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Abstract. Let 4 be a subset of a topological space X and Y a compact Hausdorff space with
weight m, where m is an infinite cardinal number. Our main theorem asserts that 4 is P™-embedded
in Xiff A x Yis C*-embedded in X' x Y. This theorem settles all the questions posed by R. A. Ald
and L. I. Sennott as well as gives an analysis of the theorems obtained recently by M. E. Rudin
and by M. Starbird.

§ 1. Throughout this paper by a space we shall mean a topological space and
by m an infinite cardinal number.

A subspace 4 of a space X is said to be P™-embedded in X if every locally finite
cozero-set cover of A with cardinality <m has a refinement which can be extended
to a locally finite cozero-set cover of X. In case 4 is P™-embedded in X for every m, 4
is said to be P-embedded in X (H. L. Shapiro [11]). For the case m = %, P™-embed-
ding coincides with C-embedding in the usual sense (T. E. Gantner {3]).

Our main concern in this paper is to descnbe P™- or P-embedding in terms
of C*-embedding in product spaces.

As for paracompactness and normality in products the following theorems are
obtained by K. Morita [5, Theorems 2.2, 2.4 and 2.7, and 6, Theorem 1.3].

THEOREM 1.1. For a space X the following statements are equivalent.

(a) X is m-paracompact and normal.

(b) Xx Y is normal for every compact Hausdorff space Y of weight <m.

(©) XxI™ is normal. .

(d) Xx D™ is normal. .

Here I denotes the unit interval [0, 1] and D the discrete space consisting of
exactly two points 0 and 1.

“THEOREM 1.2. Let X be a completely regular Hausdorff space and Y a compact
Hausdorff space containing X as its subspace. Then X is paracompact iff X x Y is normal.

The following theorems are motivated by the above theorems.

THEOREM 1.3. For a subspace A of a space X the following statements are equiv-
alent.

(a) A4 is P™embedded in X.

(b) Ax Y is C*-embedded in Xx Y for every compact Hausdorff space Y of
weight <m.
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(©) AxI™ is C*-embedded in X x 1™

(d) Ax D™ is C*-embedded in X x D™.

THEOREM 1.4. Let A be a subspace of a space X and Y a compact Hausdorff
space containing A as its subspace. Then A is P-embeddedin X ifl AX Y is C*-embedded
in XxY. . i

As for P™ or P-embedding in product spaces R. A. Aldo and L. I. Sennott [1]
have given several interesting results. The essential parts of their results follow
readily from our characterizations above, In particular, all of the conjectures or
questions which remained unsettled in thelr paper [1] are proved or solved by our
Theorems 1.3 and 1.4. :

Furthermore we can establish a more precise result on P"-embedding.

e THEOREM 1.5.Let Abea sub,s'pace of a space . Xand Y a compact Hausdorff space
of wczght m. Then A is P™ embeddecl in X iff 4 % ¥ iy C*-embedded in X x ¥

As was proved essentially by C: H. Dowker [2],;a space X' is collectlonwmc
(resp. m-collectionwise) normal iff every closed subset of X is P- (resp. P™-) embedded
in X (for a direct proof, see Theorem 3.3 below). Accordingly as a direct consequence
of our Theorem 1.5 we have the following result which has recently been proved
by M. E. Rudin [10], ey

THEOREM 1.,6. If the product space X x. Y of a space X with-a compact Hausdorff
space Y of weight m is normal; then X is ti-collectionwise normal,

§2 Before proving our théorems we shall need some preliminary results, The
following is' given in [9,. Lemma 2.1].

LemMA 2.1. 4 subspace A of a space X is C*- embeda’ed in X iff every finite cozero-
set cover of A has a refinement which can be extended to a normal open cover of X.

As was proved in [5, Corollary 1.3] an open eover {G,| a e Q} of a normal
space X is normal iff there exists a normal open cover {U,} of X such that each set U;
is contained in a union of a finite nuinber of sets of {G,}. The following theorem may
be compared with this result.

THEOREM 2.2. Let 4 be a C*- embedded subspace of a space X. Then A is
P™-embedded in X iff for every locally finite cozero-set cover {H,| aeQ} of A with
cardQ<m there exists a locally finite cozero-set cover {U,} of X such that each set
U, n A is contained in a union of a finite number of sets of {#}.

