A. Hulanicki

Since for 1< 0 we have
A%l =1
(cf. e.g. [2]) an easy application of Hille-Yoshida theorem. (cf. e.g. [2])
shows that

n *on
lim (7 rc,,,,t) #f—ppf
A—r—0Q

for all f in I,(G, m). Therefore, since {p;}.,, is a bounded approximate

identity in II1(G: m)’
n *"”}
— '
{( 4 n/i) =0, n—+—co

is an approximate identity in L;(@, m). Putting f = k;, A< 0, in (11),
we see that the real algebra generated by the ks, A< 0, is dense in the
real algebra generated by p,,t> 0. Thus we see that Sp, p, is real and
50, Since P; = Pya*Pyp, it is non-negative. From this we easily infer that
for each f in A Sp, f*=f is real non-negative, ‘which completes the proof
of Theorem 2.

Sinee G is -amenable, Proposition 5.3 of [2] thus yields our main
result.

CorROLLARY. If L ds the Laplacian on G defined by (1), then

(11)

=0
i

SppL =8p, L  for all 1< p< oo,
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On Kadec-Klee norms on Banach spaces

by
DICK VAN DULST (Amsterdam)
and IVAN SINGER (Bucharest)*

Abstract. If I is a non-reflexive Banach space with a Kadec—Klee norm, then
“many” (in particular, if B* is separable, then all) proper total subspaces V of H*
have characteristic »(V) < 1. Application: Every non-reflexive Banach space B admits
an equivalent norm for which there exists no projection of norm 1 of E** onto
# ().

0. Definition of Kadec—Klee norms. Termimology and mnotations.
In the present paper we shall study some properties and give some appli-
cations of Kadec—Klee norms, which are defined as follows:

DErINITION 0.1. Let % be a Banach space and W a separable subspace
(by subspace we shall always mean: norm-closed linear subspace) of the
conjugate space B*. We shall say that the norm of B is a Kadec—Klee
norm (or, briefly, a (BK)-norm) with respect to W if for every met
{92}acp = B* and every ge W such that g,%>¢g and llgi—lgll we have
llga— gl—0.

In the particular case when B* is separable, a (KK)-norm with respect
to W = E* will be simply called a (KK)-norm (in this case, clearly, the
above nets can be replaced by sequences). .

M.I. Kadec [5] and V. Klee [7] have proved that every Banach space
B with separable conjugate space admits an equivalent (KK)-norm (for
other proofs see also [6], [9]). More generally, W. J. Davis and W. B. John-
son have proved ([2], lemma 1) that if # is a Banach space and W a sep-
arable subspace of E*, then ¥ admits a (KK)-norm with respect to
W, equivalent to the initial norm (actually, their resnlt is slightly stronger,
but we shall use only this version of it).

We recall (see [3]) that the characteristic of a subspace ¥ of a conju-
gate Banach space B* is the greatest mumber 7 = r(V) such that the

* The second author was on leave from the Institute of Mathematics
of the Academy of the Socialist Republic of Romania, visiting the University
of Amsterdam.
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unit cell Sy = {fe V| Ifll<1} of V is o(E", B)-dense in the r-cell 85
= {feE*( A< 7} of EB* (clearly, 0 < 7(V) < 1) and that we have

sup [#]

@
! (u‘mn)
zeXpp

where 2 is the closure of the unit cell 8y = {weH| ||| <1} fo::kthe weak
topology o(H, V), % is the canonical embedding of B into E™ and V-*
= {GBY| D(f) = O(feV)}. It is immediate (see e.g. [11], the footnote
on p. 239) that the last number in formula (0.1) is equal to 1/||p(, where
p is the projection of »(B)D V' onto x(H) along V.

