

Since for $\lambda < 0$ we have

$$\|\lambda k_{\lambda}\|_{1} = 1$$

(cf. e.g. [2]) an easy application of Hille-Yoshida theorem (cf. e.g. [2]) shows that

$$\lim_{n\to-\infty} \left\| \left(\frac{n}{t} \, k_{n/t} \right)^{*-n} * f - p_t * f \right\|_1 = 0$$

for all f in $L_1(G, m)$. Therefore, since $\{p_t\}_{t\to 0}$ is a bounded approximate identity in $L_1(G, m)$,

$$\left\{ \left(\frac{n}{t} \, k_{n/t} \right)^{*-n} \right\}_{t \to 0, n \to -\infty}$$

is an approximate identity in $L_1(G, m)$. Putting $f = k_1, \lambda < 0$, in (11). we see that the real algebra generated by the k_i 's, $\lambda < 0$, is dense in the real algebra generated by p_t , t > 0. Thus we see that Sp, p_t is real and so, since $p_t = p_{t/2} * p_{t/2}$, it is non-negative. From this we easily infer that for each f in A $Sp_1 f^* * f$ is real non-negative, which completes the proof of Theorem 2.

Since G is amenable, Proposition 5.3 of [2] thus yields our main result.

COROLLARY. If L is the Laplacian on G defined by (1), then

$$\operatorname{Sp}_p L = \operatorname{Sp}_2 L$$
 for all $1 \leqslant p < \infty$.

References

- [1] R. Aravamudhan, Non-symmetric L₁-algebras of solvable Lie groups, preprint, State University of New York at Albany, Albany N. Y. 12222.
- [2] A. Hulanicki, Subalgebra of L₁(G) associated with laplacian on a Lie group, Colloquium Math. 31 (1974), pp. 259-287.
- [3] On L_p-spectra of the Laplacian on a Lie group with polynomial growth, Proc. Amer. Math. Soc., 44 (1974), pp. 482-484.
- [4] W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and theorems for the special functions of mathematical physics, Berlin 1966.
- [5] M. A. Naimark, Normed rings, P. Noordhoff N. V., 1964.
- [6] E. C. Titchmarsh, Eigenfunction expansion associated with second-order differential equations, Part One, Second ed., Oxford 1962.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES WROCLAW, POLAND

STATE UNIVERSITY OF NEW YORK AT ALBANY ALBANY, NEW YORK

> Received February 2, 1974 (799)

On Kadec-Klee norms on Banach spaces

DICK VAN DULST (Amsterdam) and IVAN SINGER (Bucharest)*

Abstract. If E is a non-reflexive Banach space with a Kadec-Klee norm, then "many" (in particular, if E* is separable, then all) proper total subspaces V of E* have characteristic r(V) < 1. Application: Every non-reflexive Banach space E admits an equivalent norm for which there exists no projection of norm 1 of E** onto $\varkappa(E)$.

0. Definition of Kadec-Klee norms. Terminology and notations. In the present paper we shall study some properties and give some applications of Kadec-Klee norms, which are defined as follows:

DEFINITION 0.1. Let E be a Banach space and W a separable subspace (by subspace we shall always mean: norm-closed linear subspace) of the conjugate space E^* . We shall say that the norm of E is a Kadec-Klee norm (or, briefly, a (KK)-norm) with respect to W if for every net $\{g_d\}_{d\in D}\subset E^*$ and every $g\in W$ such that $g_d\stackrel{w^*}{\longrightarrow} g$ and $\|g_d\|\to \|g\|$ we have $||q_d - q|| \rightarrow 0$.

In the particular case when E^* is separable, a (KK)-norm with respect to $W = E^*$ will be simply called a (KK)-norm (in this case, clearly, the above nets can be replaced by sequences).

M. I. Kadec [5] and V. Klee [7] have proved that every Banach space E with separable conjugate space admits an equivalent (KK)-norm (for other proofs see also [6], [9]). More generally, W. J. Davis and W. B. Johnson have proved ([2], lemma 1) that if E is a Banach space and W a separable subspace of E^* , then E admits a (KK)-norm with respect to W, equivalent to the initial norm (actually, their result is slightly stronger, but we shall use only this version of it).