.Proof. We have only to.prove the “if ” part. Let {G,| a e !2} be a locally. finite
cozero-set. cover .of A wlth card Q<m Then there cx:st a  cozero-set cover
{H,) aeQ} of A and a commuous map fu A—>I for a e @ such that

0‘“ it era, «
f = { if xed—G,. .

Let g,: X—rI be an extensmn of f, and put

= {x| g.(x) = 0}

L = {x] g0<1} for ae Q.
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Then K, is a zero-set and I, a cozero-set of X. On the other hand, for {H,| & Q}
theye exists {U,] A€ A} with the properties described in the theorem For each l ed
let us choose a finite subset 4, of Q so that

UndcU{H,| xed,}.
".[‘héq we have (1), (2) and (3)vbe1ow: o i
M. K,cL, for oeQ. - -

) HocK,ndcL,n AcG, for «eQ.
G UynAdcU{K,) aed} for Aed.

Finally let us put ) .
V= {UlnLa] aeA;,AeA} v {U, n(X—UK,)[ Aed}.

Then by (1) ¥ is a locally finite cozero-set cover of X and by (2) and (3)
YV nAd={Vnd Ve?} refines {G| xeQ}. Thus A is P™-embedded in X,
and the proof is completed.

The union of a o-locally finite collection of cozero-sets is a cozero-set, whil&
the union of a discrete collection of zero-sets is not ‘always a zero-set. Accordingly,
the following lemma may be of interest.

Lemma 2.3 (Y). Let {K,| xe Q} be a lucally Sfinite collection of zero-sets of
@ space X such that there is a locally finite collection {L} o€ Q} of cozero-sets of X'
with K, L, for each o.€ Q. Then \J{K,| «eQ} is. a zero-set of X. .

Proof. Since K, is a zero-set and L, a cozero~set of X with K, =L, there ex1sts
a continuous map f,: X—1 such that .

K, = {x] £ = 1}
L, = {x] f{x)>0}

Let uswdefine a map g: X—1 by
o g(x) = sup{ /(0 ote.Q} for xeX,

for. owe.

Then g is continuous, and moreover we have
UlK) we @} = {xl g(x) =1}.
Hence J{K,| aeQ}is a zero-set of X, and this completes the proof.

As another characterization of P™-embedding we have the following theorem.

* THEOREM 2.4. Let A be a subspace of a space X. Then A is P™-embedded in X iff
A is C-embedded in "X and for every discrete collection {G,| «.e Q} of open sets of A:

(*) For the case that card Q2 = %, and {G} is discrete Lemrna 23 was observed by T. Ishii
in a letter (dated Nov. 20, 1972) to K. Morita.
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with card Q< m and every collection {F,| o € 2} of closed sets of A such that {G,, 4~ F,}
is a normal open cover of A for each w€Q, there exists a locally finite collection
{H,| « e} of cozero-sets of X such that

F,cH,nAc=G, for each acQ.

Proof. Suppose that 4 is P"-embedded in X. Then 4 is obviously C-embedded
in X. Take {G,| a2} and {F,| o« Q} as is described in the theorem. Then, since
{G,, A—F,} is a normal open cover of 4 for o Q, there exist a zero-set K, and
a cozero-set L, of 4 such that

FcK,cL,cG,.
Let us put
U ={L) e} v{d-UK}.
xeQ
Then % is a locally finite cozero-set cover of A with card <m since ) K, is a zero-set

xe
of 4 by Lemma 2.3, and moreover we have
6))] St(K,, %)=L, for each xeQ.

Since A4 is P™-embedded in X, there exists a locally finite cozero-set cover Vot X
such that ¥ n A refines %. Then we have

@) either VnK, =0 o VnkK;=0
for each set V of ¥ and o, feQ with « # §; and
e St(K,,¥) n AcSt(K,, %) for aecQ.

Let H, = St(K,, ¥") for « € Q. Then each H, is a cozero-set of X. Moreover
{H,} « e @} is locally finite by (2) and the local finiteness of ¥", and by (1) and (3)
we have .

F,cK,cH, n Ac=St(K,, #)<L,=G, for
Thus, the “only if” part is proved.

