposition space by X/G and by p: X—X/G the canonical
projection, unless otherwise stated. For more information on upper semicontinuous
decompositions see [21]. A survey of results on upper semicontinuous decompo-
sitions can be found in [2] and [21].

Let n denote a positive integer. By E” we shall always mean an zn- dlmensxonal
Euclidean space, by B" the closed ball of unit radius, and by §"~* the boundary
sphere of B". By a disc we shall always understand a space homeomorphlc to B>
All maps will be continuous.

A family (collection, sequence) C of subsets of metric space X is called a null
family (collection, sequence) provided that for each >0 at most a finite number of
elements of C are of diameter greater than e.

The purpose of this paper is to provide an affirmative answer to the following.
question wh1ch arises in Bing and Borsuk [8] and Armentrout (4]:

Do there exist 3-dimensional AR’s which do not contain 2-dimensional AR’s
or even 2-dimensional ANR’s?

In [8], Bing and Borsuk described an upper semicontinuous decomposition G
of B® whose nondegenerate elements form a countable null family of arcs such that
the decomposition space B3/G is a 3-dimensional AR which does not contain any
disc. They asked whether their 3-dimensional AR B3|G contained any 2-dimen-
sional AR. Armentrout [4] described an upper semicontinuous decomposition G
of B? similar to the one described by Bing and Borsuk [8] such that B%/G is a 3-dimen-
sional AR which does not contain any disc but does contam 2-dimensional AR’s.

* The author wishes to thank Professor Steve Armentrout of The Pennsylvama State Uni-
versity for many belpful suggestions. .
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Hence, we seek 3-dimensional AR’s which do not contain any 2-dimensional AR’s,
or 3-dimensional AR’s which do not contain any 2-dimensional ANR’s. Indeed
we have the following:

TrEOREM. There exists an upper semicontinuous decomposition G of B® whose

nondegenerate elements form a countable null family of arcs such that the decompo-
sition space B\G'is a 3-dimensional AR which does not contain any 2-dimensional
ANR. Hence, B*\G does not contain ariy 2-dimensional AR.

The following corollary is immediate:

CorOLLARY. There exists an upper semicontinuous decomposition G of E* whose
nondegenerate elements form a countable null family of arcs such that E*|G does not
contain any 2-dimensional ANR and hence any 2-dimensional AR.

We let dimX, IntX, PL, D(f, g), (4, B) anid BdX respectively denote di-
mension of X, interior of X, piecewise linear, distance between two functions and
distance between two sets. Most notations used are standard and will be clear from
the context. ' ' ‘

2. Homological linking. In this section we shall describe homological linking
between a simple closed curve and a special circle-like continuum. For our purpose,
we consider the theory of shape as described by Borsuk in [11]. We need the following
definitions: .

DErINITION 1. A compact metric space of dimension 1 is said to be a circle-
like contimmm if and only if X is shape equivalent to circle §*.

DEFINITION 2. A subset M of a topological space X has property UV® if and
only if for each open subset U of X containing M, there is an open subset ¥ of X
containing M such that (1) V< U and (2) V is contractible in U.

DEFINITION 3. Let X be a 1-dimensional continuum in E* and G be an upper
semicontinuous decomposition of X such that the non-degenerate elements of G form
at most a countable null family of arcs. Now X will be called a special circle-like
continuum if and only if the decomposition space X/G is homeomorphic to the

*circle S !
The following lemma is a result of [17]:

LeMMa 1. Every special circle-like continuum is shape equivalent to the circle S*.

Our immediate goal is to describe certain polyhedral neighborhoods of a circle-
like continunm X in E®. These neighborhoods will be used to define the linking
number between X and a simple closed curve. Before we do this rigorously, we state
the following lemma for later use:

LemMA 2. If M is a 1-dimensional UV® continuum in E* and Z* is a 2-sphere
in E®, then (M \ 2%) does not separate 2. ‘

Proof of Lemma 2 is fairly straightforward and hence omitted.

Let X ='y be a special circle-like continuum and y* = X/G. Tt follows from
the definition of y that y* is a simple closed curve. Let a*, b* e y* such that