We recall (see [3]) that the characteristic of a subspace V of a conjugate Banach space E^* is the greatest number r = r(V) such that the

^{*} The second author was on leave from the Institute of Mathematics of the Academy of the Socialist Republic of Romania, visiting the University of Amsterdam.

unit cell $S_V = \{f \in V \mid ||f|| \leqslant 1\}$ of V is $\sigma(E^*, E)$ -dense in the r-cell $rS_{E^*} = \{f \in E^* \mid ||f|| \leqslant r\}$ of E^* (clearly, $0 \leqslant r(V) \leqslant 1$) and that we have

$$(0.1) \qquad r(\mathit{V}) = \frac{1}{\sup\limits_{x \in \mathcal{Z}_{\widetilde{B}}} \|x\|} = \inf\limits_{\substack{x \in E \\ x \neq 0 \ |f| \leqslant 1}} \left| f\left(\frac{x}{\|x\|}\right) \right| = \inf\limits_{\substack{x \in E, \|x\| = 1 \\ \varrho_{\mathit{e}} \mathit{V} \perp}} \|\varkappa(x) - \varPhi\|,$$

where Σ_E is the closure of the unit cell $S_E = \{x \in E | \|x\| \le 1\}$ for the weak topology $\sigma(E, V)$, \varkappa is the canonical embedding of E into E^{**} and $V^{\perp} = \{\Phi \in E^{**} | \Phi(f) = O(f \in V)\}$. It is immediate (see e.g. [11], the footnote on p. 239) that the last number in formula (0.1) is equal to $1/\|p\|$, where p is the projection of $\varkappa(E) \oplus V^{\perp}$ onto $\varkappa(E)$ along V^{\perp} .

Throughout this paper, the terminology will be the usual one (see e.g. [11]). If $\{x_n\}$ is a basis of a Banach space E and $\{f_n\} \subset E^*, f_i(x_j) = \delta_{ij}$ $(i,j=1,2,\ldots)$, then the norm closed linear span $[f_n]$ of $\{f_n\}$ in E^* will be called the *coefficient subspace* for the basis $\{x_n\}$ (since $x=\sum_{i=1}^{\infty} f_i(x)x_i$ for all $x \in E$). Also, we recall that a basis $\{x_n\}$ is called asymptotically monotone if for the associated partial sum operators we have $\|s_n\| \leq 1 + \varepsilon_n$ $(n=1,2,\ldots)$, where $\varepsilon_n > 0$ $(n=1,2,\ldots)$, $\lim \varepsilon_n = 0$.

Finally, if $|||\cdot|||$ is another norm on E and u an operator on E, we shall denote $|||u||| = \sup_{\substack{x \in E \\ |||x||| \leq 1}} |||u(x)|||$ and we shall use the notation $r_{|||\cdot|||}(V)$ (where $V \subset E^*$) in its obvious sense.

1. On characteristics of subspaces of conjugate Banach spaces. Our first theorem shows the influence of (KK)-norms on the characteristics of subspaces of conjugate spaces.

THEOREM 1.1. Let E be a Banach space and W a separable subspace of E^* such that the norm of E is a (KK)-norm with respect to W. Then for every subspace V of E^* which does not contain W, we have r(V) < 1.

Proof. Assume, a contrario, that V is a (norm closed linear) subspace of E^* with $V \ni W$, r(V) = 1. Let $g \in W \setminus V$. Since r(V) = 1, there exists a net $\{g_{\tilde{a}}\}_{\tilde{a} \in \mathcal{Q}} \subseteq V$ with $\|g_{\tilde{a}}\| \le \|g\|$ for all $d \in \mathcal{Q}$, such that $g_{\tilde{a}} \stackrel{w \mapsto}{\longrightarrow} g$. Then

$$||g|| \leqslant \lim ||g_a|| \leqslant \overline{\lim} ||g_a|| \leqslant ||g||$$

whence $||g_a|| \rightarrow ||g||$. Consequently, since the norm is a (KK)-norm with respect to W, $||g_a - g|| \rightarrow 0$, whence $g \in V$, in contradiction with our choice of g. This completes the proof.

Remark 1.1. (a) The same argument also shows that under the above assumptions, if $g \in W \setminus V$, ||g|| = 1, then $g \notin \tilde{S}_V$, the $\sigma(E^*, E)$ -closure of $S_V = \{f \in V | ||f|| \leq 1\}$.

(b) From Theorem 1.1 it follows that, at least when E is separable, the obvious extension of the notion of (KK)-norm for non-separable

COROLLARY 1.1. Let E be a non-reflexive Banach space with separable conjugate space. Then there exists an equivalent norm on E, which is not a (KK)-norm.