Conversely, suppose that % = {U,| « € Q} is a locally finite cozero-set cover of 4
with card @<m. Then there exist a cozero-set cover & = |J &, and a zero-set cover
F = U F,of 4, where &, = {G,,| 0. Q,} and F, = {F,| «e 2} with cardQ,<m
for n=1,2,... such that '

aef.

@ . @ refines %,
(3) 4, is discrete for n=1,2,..,
©6) F,cG, for aeQ,n=1,2,..

Then for every n it is easy to see that {G,| xe2,} and {F,,| e Q,} satisfy the
assumption of the theorem. Hence there exists a locally finite collection {H,,] « & £2,}
of cozero-sets of X such that

F,cH,nAcG, for aeQ,n=1,2,..

icm
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Let us put
D = U{anl EZE.Q", n= 1,2, ...}.

Then D is a cozero-set of X and clearly contains A. Since A is C-embedded in X,
by [4, Theorem 1.18], there is a cozero-set E of X such that

N

End=0, EuD=2X.

Finally let us put
V' ={E}U{H,| aeQ,, n=1,2,..}.

Then ¥ is a o-locally finite cozero-set cover of X, and hence a normal open cover
of X such that ¥~ N A refines %. Thus, 4 is P™-embedded in X. This completes the
proof of Theorem 2.4.

The following theorem which was proved in [8, Theorem 2.5] plays an essential
role in the present paper.

THEOREM 2.5. Let X be a space and Y a compact Hausdorff space. Let
% ={G,)| aeQ} be an open cover of Xx Y. Then there exists an open cover
U = {U,] Aed} of X satisfying conditions (a), (b) and (c) below:

(a) cardAm or <R, according as m=x, or m<y, where m = Max(card 2,
weight of Y). .

(b) For a suitable collection {¥";| A €A} of finite open covers of Y, the collection
{U,;xV| Ve¥,,Aed} is an open cover of Xx Y which refines 4.

(¢) % is a normal open cover of X iff 4 is a normal open cover of Xx Y.

We need further the following two lemmas, the first of which is given in [8],
and the second in [1] (for a proof see [9]). .

LemMa 2.6. Let X be a space and Y a normal Hausdorff P-space in the sense
of K. Morita [7]. If a subset B of Y is locally compact, c-compact and closed, then
XxB is C-embedded in Xx Y.

LemMA 2.7. Let A be a P™embedded subspace of a space X. Then AxX Y is
P™-embedded in Xx Y for any compact Hausdorff space Y of weight <m.

In concluding this section we shall prove one more lemma.

Lemma 2.8. Let 4 be a subspace of a space X and Y a non-discrete compact
Hausdorff space. If Ax Y is C*-embedded in Xx Y, then A is C-embedded in X.

Proof. Suppose 4x ¥ is C*-embedded in Xx ¥. First we note that 4 is
C*-embedded in X. Let {U,| n=1,2,..} be a countable cozero-set cover of A.
Since Y is a non-discrete compact Hausdorff space, ¥ contains an infinite discrete
subset B = {y,| n=1,2,..}. Let us put

U{Tx il ism}l n=1,2,..3,
U{U,x(ClB—{y] i<n})| n =1,2,..}.

H,
H,

1

i
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Then each of H, and H, is a cozero-set of A x ClB since each point y, of Bis iso-
lated in ClB, and it is easy to see that {H,, H,} covers 4 x CLB. On the other hand,
by Lemma 2.6 4 x C1 B is C-embedded in 4 x ¥,and consequently by the assumption
AxClBis C*-embedded in'X x CLB. Then by Lemma.2.1-and Theorem 2.3, thete
exists a locally finite cozero-set cover % = {U;| A € A4} of X such that for asyitable
collection {#"..,] AeA} of open coversof CLB{U; n d)x V| Ve ¥, Ae A} refines
{H,, H,}. Suppose that U; n 4 5 @. Since B is infinite discrete and Y is compact,
ClB— B is non-empty. Let ¥ be a set of ¥, with (CLB—B) n V 5 (3. Then first we
note that

(€] ' (Uyn AxVeH,.

On the oiher hand, V contains some. y, of B, and so if x is any point of UA n A
we have by (1) .