2 © ‘
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p 1@ = {a} and p~'(B" = {b}. Now y* = y* U y%, where each ¥ is an arc
for i =1,2, and y{ nyj = {a* b*}. Tt follows that p~1(y) = p~1(3*) U p~1(pH),
where each p~i(y¥) is a UV® continuum in E* [5] for each i=1,2, and
) 0 p” (%) = {a, b}. If = is a plane in E* such that = separates « from b
in the continuum § = p~(y*), then there exists a positive number & such that the
closed balls B,(a), By(b) in E®, centered at @, b, respectively, do not meet m. There
exist x; 5% x, in [B(a) ny] such that x, = p~'(x}) and x, = p~(x%) with
x}, x5 ey* and d(a, x))>%s, for i=1,2. Similarly, we can find y, # ¥, in
[B4(b) N y] such that yy = p~*(¥¥) and y, = p~'(»3) such that d(b, y;))>1e, for
i=1,2, where y%,y%ey*. Assume we have assigned an orientation to y*. By
relabelling the points x¥, x3, ¥, y% if needed, we may assume that the arc p%
between x} and y} and the arc y} between x% and y% are subarcs of 9y} and % re-
spectively. Put y; = p~ () for i=1,2,3, and 4. Now 93<7,7,<y; and
93 094 = B. Also, each of y; and y, has property UV® in E. Hence there are
arbitrarily small compact polyhedral neighborhoods of y; and y, which are 3-mani-
folds with connected boundary. Let H, and H, be such neighborhoods of y; and y4
respectively such that Hy n Hy = @. We define

P = H, u H, U B(a) U B,b).

Tt is clear that the set P is a compact neighborhood of the continuum y in E3. P will
be called a special neighborhood of y in E3. With the notation and terminology as
above, we have shown the following lemma:

LEMMA 3. Every special circle-like continuum y in E® has a special neighborhood
in E°. \

Let y be a special circle-like continuum in E® and C be a simple closed curve
in E°. In this paragraph, we shall define the notion of linking between y and C.
Intuitively, C links y if € links some special neighborhood of y. This will be made
precise in the following discussion. Let P be a special neighborhood of a circle-like
continuum y in E* and a, b, y, where @ and b are the centers of the balls used to
construct P. Let ¢: S*—>y* be a homeomorphism. By [5], Lemma 3.2 there exists
a map ¢,: S'—»E3 such that D(po @;, 9) <8, where § is a positive real number.
By simple modifications, we can assume that (1) ¢@s is a homeomorphism,
@) a,b,e0i8) and (3) @(S)=P. Pick a sequence of homeomorphism
@35 Paz » Pojaas wes Paans - SUch that D(po @yam, 9)</2" for n=1,2,3,..
Also, @y2+(S*) contains the set {a, b} and @ (SH <P, forn = 1,2, 3, ... Since y is
a circle-like continuum it follows that its fundamental shape group II(y, a) is iso-
morphic to Z. The fundamental sequence ¢ = {@y2n}smo may be assumed to be
a generator for the group IT 1(y, @). Such a fundamental sequence ¢ = {(p,,,zn};',io
will be called a canonical generator of IL;(y, a). In order to discuss it further, we need
the following important lemma:

Lemma 4. Let y be a special circle-like continuum in E® and P be a special neigh-
borhood of y in E®. Then there exists a simple closed curve { in E® such that { links .
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Proof. The special neighborhood P of y has a decomposition
P = Ba) UB(b) vH vH,

where H, and H, are polyhedral 3-manifolds with connected boundaries and

By(a), B,b) are closed balls of radius ¢ centered at @ and b respectively. There exists

a plane IT in E® separating @ from b.'We may assume that IT does not meet B,(2)

and B,(b). Also, we may assume that the plane IT and the polyhedron H, U H,
n

1
are in relative general position. It is well-known that IT n Hy = U Dy;, where
B . i=1
each Dy, is a punctured disc and Dy; n Dyy=@ for i # jand i, = 1,2, .., 1.
n2
Similarly, we have that = n H, = ) D,;, where each D,; is a punctured disc
i=1

and Dy; " Dy =@ for isjand i,j=1,2,..,1,.

Consider a punctured disc D, such that D, belongs to the set of disc
{D11s D12y es Dings Days Dagy ey Dy} Lot Co, Cy, ooy Cp denote the boundary
curves of Dy. Pick x;, X5, ..., X; on C, such that x; # x;. Pick y; on C, and join x,
with y, by a polygonal line segment /; spanning D,. Pick y, on C, and a polygonal
line segment , spanning D, and joining x, and y, such thatl; nl, = @. Assume
I,_, is defined. Find a polygonal line segment J, spanning D, and joining x,

k-1
with y, and such that (U 1) n /. = @. Let N, denote a regular neighborhood (in
i=1
the sense of Whitehead) of [; in E® for i = 1,2, ..., k. It is clear that &; is a PL
3-cell for i = 1,2, ..., k. Furthermore, we can choose these 3-cells in such a way
that they are mutually disjoint. We may assume that the set of points x, ..., x;
. and y;, 7, ..., i does not meet the 1-dimensional UV® continuum. Consider the
2-sphere X, = Bd(N,;) for some fixed i. Since y does not separate X;, there exists
a polygonal arc m; joining x; with y; and such that (1) m; Ay = @ and (2) m; is
contained in Z;. There exists 2 homeomorphism ¢: E®—E> such that:

(1) @ is a PL-homeomorphism, :

(2) For each i,i=1;2,..,k, @(x) = x for all x outside a small neighbor-
hood M; of N, in E*. We may assume that M;, My, ..., and M, are mutually disjoint.