Proof. Let $\Phi \in E^{**} \setminus \varkappa(E)$ and let $V = \operatorname{Ker} \Phi(\subsetneq E^*)$. Then $V^{\perp} = \langle \Phi \rangle$, the one-dimensional subspace of E^{**} spanned by Φ , whence $\varkappa(E) \oplus V^{\perp}$ is closed in E^{**} and hence [3] r(V) > 0. Put

(1.1)
$$||x||_1 = \sup_{\substack{f \in \overline{V} \\ ||f|| \leq 1}} |f(x)| \quad (x \in E).$$

Then $\|\cdot\|_1$ is an equivalent norm on E such that $r_{\|\cdot\|_1}(V) = 1$ [3] and hence, by Theorem 1.1 (with $W = E^*$), $\|\cdot\|_1$ is not a (KK)-norm on E, which completes the proof.

Combining Theorem 1.1 with the result of Davis and Johnson mentioned in the Introduction, we obtain

THEOREM 1.2. Let E be a Banach space and W a separable subspace of E^* . Then there exists a norm $|||\cdot||||$ on E, equivalent to the initial norm of E, such that in this new norm for every subspace V of E^* which does not contain W, we have $r_{|||\cdot|||}(V) < 1$. In fact, any equivalent (KK)-norm with respect to W has this property.

Remark 1.2. One can also give the following simpler direct proof of the first statement of Theorem 1.2: Since W is separable, let $\{f_n\} \subset W$, $[f_n] = W$. Put

(1.2)
$$|||f||| = ||f|| + \sum_{n=1}^{\infty} \frac{1}{2^n} \operatorname{dist}(f, \langle f_n \rangle) \quad (f \in E^*),$$

where, for each $n, \langle f_n \rangle$ denotes the 1-dimensional subspace of E^* spanned by f_n . It is readily seen (for a similar argument see [2], proof of Lemma 1) that $|||\cdot|||$ is the dual norm for some norm $|||\cdot|||$ on E equivalent to the initial norm of E. Assume now that V is a subspace of E^* with $V \Rightarrow W = [f_n]$ and with $r_{|||\cdot|||}(V) = 1$. Let $f_{n_0} \epsilon W \setminus V$, hence

$$\inf_{\substack{f\in V,\,\|f\|=1\\a=\mathrm{scalar}}} \|f-af_{n_0}\| = \lambda > 0\,.$$

Since $r_{|||\cdot|||}(V)=1$, there exists a net $\{g_d\}_{d\in\mathcal{D}}\subset V$ with $|||g_d|||\leqslant 1$, such that

$$g_a \xrightarrow{w^*} \frac{f_{n_0}}{|||f_{n_0}|||}.$$

Then $1 \leqslant \varliminf |||g_d||| \leqslant \varlimsup |||g_d||| \leqslant 1$, whence $||||g_d||| \to 1$, and thus we may assume (considering $g_d/|||g_d|||$) that $|||g_d||| = 1$ for all $d \in \mathcal{D}$. Define now the auxiliary norm

(1.3)
$$\begin{aligned} ||f|||_{0} &= ||f|| + \sum_{\substack{n=1\\n\neq n_{0}}}^{\infty} \frac{1}{2^{n}} \operatorname{dist}(f, \langle f_{n} \rangle) \\ &= |||f||| - \frac{1}{2^{n_{0}}} \operatorname{dist}(f, \langle f_{n_{0}} \rangle) \quad (f \in E^{*}), \end{aligned}$$

which is clearly also the dual of some norm on E. Then, since $g_d \, \epsilon \, V$, we have

$$(1.4) \qquad |||g_d|||_0 = 1 - \frac{||g_d||}{2^{n_0}} \operatorname{dist} \left(\frac{g_d}{||g_d||}, \, \langle f_{n_0} \rangle \right) \leqslant 1 - \frac{\lambda \, ||g_d||}{2^{n_0}} \qquad (d \, \epsilon \, \mathscr{D}).$$

On the other hand,

$$\left|\left|\left|\frac{f_{n_0}}{|||f_{n_0}|||}\right|\right|\right|_0 = 1 - \frac{1}{2^{n_0}}\operatorname{dist}\left(\frac{f_{n_0}}{|||f_{n_0}|||}, \langle f_{n_0}
angle
ight) = 1,$$

whence, since $g_a \xrightarrow{w^*} f_{n_0}/|||f_{n_0}|||$ and since $||| \cdot |||_0$ is a dual norm, it follows that $1 \leqslant \varliminf |||g_d|||_0$, in contradiction with (1.4), which completes the proof. This proof of Theorem 1.2 does not use the (KK)-property, but one can show that (1.2) is also a (KK)-norm with respect to W (actually, the proof of the latter is somewhat simpler than that of the fact that the norm constructed in [2], proof of Lemma 1, is a (KK)-norm with respect to W).