1o

(¥, ) € Uyx (CLB—{y,| i<j}) for some j.

Consequently Jj<n,and x e |} U;. Therefore by Theorem 22 Ais C- embeddcd in X

.isn

and this completes the prodf.

§ 3. Now we proceed to the proof of Theorems 1.3, 1.4 and 1.5.

Proof of Theorem 1.3. (a)—(b). This follows from Lemma 2.7.

(b)=(c). This is obvious. :

“(€)—(d). Since D™ is closed in I™ and I™ is compact HausdorfT of welght n, thls

can be seen easily by Lemma 2.6.

(d)—(a). Our Theorem 1.5 mentioned in the introduction shows this. 1mp11~
cation. However, the following is a direct proof.

Suppose (d). Let {H,| o« e Q} be a. locally finite cozero-set cover of A with
card Q<m. Here we may.assume that card @ = m. For each a € Q let us put ¥, = D,
and construct the product space ¥ = [{Y,| « e @}, which is homeomorphic to D"‘
we denote by g, the projection from ¥ onto Y,. Let us put

Gy = U1H x a7 (0) zer}
Then {Go,

G = U{H,x0;'(D| 2eQ}.
G,} is a binary cozero-set cover of A x D" since
{Hoxor ' we@, i=1,2} SR

isa locally finite cozero-set cover of A x D™, Since 4 x D" is C*-embedded in X x 1)‘“
by Lemma 2.1 dand Theorem 2.5 there exists a locally finite cozero-set cover
= . {U,] A4} of X such that for a,suitable collection {7l Ae A} of finite open
covers of D™ the collection {(U, n )X V| Vev,, A € A} refines {Gy, G,}. Hcrc Vs
can be chosen so that for some finite subset {o, ..., ,} of Q we have

V= {(j;ngl(/ci)] k; =0 or ‘l‘for isn}.
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Suppose that

n
U n Hxer' (k)=Gy -
i=1

1 for ad{ay,..
, n} then (x, ») ¢ G,. Hence we have

U,ndc UH i=1,..,n}.
On the other hand, as is easily seen 4 is C*-embedded in X. Therefore by The-
orem 2.2 A4 is P"-embedded in X. This completes the proof.

COROLLARY 3.1. A subspace A of a space X is C-embedded in X iff A xIis C*-em-~
bedded in XxI. '

The equivalence of (a) and (b) in Theorem 1.3 was proved in [1] for the case X
is a completely regular Hausdorff space..

Pick a point y of ((or'(k) such that g (y) =
i=1 |
xé& U{Hz[] i=1,..

Lot I

Let A be a subset in X as well as in ¥, and let m be the weight of Y. Since the
weight of 4<m, 4 is P-embedded in X iff 4 is P™-embedded in X. Therefore The-
orem 1.4 is an immediate consequence of Theorem 1.5.

Before proving Theorem 1.5 we need one more lemma. In the sequel y denotes
the initial ordinal number with cardin.

Lemma 3.2. Let Y be a completely regular Hausdorff space of weight m. Then
Jor each a<y there are subsets A,, B,, U, and V, of Y such that

(2) A, and B, are zero-sets and A,=U, and B,=V,,

(b) U, and V, are cozero-sets and disjoint,

(¢) VB<u, either 4,#U; or B,&V;.

In case it is only required that each of 4, and B, be closed and each of U, and V,
be open, Lemma 3.2 was proved by M. Starbird (cf. [12]), and his proof can be modi-
fied easily so as to yield our lemma.

Now we shall prove Theorem 1.5.

Proof of Theorem: 1.5. Since the “only if” part follows readily from The-
orem 1.3, we have only to prove the “if” part.

Suppose that ¥ is a compact Hausdorff space of weight m and 4 x ¥ is C*-em-
bedded in Xx Y.

First let us note that A is C-embedded in X by Lemma 2.8. Let {G,| a<7}
be a discrete collection of open sets of .4 and {F,| «<y} a collection of closed sets
of A such that {G,, 4—F,} is a normal open cover of 4 for each a<y. Take a zero-

set K, and a cozero-set L, of 4 so that
FcK,cL,cG, for a<y.

