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The automorphism group of a p-group
of maximal class with an abelian maximal subgroup *

by

Alplionse H. Baartmans (Carbondale, IIl.) and
James J. Woeppel (New Albany, Ind.)

Abstract. In this paper we give a detailed description of the automorphism group of a p-group
of maximal class with a maximal subgroup which is abelian.

§ 1. In this paper we will always let G denote a p-group of maximal class of
order p", n=4, p an odd prime, and we will let o/ be the group of all automorphisms
of G. First we note that G has a characteristic cyclic series, that is, there are charac-
teristic subgroups, G, 0<i<n, of G with G;/Gy.. cyclic such that

(L.LD G = Gol> Gy ..> G, = E.

This follows from Lemmas 14.2 and 14.4 in [7]. From Durbin and McDonald’s
result in [3] or [1], o is supersolvable and its exponent divides p'(p—1) for some
t>0. Thus the Sylow p-subgroup P of & is normal in &, and so ithasa p’-comp-
lement H. )

The characteristic series (1.1.1) may be taken as a composition series, in that
case the factors G;/G;4; have prime order p. Thus any automorphism o of G acts
on Gy/G., as a power map, i.e. if ¢ is an automorphism of G restricted to Gi/Gy+y
then (@G, )0 = 0"Gyyy for all 4Gy € Gi/Giyy- Consider H’ the commutator
subgroup of H; clearly H' stabilizes (1.1.1), that is, if A€ H' then k acts trivially
on G/Gyyy, | =0, ..., n—1. By Theorem 1 of P. Hall’s paper [6] H" is nilpotent,
and by Coroliary 3.3 of [4], p. 179, it is a p-group. Therefore H' is trivial giving us
that H is an abelian p’-group. )

Levma 1.1, The automorphism group o of a p-group G of maximal classis the
semidirect product of P by H where P is the normal Sylow p -subgroup of of and where H
is the p'-complement of P. Furthermore H is an abelian p'- subgroup of s with exponent
dividing p—1. : - )

A p'-group H of automorphisms of G may be represented faithfully on the
H-module G/®(G) over the field Z, (integers modulo p). Here $(G) denotes the Frat-

* A p-group of order p" is of maximal class if it has class n—1. N. Blackburn studies these
groups in detail in his paper [2]; most of his results .are presented in Huppert [7], pp. 361-377.
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tini subgroup of G. By Maschke’s Theorem the H-module G/®(G) can be written as
2 direct sum of irreducible H-modules. These irreducible H-modules have dimension
one since the elements of H acts on G/®(G) as power maps. Thus we have

(12.1) G/®(G) = L/P(D)DL,/B(G)
where L/®(G), i = 1,2, are irreducible H-modules. Let Cy = Cy(Ly/®(G)), the
centralizer of L,/®(G) in H, i = 1, 2. Bach HJC, is faithfully and irreducibly rep-
resented on Ly/®(G), i = 1,2, and so H/C, is cyclic of order dividing p—1 (sce
above). Now
CinCy,=1E

since H is faithfully represented on G/®(G). Therefore H is embeddable in the direct
~ sum of

(12.2) HICi®H|C), & Cpey BCpy
where C,_, is the cyclic group of order p—1. Thus we have the following result,

THEOREM 1.2. A p'-group of automorphisms of a p-group of maximal class G is

embeddable in C,_,®C,—y (the direct sum of two cyclic groups of order p—1).

Remark 1.3. Both Lemma 1.1 and Theorem 1.2 could be stated in a more
general setting; namely, that G is a p-group w11h a characteristic cyclic series,
like (1.1.1).

§ 2. By Lemmas 14.2 and 14.4 in Huppert [7] we have that the G, of the com~
position series (1.1.1) is the ith term of the lower central series of G for i = 2, ..., n,
that is

G, =G =[G, G
G, = [Gi-la G],

(the commutator subgroup of G),
i=3,.,n
and we have that Gy is centralizer of. G, modulo G, in G, that is
) Gy = CG(Gz/G4) .
‘We now assume that (for Sections 2 and 3)
(21.2) i) G, is abelian,
ii) G has exponent p.