Let us mention separately, because of its importance, the particular case $W=E^*$ of Theorem 1.2:

COROLLARY 1.2. Let E be a Banach space with separable conjugate space. Then there exists a norm on E equivalent to the initial norm, such that in this new norm for every proper subspace V of E^* we have r(V) < 1. In fact, any equivalent (KK)-norm on E has this property.

Remark 1.3. For any $\varepsilon>0$ one can choose the above equivalent (KK)-norms so that they satisfy, in addition,

$$(1.5) |||x||| \leqslant ||x|| \leqslant (1+\varepsilon)|||x||| (x \in E).$$

Indeed, it is enough to replace in (1.2) (or in [2], proof of Lemma 1) $1/2^n$ by $\varepsilon/2^n$.

In view of the above, let us raise

PROBLEM 1.1. (a) Let E be a non-reflexive Banach space with separable conjugate space. Does there exist an equivalent norm $|||\cdot|||$ on E such that for some constant a < 1 (depending perhaps on the space E) we have $r_{|||\cdot|||}(V) \le a$ for all proper subspaces V of E^* ?

(b) More generally (if E^* is not necessarily separable), one can ask the similar question for all subspaces V of E^* such that $V \Rightarrow W$, where W is a given separable subspace of E^* .

If for some E the answer to Problem 1.1 (a) is affirmative, then clearly for any equivalent norm $|||\cdot|||_1$ which is "sufficiently near" to $|||\cdot|||$ (in the sense of (1.5)), there exists a constant $a_1 < 1$ such that $r_{|||\cdot|||_1}(V) \le a_1$ for all proper subspaces V of E^* . Let us also note that if for some $(E, |||\cdot|||)$ there exists an a < 1 as in Problem 1.1 (a), then we must have $a \ge 1/2$, as shown by

PROPOSITION 1.1. Let E be a non-reflexive Banach space and let $0 < \varepsilon < \frac{1}{2}$. Then there exists a hyperplane V in E^* with $r(V) > \frac{1}{\delta} - \varepsilon$.

Proof. Let $\Phi \in E^{**} \times (E)$. Since $\varkappa(E)$ is a hyperplane in $\varkappa(E) \oplus \langle \Phi \rangle$, there exists (see e.g. [1]) a projection p of $\varkappa(E) \oplus \langle \Phi \rangle$ onto $\varkappa(E)$ with $||p|| < 2/(1-2\varepsilon)$. Choose $\Psi \in \operatorname{Ker} p$ and let $V = \operatorname{Ker} \Psi \subset E^*$. Then $V^{\perp} = \langle \Psi \rangle$, whence, by the remark following (0.1),

$$r(V) = \frac{1}{\|p\|} > \frac{1-2\varepsilon}{2} = \frac{1}{2} - \varepsilon,$$

which completes the proof.

In connection with Problem 1.1 and Proposition 1.1, let us recall [3] that if $E=e_0$ (with its usual norm!), we have $r(V)\leqslant \frac{1}{2}$ for all proper subspaces V of $E^*\equiv l^1$.

In every Banach space E there exists a basic sequence $\{x_n\}$ such that $r([\varphi_n])=1$, where $[\varphi_n] \subset [x_n]^*$ is the coefficient subspace for $\{x_n\}$; indeed, it is well known that in E there exists an asymptotically monotone basic sequence $\{x_n\}$ and then, by the argument of the proof of [10], Theorem 1 or [11], p. 116, $r([\varphi_n])=1$. It is natural to ask whether for Banach spaces E with a basis one can replace in the above result "basic sequence" by "basis". The following theorem shows that the answer is negative:

THEOREM 1.3. For every Banach space E with a basis and with separable conjugate space E^* having no basis, there exists an equivalent norm $|||\cdot|||$ on E such that for every basis $\{x_n\}$ of E we have $r_{|||\cdot|||}([f_n]) < 1$, where $[f_n]$ is the coefficient subspace for $\{x_n\}$.

Proof. Note first that such spaces E exist, by the results of P. Enflo [4] and J. Lindenstrauss ([8], Corollary 3 and the remark preceding Corollary 4). Now, if $\{x_n\}$ is a basis of such a space E, with coefficient functionals $\{f_n\}$, then (e.g. by [11], p. 112, Theorem 12.1) $\{f_n\}$ is a basis of $[f_n]$ and hence $[f_n] \neq E^*$. Consequently, by Corollary 1.2, for any equivalent (KK)-norm $|||\cdot|||$ on E we have $r_{|||\cdot|||}([f_n]) < 1$, which completes the proof.

2. An application to projections of E^{**} onto $\varkappa(E)$. The following theorem solves in the affirmative a problem raised by W. J. Davis and W. B. Johnson [2].