@) pt)eM, forall xel,and i=1,2, ..,k

@ o) ==x and e(y) =y, for i=1,2,...k

The map ¢ adjusts the plane IT such that the plane ¢ (II) has the property that
each segment m,, for i = 1,2, ..., k lie in @ (I and miss the continuum 'y.‘ For
each i,i =1,2,..., k, we perform a cut along the segment m, to obtain a disc Dé.
Hence we have shown that by appropriately modifying the plane I, we may assume
that each punctured disc belonging to the set {Dj;, .., Diy} U {Dyy, v, Dy}
is a disc. We shall use the following theorem of R, L. Moore [16]: - ‘

If X and Y are disjoint compact subsets of E* which do not separate E2, then
there exists a simple polygon C<(E?—(X u Y)) which separates E? between X
z}nd Y.-Moreover, we may assume that all vertices of C have rational coordinates,

e © '
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) ny n .
“Let X= | Dy;and Y= |J D,;. Neither X nor ¥ separate the plane IT, = ¢ (II).
=1 i=1

By the theorem mentioned above, there exists a polygonal simple closed curve Cin IT;
such that C separates IT, between X and Y. Set & = C. Let & = {@y3n}50 bea cano-
nical generator of I1;(y, 4). Define a linking number A(y, £), between y and & by
setting

Ay, &) = lim M(%/zn, 3]

R o0
where A((p,,/,_,., &) is the linking number as defined in [13], [8]. It is clear that A(y, &)
is a positive integer which is independent of the choice of the fundamental sequence @.
Thus v links &,

3. Dyadic Antoine’s necklaces and dyadic wreaths.

Dyadic Antoines’ necklaces. Let r be a fixed positive integer and T, be an un-
knotted polyhedral solid torus in E3. All tori considered will be solid, unknotted
and polyhedral unless otherwise stated. Let {T,(, -, Ty} denote a chain of linked
solid tori in Int7. circling T, exactly 2 times such that for each i = 1,2, ..., M0,
the diameter of T, is less than one. For each i, I<i<m,, let {Tri15 o> Trimy,} DE
a chain of linked tori in IntT.; and circling T}; exactly 2 times, with the diameter of
each T,y less than %, where 1<j<m,;. Proceeding inductively we obtain the follow-
ing sets:

My = U{T,: 1<ismyo},
My, = U {Tyt 1<iSmyo, 1S7S$m},
My = U {Ty 1<i<myg, 1<jSmy, 1<k<m,yg},

i

1

The set N, = () {M,;: 1<i<oo} will be called a dyadic Antoine’s necklace
circling T,. .

A dyadic wreath substituting for T,. For each i, 1 <i<my, let {Thiys vves Trimead
be the chain of linked tori in IntT,, which is used in the construction of the set N,.
For each j, j = 1,2, ..., m,;, there exists an arc a; in IntT,; such that a,;; contains
the set (N, A T,;). Construct arcs by, - Byi(my—1) 8 constructed in [1] such. that
{eny: 1si<ma) v ({brn: 1<k<(m,—1)}) is an arc A4,. The arc .A,, will be
called a dyadic arc substituting for Ty;. The set W, = {d,;: 1<i<m,o} willbe called
a dyadic wreath substituting for T, and A,7s will be called links of the dyadic
wreath W,. ) ‘ .

Remark 1. The above construction of the dyadic Antoine’s necklaces and dyadic
wreaths can be generalized to n-adic Antoine’s necklaces and n- adic wreaths where
n=1,2,3,.. ,

C4.A sequence of tori. A sequence {4} of polyhedral solid toxi in E3 is said to.

be A-dense in E? if for each simple closed curve C= E> and an open subset U of E3,
there is an index i such that: (1) 4,=E*—C, (2) the core C,j of A, is homologically
linked with C, and (3) C; meets U.
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For the definition of core and matters related to linking see [11]. We organize
the rest of this section in parts (A) to (F) as follows:

(A) There exists in E* a countable family F of disjoint polygonal éimple closed
curves such that for any simple closed curve Cin E® and any open subset U of E?,
there exists an element P of F such that '

(1) P and C are homologically linked, and

(2) P meets U.

It is clear that one can construct an 4- dense sequence {4} of solid polyhedral
tori by taking the family F of simple closed curves as the cores of the tori. The above
assertions follow from the results of [8] by making appropriate 'ldJusments

(B) Let B® denote a closed unit ball in E® with boundary Sz. There exists a coun-
table family of disjoint segments {K;} satisfying the following:

(1) For ‘each i, the end points of K; lie on S2.

() {K;} is a null sequence.

(3) For each nonempty open subsct G of S, there'is an index j such that both

the endpoints of the segment K; lie in G.