Let 4,, B,, U, and ¥, be the subsets of ¥ with the properties described in Lemma 3.2.
Then, each K, x 4, is a zero-set of 4 x ¥, {L,x U,| a<y}1is a locally finite collection
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of cozero-sets of 4x ¥ and KukAacsz U, for a<y. Hence the set

Zl = U{K,,XA,,I UC<'Y}
is a zero-set of Ax Y by Lemma 2.3. Similarly the set

Z2 = U {Ka X(Y_ Uz)l “<')’}

is a zero-set of 4 x ¥, and it is easy to see that Z, and Z, are disjoint. By the ‘same
argument as above we also have that the sets '

Zy = U{K,x B a<y}
and

Z, = U{Kx(Y=P)| a<y}

are mutually disjoint zero-sets of A x Y. Since Ax Y is C*-embedded in Xx Y,
by Lemma 2.1 and Theorem 2.5 there exists a locally finite cozero-set cover
M = {M;) )eA} of X with the property that fof a suitable collection {#;] Aed}
of open covers of ¥ {M;xN| Ne A5, AeA} covers Xx Y and that

(M, 0 )x N| Ne A3, 4 ed}
refines

{Ax Y=Z;, Ax Y-Z;} and {dx ¥Y=Z3, Ax Y—2Z4}.
For a set M, of .4 we have

(6)) MynK,#0@ and MnK#@ =>a=§.

To prove this, suppose f<«. Then by Lemma 3.2

A, ~Uy#@ or B~V #0@.

For example, let 4,— U, # @. Then there is a set N of the cover N, of ¥ with
(4.~ Up) n N # @. We have then

(M3~ AYxN) 0 Zy (M, 0 A) X N) n(K,,,xA,) # 0.

On the other hand, we have

either

(M3 0 DAXN) A Zyo((My 0 D)X N) 0 (B x(Y—Up) # B .

But this is a contradiction since {(M;n A)xN| Net;, Led}
{Ax Y~Z;, Ax Y~2Z,}. Thus (1) is proved.
Let us put

refines

H, = St(K,, #) for oa<y;
then by (1) {H,| a<y}islocally finite, and each H, isa cozero-set of X containing K.

Since 4 is clearly C*-embedded in X, there is a cozero-set E‘, of X such that

L.n4 =L, Then {H, L, a<y} is a locally finite collection of cozero-sets

icm

P-embedding and product spaces 79

of X, and we have

FoeK,cH, nL,ndcL,cG, for  a<y:

Therefore by Theorem 2.4 4 is P™-embedded in X. This completes the proof of
Theorem 1.5. i

As is known, a space X is said to be m-collectionwise normal if for every discrete

collection {F,| o'e 2} of closed sets of X with cardQ<m there exists a discrete
collection {G,| o€ Q} of open sets of X such that F, =G, for each « & Q. The following
theorem can be obtained by putting together the several results in C. H. Dowker [2].
Here we shall give a direct proof.

THEOREM 3.3. 4 space X is w~collectionwise normal iff every closed subset of X is
P™-embedded in X.

Proof. The “only if* part follows from Theorem 2.4. To prove the “if” part,
let {F,] oeQ} be a discrete collection of closed sets of X with card @ m. Then
{F,| «€Q} is a locally finite cozero-set cover with card<m of the closed set
4 = U{F,| «eQ}. By assumption there is a locally finite cozero-set cover % of X'
such that % n A refines {F,] o Q}. Since # is normal, there is a locally finite open
cover ¥~ of X which is a star-refinement of %. Let us put

G, = St(F,,¥) for weQ.
Then it is easy to see that {G,| ae Q} is a discrete collection of open sets such that

F,cG, for o € . Hence X is m-collectionwise normal, and this completes the proof.

Combining Theorem 1.5 with Theorem 3.3, we have readily the following
theorem which was proved by M, Starbird [12] with a different method.

THEOREM 3.4. Let Y be a compact Hausdorff space with weight w. Then a space X
is w-collectionwise normal iff for every closed set A of X AxY is C*-embedded
in Xx Y.

Added in proof. In a Jetter (dated Mar. 29, 1975) to K. Morita, T. Przymusifiski com-
municated, without proof, the equivalence of conditions (a) and (c) in our Theorem 1.3 and
the validity of Theorem 1.4 in the case of ¥ being fX.
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