THEOREM 2.1. Let E be a non-reflexive Banach space. Then there exists a norm $||| \cdot ||||$ on E, equivalent to the initial norm on E, such that there exists no projection p of norm |||p||| = 1 of E^{**} onto $\varkappa(E)$.

Proof. Since E is non-reflexive, by [2], Lemma 2 there exists a separable subspace W of E^* such that $E^{**} \neq \varkappa(E) + W^{\perp}$. We shall show that any norm $|||\cdot|||$ as in § 1, Theorem 1.2, with respect to this W, has the required property. Assume, a contrario, that p is a projection of E^{**} onto $\varkappa(E)$ with |||p|||=1. Since $E^{**} \neq \varkappa(E) + W^{\perp}$, there exists a $\Phi \in \operatorname{Ker} p \setminus W^{\perp}$. Then for $V = \operatorname{Ker} \Phi$ we have $V^{\perp} = \langle \Phi \rangle$, whence, by the remark following (0.1),

$$(2.1) r_{|||\cdot|||}(V) = \frac{1}{|||p||_{\kappa(E)\oplus \langle \Phi_{\flat}}|||} = 1.$$

On the other hand, we have $V \supseteq W$ (since otherwise $W^{\perp} \supseteq V^{\perp} = \langle \Phi \rangle \circ \Phi$), whence, by § 1, Theorem 1.2, $r_{|||\cdot|||}(V) < 1$, in contradiction with (2.1). This completes the proof.

Remark 2.1. If $(E, |||\cdot|||)$ is such that there exists no projection p of norm |||p|||=1 of E^{**} onto $\varkappa(E)$, then E is not isometric to any conjugate Banach space (see e.g. [3]). Thus from Theorem 2.1 we obtain again the result of W. J. Davis and W. B. Johnson ([2], Theorem) that every non-reflexive Banach space admits an equivalent norm under which it fails to be isometric to a conjugate Banach space.

PROBLEM 2.1. Let E be a non-reflexive Banach space. Does there exist an equivalent norm $|||\cdot|||$ on E such that for some constant C>1 (depending perhaps on the space E) there exists no projection p of norm $|||p||| \leqslant C$ of E^{**} onto $\varkappa(E)$?

The above proof of Theorem 2.1 shows that an affirmative answer to § 1, Problem 1.1 (b), would imply an affirmative answer to Problem 2.1.

In connection with Problem 2.1 one might ask whether for any C>1 every non-reflexive Banach space admits an equivalent norm $|||\cdot|||$ under which there exists no projection of norm $\leqslant C$ of E^{**} onto $\varkappa(E)$. However, the answer is negative, e.g. for any equivalent norm $|||\cdot|||$ on a quasi-reflexive space E of order 1 (i.e., with dim $E^{**}/\varkappa(E)=1$) and for any $\varepsilon>0$ there exists a projection p of E^{**} onto $\varkappa(E)$ of norm $|||p|||<2+\varepsilon$. This also shows that if there exists a C>1 as in Problem 2.1, and independent of the space E, then we must have $C\leqslant 2$.

References

- H. F. Bohnenblust, Convex regions and projections in Minkowski spaces, Ann. of Math. (2) 39 (1938), pp. 301-308.
- [2] W. J. Davis and W. B. Johnson, A renorming of non-reflexive Banach spaces, Proc. Amer. Math. Soc. 37 (1973), pp. 486-488.
- [3] J. Dixmier, Sur un théorème de Banach, Duke Math. J. 15 (1948), pp. 1057-1071.
- [4] P. Enflo, A counterexample to the approximation problem in Banach spaces, Acta Math. 130 (1973), pp. 309-317.
- [5] M. I. Kadec, On the connection between weak and strong convergence, Dopovidi Akad. Nauk Ukrain. RSR 9 (1959), pp. 949-952 [Ukrainian].
- [6] M. I. Kadec and A. Pełczyński, Basic sequences, biorthogonal systems and norming sets in Banach and Fréchet spaces, Studia Math. 25 (1965), pp. 297-323 [Russian].
- [7] V. Klee, Mappings into normed linear spaces, Fund. Math. 49 (1960/61), pp. 25-34.
- [8] J. Lindenstrauss, On James' paper "Separable conjugate spaces", Israel J. Math. 9 (1971), pp. 488-506.
- [9] J. Rainwater, On a renorming theorem of Klee (preprint).
- [10] I. Singer, Weak* bases in conjugate Banach spaces. II, Rev. Math. Pures et Appl. 8 (1963), pp. 575-584.
- [11] Bases in Banach spaces. I, Berlin-Heidelberg-New York, 1970.

Received February 5, 1974 (790)