Throughout thiz paper, the terminology will be the usual one (seo
. e.g. [11]). If {w,} is a basis of a Banach space B and {f,} < B", fulay) =6,
(4, =1,2,...), then the norm closed linear span [f,] of {f,} inwlf}* will

zel, ||zll=1
sV L

(0.1) = (V)= lle () — Bl

= inf sup
xeE feV
a0 (flIt

be called the coefficient subspace for the basis {®,} (since = Zl fi(w)o,
i=

for all e H). Also, we recall that a basis {,} is called asymptotically mono-
tone if for the associated partial sum operators we have I8l < 1+ s,
(n=1,2,...), where £,>0 (n =1,2,...), lime, = 0.

n ‘

—>00
Finally, if {||-]|| is another norm on F and % an operator on H, we
shall denote |||%]l] = sup |||#(%)||| and we shall use the notation (V)
el
eIt

(where ¥V < E*) in its obvious sense.

1. On characteristics of subspaces of comjugate Banach spaces. Our
first theorem shows the influence of (KK)-norms on the characteristics of
subspaces of conjugate spaces.

TeworEM 1.1. Let B be o Banach space and W a separable subspace
of B* such that the norm of B is a (KK )-norm with respect to W. Then for
every subspace V of E* which does not contain W, we have r(V) < 1.

Proof. Assume, a contrario, that V is a (norm closed linear) subspace
of B* with ¥V 3 W, #(V) = 1. Let ge W\ V. Since r(V) = 1, there exists
a net {galaee © V with |iggll < llgll for all de2, such that 94%+¢. Then

llgh < Mim Jlgll < Lim gl << g,

whence |lg4|—llgfl. Consequently, since the norm is a (KK)-norm with
respect to W, |ig;—g/-+0, whence ge V, in contradiction with our c¢hoice
of g. This completes the proot. —_

Remark 1.1. (a) The same argument also shows that under the above
assumptions, if ge W\V, |g|| =1, then g¢&y, the o(B* B)-closure of
Sy = {feV] Ifl <1} ,

(b) From Theorem 1.1 it follows that, at least when J is separable,
the obvious extension of the notion of (KK)-norm for non-separable

©
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subspaces W of B* is void. Indeed, it is well known (see e.g. [6], Lemma 4)
that for every separable Banach space B there exists a separable subspace
V of B* with r(V) = 1. Clearly, if W < B*ig non-separable, then V 3 W,
whence, if the norm of ¥ is a (KK)-norm with respect to W, then, by
Theorem 1.1, »(V)< 1, a contradiction.

COROLLARY 1.1. Let B be o non-reflezive Banach space with separadle
conjugate space. Then there exists an equivalent norm on B, which is not
o (KK)-norm.

Proof. Let B\ x(F)andlet V = Ker P(Z EY). Then V+ = (&5,
the one-dimensional subspace of H** spanned by @, whence »(B)@V+ is
closed in ™ and hence [3] (V) > 0. Put

(1.1) lel, = sup |f(@)] (weE).
Wil

Then |i-]l; is an equivalent norm on 7 such that 7 (V) =1 [3]
and hence, by Theorem 1.1 (with W = E*), |-l is not a (KK)-norm
on H, which completes the proof.

Combining Theorem 1.1 with the result of Davis and J. ohnson men-
tioned in the Introduction, we obtain

TamorEM 1.2. Let B be a Banach space and W a separable subspace
of T*. Then there exists @ norm 1-1llon B, equivalent to the initial norm of
B, such that in this new mnorm for every subspace V of B which does not
contwin. W, we have vy, (V)< 1. In fact, any equivalent (KXK)-norm with
respect to W has this property.

Remark 1.2. One can also give the following simpler direct proof
of the first statement of Theorem 1.2: Since W is separable, let {f,} = W,
[fu]l = W. Put i

(L2 AT = 11+ D) dist(f, <) (Fe,

B=1
where, for each n, {f,> denotes the 1-dimensional subspace of B* spanned
by fu- It is readily seen (for a similar argument see {21, proof of Lemma 1)
that ||]-]]] is the dnal norm for some norm II*1ll on H equivalent to the
initial norm of #. Assume now that V is a subspace of B* with V d W
= [fal and with 7.,,(V) = 1. Let Jag€e WNV, hence
inf [f~afyll =4>0.