For a proof see [8]. -

(C) Let {X;} be a countable family of segment as in (B). There exists an 4-dense
sequence {4;} of solid polyhedral tori contained in (B*— Sz)—- U K; such that
for each j: :

(1) The inner radius of 4; is less than 1Jj.

(2) There exists in 4; a dyadic wreath W, substituting for A4;. Also,
WinW; =@ forj+#k and the diameter of each link of W is less than 1/, for
=123,

A proof can be constructed by arguments similar to those of [8]. We shall always
assume that each 4, is obtained by taking a polygonal simple closed curve C; as the
core of A4;. '

(D) Let {K;} be the sequence of disjoint segments as. given in (B). For each j,
let {x;, %7} denote the set of the end points of the segment K;. Consider the set

- \_j} {x;, x}}. There exists a countable family F of polygonal simple closed curves

in Int B? such that (1) for any simple closed'curve Cin B® such that either (a) C lies
in IntB® or (b) §% n C is a polygonal arc with, endpoints {x;, x}} for some j, and (2)
any open subset U of IntB3, there is an element Pof F such that

(1) P homologically links C, and

.(2) P meets U.

The assertions of (D) follow from the assertions of (A) by making suitable
changes.

(B) There exists a sequence {4;} of solid polyhedral tori such that for each j,

(1) 4, is contained in (B*-S%— {J K. :

J

oy
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“(2) The inner radius of A; is less than. 1/},

(3) For any simple closed curve C such that either C<IntB? or C meets S? in

apolygonal arc, there is an i such that the core C, of 4, is homologically linked with C.
*(4) There exists in 4; a dyadic wreath'W; substituting for 4;. Also the diameter

of each link of W;is less than 1/j, forj =1,2,3,...,and Wy~ W, =@ for k # .

Let us construct a family {4,} of solid, polyhedral and unknotted tori such that
each A, is a tubular neighborhood of some element P of F with P as its core, where F
is the family of polygonal simple closed curves as given in (D). Furthermore; for
each polygonal simple closed curve P in F there is a solid torus A with P as its core
and of arbitrarily small inner radius such that 4 belongs to the family {4;}. The
following assertion is easy to prove: Given (1) a simple closed curve C such that (a)
Clies in Int B*, or'(b) C meets S in arc.whose set of endpoints is {x;, x/} for some j,
and (2) an open subset U of Tnt B3, there is an A; belonging to the family {4,} of
polyhedral solid tori as described above such that (1) the core of 4; is homologically
linked with C'and (2) (4; N U) contains a polyhédral disc which is meridional in 4;.
(For a definition of a meridional disc, see [1].)

(F) The following conventions will be used for the rest of this paper:

(1) The sequence {T}} will always denote the sequence {4;}.

(2) For each i, C; will denote the core of T; and therefore {C;} will denote the
corresponding sequence of the cores of the sequence {T7}.

(3) We shall denote the corresponding sequence of dyadic wreaths by {W}
for the sequence {T}}.

(4) The sequence {K,} will always stand for a sequence of segments as descrlbed
in (B) above.

°

5. Upper semicontinuous decompositions.

A decomposition of B. Let {K}} be the countable family of the segments in B,
{T}} be the countable family of solid polyhedral tori, and W; be the countable family
of the dyadic wreaths, where W, is a dyadic wreath substituting for T7; for each
Jj=1,2,...,as described in Section 4. We define a decomposition G of B? as follows:
x is u nondegenerate element of G if and only if x is a link of some dyadic wreath W,
or x = K, for some 7. Tt is clear from the construction that the nondegenerate el-
ements of G form a countable null collection of arcs. Hence, G is an upper seini-
continuous decomposition of B [21]. Recall that P: B>~ B3/G denotes the canonical
projection map.

The following properties of the decomposition space B3/G are of interest.

ProposiTiON 1, J‘he decomposition space B*|G is a compacr metric s'pace of
dimension 3.

For a proof see [8].

PRrOPOSITION 2. The decomposition space B*|G is an AR.
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Proof. Since the dimension of the space B*/G is finite and for-each y in B3/G
the fibre P4(y) is an AR, it follows from [9] that the space B3/G is an AR.

A decomposition of E3. Since E° is a homeomorphic to IntB?, it is enough to
describe the elements of a decomposition in Int B®. Define a decomposition Gol B°
as follows: x is a nondegenerate element of G if and only if x is a link of some dyadic
wreath W; belonging to the collection {W;}. The nondegenerate elements of G form
a countable null collection of arcs and hence G is upper semicontinuous decompo-
sition of E? [21]. Here we denote by ¢: E3—E®|G, the canonical projection map.

We state the following two propositions without proof: )

PROPOSITION 3. If A is any 2-dimensional continuum in E3|G such that A con-
tains a simple closed curve which is nullhomotopic in A, then A contains countably many
distinct points x, such that g~ (x;) is a nondegenerate element of G where i = 1,2, ...