We also assume that p>3 and n>5 to avoid some special cages. These assu mptions
put several severe restrictions on G. For example, G'i isa regular p group and so, by
Lemma 14.21 of [7], n<p. Clearly

Co(GifGiyz) = Gy, i=2,..,n-2,

so G is a “keine Ausnahmegruppe” in Huppert’s terminology, see [7]

‘We define the simple left normed commutator [, s ] on {xy, ..., %} of
weight n by
2.13) . [X1s o ,x,,] = [[xl, vees Xgmi]y %]
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(x4, is'a simple left normed commutator of weight one). We list some standard com-
mutator identities for later use:

@.1.4) [xy,z] = [x, 2y, 2, [x, y2l = Ix, 2] [x, yT

[, ) = [x, ¥1lx, », 2] -
By Lemma 14.8 in [7] we see that there are generators s and s; of G' such that
(2.1.5) G={(Gy,s) and G, =<G,,s)
and if
2.1.6), §;=[85-1,8], i=2,..,n—1 (=4
then
(2.1.6) G =G, 5>, i=1,..,n-1.
Now clearly by the definition above

i-1

@.1.7) 5= sy, S5 s,
Cleatly any element of g of G' can be written in the following form
(2.1.8) g = s s g
where 0<k<p and 0k, <p for i = 1,...,n—1. This expréssion, (2.1.8), for g is
unique; to see this suppose that we also have
g =S ..ot
First we see that k = e by factoring out Gy. So now we have
s = L st

but {8y, - 8,-1} is a basis for the vector space G, over Z, (the integers modulo p);
therefore &y = 1;,i=1,..,n—1

Let » be a primitive p—1 root of unity modulo p, i.e. w1 = lmodp, but
u' = Imodp for 0<t<p—1. Now we define a mapping « on G by setting
2.1.9) (spa =5y and i=2,.,n—1
and so if g is expressed as in (2.1.8)
(2.1.9y g = () (s ... (- )"*.
Now by the uniqueness of the expression (2.1.8) for each g in @, this defines mappin'g
on G. The mapping « is a homomorphism of G; the calculation used to verify this
basically depends on the following
(2.1.10) (s> sJa = [(s)a, ()],  P=1, .
It is clear that « is one to one, and thus « is an automorphism of G. By its definition
the order of o is p—1.

Do =, (s9ot = [s;-q, 51,

,n—1.
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Now if v is also 2 primitive p—1 root of unily modulo p, then we can define
a mapping B on G (as above) by setting .
@11) ©B=s, G)f=s, E)B=I[6-8 Ol 1=2,.,0-1

and so if g is expressed as in (2.1.8)'

@111y @8 = (OB - G- B
The mapping f is a homomorphism of G because
(.1.12) (Is;» DB = [(s) B, (DB,  7=1,.,n—1.

Thus B is an automorphism of G of order p—1. Let X be the group generated by o
and B; this group is abelian since

=g =™ and 5= =57
K= Cpi®Chy
and we have the following Theorem.

TreoreM 2.1. If G is a p-group of maximal class of exponent p with a maximal
subgroup (a subgroup of index p) which is abelian, then the p'-complement H of the
normal Sylow p-subgroup P of the group < of automorphisms of G is isomorphic
to C,_1®DCp_y.

§ 3. Now we study the normal Sylow p-subgroup P of the group of auto-
morphisms &/. We have of course the following normal chain of subgroups of #/:
(3.1.1) EQFI QI QF QP
where & is the group of p-automorphisms fixing the Frattini factor G/®(G), see
[5], # the group of inner antomorphisms of G, and # is the subgroup of inner auto-
morphisms of G in.duced by elements of the characteristic subgroup G of G. Clearly
G.12) F = G/Z(G) ‘

a p-group of maximal class of order p""! by Lemma 14.2 in [7], and
(3.1.3) Sy 2 6,/Z(6)
a maximal abelian subgroup of %,
We now study the group & of automérphisms. If o e % then
o = xf,
for any x e G where f, € #(G). We define maps n;, i = 1, ..., n~2 by
(3.14) " =y, “and

s = 548y, 6] S (RRLARI S

?or i=1,..,n—2 (y,is just the inner automorphism 3, i.e., thc‘inncr automorphism
induced on G by s). By the" uniqueness of (2.1.8) we can extend 5, to G by setting

(3.1.5) g = S (e

Jj=2,.,n~1
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for i = 1, ..., n—2. The calculation which verifies that #; is a homomorphism rests
on the fact that

- (D" =", 5]
for x any power of ;,j = 1, ..., n—2. The homomorphism %, maps the generating

set {3,5,} of G onto the generating set {s, 5,[s;, s1}, and so n, is an automorphism
of G for i =1, ..,n—2. The n; commute with each other

S = s[5y, 5108y, 81145, 51 = SP™
for 1<i, j<n~2. Also il I>n-2

kG O g o

[‘yh S, S]

(a2)

= s¢ls0, 5] O R |

where C) is the binomial coefficient. Thus, since p divides (f) fori=1,..,p-1,
we have that
n¥
Sg f) =8
giving us that each n, has exponent p. The order of (n;l i = 1, ..., n~2) is thus "2,

and the order of #y is p"~2. Hence the order of (f, )| i = 2,..,n—2> is p2=2,
and so '

(3.1.6) F=LI,nli=2,..,n=2
since the order of # is at most p*®~ 2, see [5], p. 178.