Remark 2. Proposition 3 remains true if “E3/G” is replaced by the decompo-
sition space “B*/G”. :

PROPOSITION 4. The decomposition space E*|G is a 3-dimensional noncompact
meiric absolute retract.

6. 2 - dimensional AR’s in B3/G. In this section, we shall show that the decom-
position space E*/G does not contain any 2-dimensional AR; This will show that
the decomposition space B3/G does not contain any 2-dimensional AR. We need
the following lemmas: ‘

Leva 5. Suppose M is an AR in E*|G and U, is an open subset of E3|G con-
taining M. Then there is a sequence {U}iLo of open subsers of E®|G such that (1)

Mc (| U, (2) foreachi, (a) Uy < U and (b) each loop in U, ..y is nullhomotopic in U,.
1=0
(For a proof see [1]). .

The following lemma is a consequence of Lemma 9 of [11.
LeMMA 6. Suppose M is a subset of E*|G which has a sequence {U}2o of open

oo
subsets of E3] G such thar (1) M< [\ U; and (2) for eachi (2) Uyy < U, and (b) each
' i=0

i=

loop in Uy, is nullhomotopic in U,. Then the sequence {V} of open subsets of E?,
o

where V= q~%U) for i=0,1,2,... has the properties: (1) ¢~ '(M)= ( Vi,
. 1=0
() for each i, () Viy, =V, and (b) each loop in V. is nullhomotopic in V.

Levma 7. If X is a circle-like contimuum in E3|G then ¢~ '(X) is a circle-like
continuum, ’

Proof. The restriction map gq: ¢~ *(X)—X a cell-like map in the sense of
Sher [17]. By Theorem 11 of [17] it follows that X and ¢~ *(X) are shape equivalent.
Since X is shape equivalent to S, we have that ¢~ 1(X) is shape equivalent to S
The dimension of ¢~ *(X) is one [19].

° © '
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Remark 3. The above lemmas can be appropriately stated for Bs/G.

‘ Let A be. a 2-dimensional AR in E%/G. Since 4 contains simple closed curves
¢~ Y(4) contains special circle-like continua. To illustrate the technique of our proof
we shall assume that ¢~*(4) = A, contains a simple closed curve. The transition
to the case when 4; contains a special circle-like continuum is straightforward. So
we begin with the following: ’

THEOREM 1. The decomposition space E*|G does not contain any 2-dimensional
AR A such that A, = q~*(4) contains a simple closed curve.

Proof. Let Uy be an open subset E3/G such that (1) A< U, and (2) there is
an open subset Wy of E3/G with Wy n U, = @. By Lemma 5, there exists a se-

=, -]
quence {U}{2, of open subsets of E%/G such that (1) A< () U; and (2) for each i
i=0

(8) Uy, = U, and (b) each loop in U, is nullhomotopic in U;. Define ¥; = ¢~ %(U)),
fori=0,1,2, .., and let W = g~*(W#,). The sequence {¥;}i2, of saturated open
0

subsets of B2 has the following properties: (1) 4, = ) ¥, (2) foreachi (a) V., < V;
i=0

and (b) each loop in Fj.y is nullhomotopic in V;. -

By our hypothesis, there is a simple closed curve C contained in 4. Let T, be-
a polyhedral solid torus in E® such that (1) the core C, of T, is linked with C, (2) T, be-
longs to the sequence {7} used to construct the dyadic wreaths {W;} and (3) there is
a polyhedral meridional disc.D in T, such that D is contained in W = g~ *(Wy).
Since there are solid tori belonging to the sequence {7} of arbitrarily small inner
radius with C, as their core, we can find a T, satisfying (3).

Let {Tyy, ..., Ty} be the chain of tori used in the construction of the dyadic
Antoin®s necklace N,. Now the simple closed curve C is contained in ¥, , ;. By~
compactness of C, there is a positive real number & such that the set N(C)
= {xe E*: ¢(x, C)<s} is contained in ¥, .. For each §>0 such that 6 <e, there
is a polygonal simple closed curve Cj such that Cyc ¥y, 4o and o(Cs, €)<d. For
each 6>0 but sufficiently small there is a polygonal simple closed curve C; such
that (1) Cy links T, (2) Cy is contairied in ¥, ., with ¢€C, C5)< & and (3) C; is homo-
topic to C in V,, .,. By hypothesis Cy is nullhomotopic in ¥, 41 Since V,, +1 I8
a PL 3-manifold, there is a polyhedral singular disc.D; contained in ¥, ;. such
t‘_llﬁt D, is bounded by C;. We shall denote Cj by Cy from now on.

Assume that D, and T, are in relative general‘position. We look at the curves
Mo
of intersection of 0, with the 2-manifold M, = {J BdT,;. If every curve of inter-
=1 ‘

section of D, with M, is homotopic to zero in M, then we may build a new poly-
hedral singular disc by filling in the curves of intersection in M,. This new polyhedral
singular disc will miss the homotopy centerline of T,. This is a contradiction,
since C; and T, are linked. Hence some curve of intersection of Dy with M, is not
nullhomotopic in M,. ‘ o
Our aim is to show that there is a polygonal simple closed curve contained in
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some T;, where j = 1,2, ..., M0, SUCh that y is not nullhomotopic in Ty, and y is
contained in ¥, 5. If Dy has a curve of intersection with M which. is longitudinal
in T,,, for some j, j = 1,2, ..., 7, then there is nothing to prove. Without loss of
generality we may assume that for j = 1, there is a curve of intersection C, of Dy
with M, such that C;isa meridional closed curve in T,y. If D, is a polyhedral singular
subdisc of D, such that C, bounds D5, we may assume that-every curve of intersection
of D, with BdT,, is nullhomotopic in BdT,; except Ca. ‘

Let T% be a polyhedral solid torus in Int T, concentric with Ty, and such that

| Mt
the intersection of the dyadic arc A,, with ) Tyy, lies completely in T, For each
=1

curve of intersection A of D, with Bd T,y such that A is a nullhomotopic in Bd T,
replace the subdisc of D, bounded by 1 by 2 polyhedral singular disc on Bd T,y
and push this new polyhedral singular disc slightly fnto [(Int ;) — T ]. This produces
a polyhedral singular D3 with the boundary Cj, Int DicIntTy, and (D} N Ti) <D,

By the Loop Theorem [20] there is a polyhedral disc D such that the boundary
of D is contained in BdT,,, Bd D is not nullhomotopic in BdRyy, Int.DcIntT,y,
and D lies in a small neighborhood of D,. We may assume that the set (D n )
is contained in ¥, ., and that D is in relative general position with BdTl.

Now D contains a punctured disc.D, such that B Dy is contained in BdTsy,
Int Dy =IntTLy, one boundary curve. 4y of D, is not nullhomotopic in BT, and
every other boundary curve is homotopic to zero in BATL,. Clearly, D, is contained
in ¥, ;- Now we may construct a polyhedral meridional disc D§ in T}, as follows:
(1) Attach to D, an annulus in (T,,—IntT%) having A, as its one boundary curve
and having as its other a simple closed curve &; in BdT,; such that & is not null-
homotopic in BdT,,. (2) Capp every other boundary curve of Dy with a disc lying,
except for its boundary, in [(IntT,)—T%]. Also, we may suppose that (DFn T
equal Dy.

By Lemma 1 of [1]; it follows that there is a subarc B,; of the dyadic arcdy,
such that the endpoints of B,, lie on D} with the interior of By, disjoint from D}
arid at the endpoints of B,y, B,; abuts on Dj from opposite sides, Clearly the end-
points of B,; lie on in Dy. Now D, U B, contains a loop y; which. is not null-
homotopic in T,;.

Now 7, is nullhomotopic in ¥,,, and hence bounds a polyhedral singular disc
in ¥,,. By Lemma 2 of [1], there is a polygonal simple closed curve y, in (T v V)
which is not nullhomotopic in T,,. By repeating this argument, we may assume that
there is a simple closed curve y, in 7T, for each i=1,..,m,, such that
(1) 9,<[Ty 0 Vier 1yl and (2) 9, is not nullhomotopic in Ty, By Lemma 3 of [1],
we conclude that there exists a simple closed curve ¢ contained in T, such that & is
not nulthomotopic in T, and ¢ is contained in ¥,. This can be done since each. y; is
contained in ¥, and each v; is nullhomotopic in ¥V, for i =1, 2, ..., m,.

By construction, 7, contains 2 meridional disc 4 such that 4 is contained in W,
Now £ meets A and hence £ meets W. Also, ¢ is contained V. This is a contradiction,
since Vo n W = @.

im© 3-di ional AR’s
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The techniques of Theorem. 1 allow us to prove the following more general
theorem: i

 TmeoreM 2. The decomposition space E*|G, does not contain any 2-dimen-
sional AR. o o

Proof. Let 4 be a special circle-like continuum in E? such thaty =g~ (4) = 4.
There exists a sequence {¥;} of open subsets' of E® such that for each i,
(1) 4y =V =V, and (2) each loop in ¥4 is nullhomotopic in ¥;. Let W be an
open subset of B such that Vo n W = @.

Pick a suitable special neighborhood P of 7 in E®. There exists an index o such
that the core C, of torus T, and y are linked. There exists a simple closed curve p
belonging to the canonical generator for the group I7,(y, @) such that p lies in ¥, 4.
The rest of the prool proceeds as in the proof of Theorem 1.