By Gaschutz’s results, there is still another p-automorphism, ([7} and in par-
ticular, Proposition 19.1, in [7]). For us this automorphism g is given by
3.1.7
As before one uses (2.1.8) to extend g to a mapping on G. Once again it is necessary
to check that the map o is a homomorphism, this follows from the fact that

(Isy, sD° = [s2, 81 = [sy, 8541 = s, 9]

fori=1,..,n—2 The map g takes the generating set {s, s,} onto the generating
set {s51, 8,), thus ¢ is an automorphism of G. The automorphism. ¢ fixes Gy but
does not fix G/&(G). Clearly the order of the automorphism g is p by the definition
of the map ¢. Thus the order of (&, ¢) is p~3which is the maximal order which the
Sylow p-subgroup P can have, sce [5], p. 178. So
(3.1.8) P={(F,nme i=1.,n-2>.

The following formulas hold for ¢ and n;

(3.19)

st=gs, s3=s and =4,

Q—lﬂiQ =08, L& [m,el=35

for i=1,..,n-2 and
(3.1.9)

o %0 =35, bned=e.
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fori=1,..,n—2. Thus P/#, is abelian, in fact
(3.1.10) ®(P) =P = SI.
This means that P is metabelian of class n—2. The Sylow p-subgroup has
(3.1.11) {o,m) i=1,..,n=2} |

as a generating set. We summarize some of the above results of this sectionin the
following theorem:

TrHEOREM 3.1, If G is a p-group of maximal class of exponent p with a maximal
subgroup which is abelian, then the normal Sylow p-subgroup P is metabelian of
class n—2 and of order p*~3. The commutator subgroup P’ of P is the subgroup
of inner automorphisms S induced on G by the maximal subgroup of G which
is abelian (see (3.1.10)).
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Selection theorems for partitions of Polish spaces

by

A. Maitra and B. V. Rao (Calcutta)

Abstract. In this paper we evaluate the (Borel or projective) class of selectors for partitions
of Polish spaces into disjoint closed sets. In particular, we improve upon the results. pertaining .
to @~ partitions which have been obtained recently by Kuratowski and Maitra.

1. Introduction. The problem of the existence of “topologically pleasant™
selectors for partitions of a Polish space into disjoint, non-empty, closed sets, where.
the partitions themselves are “topologically pleasant”, has been considered by several
authors. We mention here the articles of Mazurkiewicz [8], Bourbaki [2], and Kura-
towski and Maitra [7].

In this paper we shall be mainly concerned with the evaluation of the (Borel
or projective) class of selectors. The first such result known to us was proved by
Mazurkiewicz ([8] and [5], p. 389). He showed that any partition of a closed subset
of the space of jrrationals which is induced by a continuous function defined on it
to a separable metric space admits a coanalytic selector. In the same spirit, Bourbaki
proved that any upper semi-continuous partition of a Polish space into closed sets
admits a G, selector ([2], Chap. 9, Ex. 9(a), p. 262)- Kuratowski and Maitra [7]
extended Bourbaki’s result by showing that any o™ or «” partition of a Polish space
into closed sets admits a selector of multiplicative class (a+1) (for definitions, see
Section 2). ’ )

We shall establish in this paper some general results on the existence of selectors,
from which it will follow that the results of Kuratowski and Maitra for o~ partitions
can be improved at all levels >0. Indeed, it a>0, we prove that any o™ partition
of a Polish space admits a selector of multiplicative class ¢, and, moreover that, in
general, a selector of lower class does not exist.

.Our method of defining a selector is as follows. We first define a suitable linear
order on each Polish space such that every non-empty closed set has a first element.
We achieve this by using a result of Arhangel’skii [1], which states that every Polish
space is a continuous open image of the space of irrationals. Using such a continuous
open function, we transfer the lexicographic order on the space of irrationals to the
given Polish space. The selector is now taken to be the set of all first elements of
niembers of the given partition. Our results on the existence of tractable linear orders
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