TugorREM 3. We have the following:

(1) B%/G does not contain any 2-dimensional AR.

(2) B3| G does not contain any 2-dimensional AR. ]

Proof. Let 4 be a 2-dimensional AR in B*/G. It P~'(4) is contained in the
interior of the ball B3, then there is nothing to prove. Therefore, we may assume
that P~3(4) N S? # @. There are two cases. i

Case 1. If dim[P~*(4) n §%} =2, then there is a disc D such that
De[P~Y(4) n §%). There exists an index j such that the segment k; has its end-
points a; and b, in the disc D. Now, there is a polygonal path y; between 4, and b;
such that y;= D. Now y; U Kj is a simple closed curve which is contained in P~*(4):.
There exists some core C, of a torus T, in Int B* such that C, links y; U K. The
rest of the proof is clear. :

Case IL X dim[P~(d) n S?]<1, then dim(d4 n $*/G*)<1, where G* is the’
induced-decomposition on 2. Now [4—(4 n S%/G¥)] must have dimension 2
([16), p. 32, Cor. 1). By an argument similar to the proof of Theorem 5.9 of [20] on
page 118, it can be shown that the space [4—(4 N §2/G*)] contains a simple closed
curve. This will show that there exists a special circle-like continuum y=P~Y(4)
such that y is contained in IntB% Again, we are done by (2). This finishes the proof.

7. 2-dimensional ANR’s in B3/G. Since there exist 3-dimensional AR’s which
do not contain 2-dimensional AR’s, one may conjecture that there exist 3-dimen-
sional AR’s which do not contain any 2-dimensional ANR’s. The purpose of this
section s to prove that the above conjecture is true. This is a generalization of our
previous Theorem 2, however, our technique is essentially the same. In fact, we shall
show that there exist 3-dimensional AR’s which do not contain 2-~dimensional
ANR’s or proper ANR’s of dimension 3. ‘

LemMA 8. If 4 is an ANR, then there exists a positive real number 1 such that
each loop y of diameter less than v is midlhomotopic in A.

Proof. This is immediate from: (1) 4 is a compact metric and (B) 4 is locally
contractible. L R
3 — Fundamenta M \cae XCIIF
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LevMa 9. If A is an ANR of dimension n, n22, then A contains simple closed
curve of arbitrarily small diameters. ’

Proof. Without loss of generality, we may assume that A is connected, other-
wise we choose a component of 4 having dimension n. Let be a positive real number
such as described by Isemma 8. By [9], there is a partitioning P = {Py, ..., P} such
that the mesh of P is less than 4. Some element P; of the parition P must have dimen-
sion 7. Then P; must contain a simple closed curve ¢; since P; has diameter less than g

it follows that ¢ is nullhomotopic in 4. This concludes the proof of the lemma.:

The following is an important lemma. )

Levma 10. Let X be an AR and A be an ANR such that A< X. Then there exists
a positive real number & and a sequence {U;}2 o of open neighborhoods of A in X such
that for each i, (1) U, = U; and (2) each loop y of diameter less than & and lying
in U,y is nullhomoropic in Uy.

Proof. A proof can be constructed by using (a) Lemma 8 and (b) the technique
of Theorem 4 of [24].

We have the following:

THEOREM 4. The space B*|G is a 3-dimensional AR vhich does not contain any
ANR of dimension 2 or a proper ANR of dimension 3.

Proof. Let 4 .be an ANR of dimension 2 such that 4<=B®/G. By Lemma 9,

there is. a simple closed curve y* in' 4 such that y* is nullhomotopic in 4. Now

y = P~(y*)) is a special circle-like continuum in P~ 1(4). Without loss of generality,
we may assume that y is in Int B3, Let C, be the core of a torus T, such that C, links 7.
Given >0, there is a torus T, belonging to the sequence T} such that (1) C, is the
core of T, and (2) if Tpy15 .., Tyym,, i the chain used in the first stage of construction
of the dyadic Antoine’s necklace N,, then the diameters of the set P(T,y) is less than n
for i=1,2,..,m,. Let & and the sequence {U,};j2¢ be as given in Lemma 10.
Pick n = 6. .

Define ¥; = P~Y(U)) for i =0,1,2, ... By an argument similar to the one in
Theorem 1 there exists an integer j such that T, contains a loop ¢ such that (1) £ is
not nulthomotopic in T,,,; and (2) £ is contained in ¥, 2. Let fi §* ¥, 4.2 denote
this loop. The diagram

1 [
St — U,,,ﬂ.”

N, b
Vm,,,-bz

is commutative. Since g is nullhomotopic in Unn, +1» it follows by [8] that f is null-
homotopic in ¥, ;. Without loss of generality, we may assume that there exists
an open set W such that (1) W n U, = @ and (2) there is a'meridional disc D in Ty,
such that D<(T,, n W). Proceeding as in the proof of Theorem 1, we show that
WV, # @. This is a contradiction. The following corollaries are interesting:

@ .
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CoROLLARY 1. There exists an upper semicontinuous decomposition G of E® such
that the decomposition space E*|G is a noncompact metric absolute retract which does
not contain any ANR of dimension 2 or 3. . '

In [18], it is shown that if an AR is embedded in a PL manifold then it has
arbitrarily small neighborhoods which are ANR’s. The following is a result of [18]:

THEOREM. Let X be an AR in the interior of a PL 3-manifold M*. If some neigh-
borhood of X can be embedded in E®, then X = (\ H,, where H, is a polyhedral cube
=1
with handles and Hy,.,cH,cM>.

One may conjecture that an AR embedded in an AR has arbitrarily small neigh-
borhoods which are ANR’s. The following corollary provides a negative answer
even in the case of arc. :
COROLLARY 2. No arc in B*|/G has arbitrarily small neighborhoods which are
ANR’s. o ‘ N

It follows by [14] that E*/G x E* is homeomorphic to E*. This allows us to
exhibit an involution of E*. Such that the fixed point set £3/G. Another example of
an involution of E* may be found in [7]. We state this result as follows:

COROLLARY 3. There exists an involution y of E* such thar the fixed point set F(y)
sas the properties: (1) F(y) has dimension 3, (2) F(y) does not ‘contain any 3~-dimen-
hional AR or ANR and (3) F(y) does not contain any AR or ANR of dimension 2,

COROLLARY 4. There exists an upper semicontinuous decomposition G* of S*
whose nondegenerate elements form a countable null family of arcs such that (1) S3/G*
is an ANR of dimension 3, (2) S®/G* does not contain any ANR of dimension 2 or 3,
and (3) S3/G* x S* % S3x S* [14].

COROLLARY 5. There exists an ANR X of dimension 4 such that (1) the circle
group S* acts freely on X and (2) the orbit space X|S* is an ANR of dimension 3 which
does not contain any ANR of dimension 2 or any proper ANR of dimension 3.

We say that a compact metric space X which cannot be written as a finite or
a countable union of ANR’s of arbitrarily small diameters has the singularity of:
Mazurkiewicz of type ANR. This is more general than the usual definition of the
singularity of Mazurkiewicz. We have the following:

COROLLARY 6. The AR B®|G has the singularity of Mazurkiewicz of type ANR.

Remark 4. In this paper we studied dyadic decompositions. We can similarly
define n-adic decompositions for each » as pointed out in Remark 1. The results of
this paper hold for n-adic decompositions for n>2. The case n = 1 was studied by
Bing and Borsuk [8] and Armentrout [4].
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Compactly generated shape theories
by

Thomas J. Sanders (Annapolis, Maryland)

Abstract. For locally compact metric spaces, Borsuk’s weak’ extension of shape to metric
spaces and compactly generated shape are equivalent.

1. Introduction. Among the extensions of K. Borsuk’s shape theory [1] to
non-compact spaces are the ones given by Borsuk for metric spaces [2] and
L. Rubin and the author for Hausdorff spaces [9]. Relationships that exist between
these two extensions are discussed in [10].

The approach to shape in [9] is through the compact subsets of the Hausdorff
space, hence the name “compactly generated shape”. A weakened version [3] [4] of
Borsuk’s approach in [2] is also through the compact subsets of the metric space. In
private communication, B. J. Ball posed the question as to whether or not these two
approaches are equivalent. We are able to answer affirmative for locally compact
metric spaces. The reader is referred to [9], [12] for the development of compactly
generated shape. We denote the compactly generated shape category of [12] by s#.
The full subcategory of # consisting of locally compact metric spaces is denoted
by #,. We use AR and ANR to denote, respectively, absolute retract and absolute
neighborhood retract for general (i.e. possibly not compact) metric spaces.

2. Weak shape. Suppose M and N are AR’s and X and Y are closed subsets
of M and N, respectively. A weak sequence from X'to Yin (M,N),¢= {@ws XY aers
is a sequence of maps ¢, M—N that satisfy the following condition:

(2.1)

For every compactum 4 < X there is a compactum B< ¥ such that for every
neighborhood ¥ of B (in N) there is a neighborhood Uof X (in M) and an
integer K such that if k=K then
Py S Ppasly In V.

Note that a fundamental sequence @ = {¢p;, X, Y)yy as defined in [2] is a weak
sequence. Intuitively, we have dropped the “external” conditions imposed on a fun-
damental sequence in [2] and have retained only the “internal” conditions. Com-
positions and identities may be defined as in [2]. A weak sequence ¢. = {oes X, Yhyn
is an extension of Y = {Yi, X', Py if X' <X and g(x) = Yfx) for all x e X’
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