FeV, |If =1
a==Scular

Since (V) =1, there exists a net {gs}g.0 <V with IHgalll < 1, such

a
Ty
T

wr

Ja—>

2 — Studia Mathematica LIV.3
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Then 1 < lim|[|gfl] < Lim llg,l| < 1, whence |llggll|~>1, and thus we may
assume (considering gz/1llgalll) that |[lgzlll = 1 for all de 2. Define now
the auxiliary norm

R i r1 .
(L3) Alle = W+, o dist(S, <))

nng
= Il =5 A, <) (o),

which is clearly also the dual of some norm on . Then, since g;eV, we
have

lgal - ( 9a 7
(.4)  lllgallle =1—W dlst(”gd” ’ (fwﬂ>>< 1- P (de2).
On the other hand,
) I =1——i-dist( Ty <, >) =1
Ml e~ 2% Mflll - ™ ’
whence, since g,%> Tug/NIfnglll and since |||+[{]o 18 & dual norm, it follows

that 1 <<lim |[igylllo, in contradiction with (1.4), which completes the
proof. This proof of Theorem 1.2 does not use the (KX)-property, but
one can show that (1.2) is also a (KK)-norm with respect to W (actually,
the proof of the latter is somewhat simpler than that of the fact that
the norm constructed in [2], proof of Lemma 1, is a (KK)-norm with respect
to W).

Let us mention separately, because of its importance, the particular
case W = B of Theorem 1.2:

CororLARY 1.2. Let B be a Banach space with separable comjugate
space. Then there ewists a morm on B equivalent to the initial norm, such
that in this mew norm for every proper subspace V of B* we have r(V)< 1.
In fact, any equivalent (KK)-norm on T has this properiy.

.- Remark 1.3. For any s> 0 one can choose the above equivalent
(KX)-norms so that they satisfy, in addition,

(1.5) Hlelll < llell < L +e) 1z}l (we).

Indeed, it is enough to replace in (1.2) (or in [2], proof of Lemma 1)
1/2" by e/2". .

In view of the above, let us raise

Prosrmm 1.1. (a) Let & be a non-reflexive Banach space with sep-
arable conjugate space. Does there exist an equivalent norm [II-1l] on

E such that for some constant a < 1 (depending perhaps on the space F)
we have 7., (V) < e for all proper subspaces V- of E*?

On Kadec~Klee norms 209

(b) More generally (if B* is not necessarily separable), one can ask
the similar question for all subspaces V of E* such that V W, where
W is a given separable subspace of E*.

If for some F the answer to Problem 1.1 (a) is affirmative, then
clearly for any equivalent norm 11y which is “sufficiently near” to
I1]-1ll (in the sense of (1.5)), there exists a constant a; <1 such that
7"||H111(V) < a; for all proper subspaces V of E*. Let us also note that if
for some (F, |||-]|]) there exists an a< 1 as in Problem 1.1 (a), then we
must have «>1/2, as shown by '

PropOSITION 1.1. Let E be a non-reflewive Banach space and let
0 < &< }. Then there ewists o hyperplame V in B* with r(V) > % —e.

Proof. Let B \x(E). Since »(H) is a hyperplane in %(B)DLDD,
there exists (see e.g. [1]) a projection p of #(B)D (D) onto x(F) with
Pl < 2/(1 —2¢). Choose e Ker pand let V = Ker ¥ < E*, Then 7+ = (¥,
whence, by the remark -following (0.1),

1 1-2 1
V) = -
"M== "3 P

which completes the proof.

In connection with Problem 1.1 and Proposition 1.1, let us recall
[3] that if B = ¢, (with its usual norm!), we have 7(V) < 4 for all proper
subspaces V of B* = I

In every Banach space I there exists a basic sequence {®,} such
that 7([g,]) = 1, where [¢,] < [#,]* is the coefficient subspace for {z,};
indeed, it is well known that in B there exists an asymptotically monotone
basic sequence {1,} and then, by the argument of the proof of [10],
Theorem 1 or [11], p. 116, 7([@,]) = 1. It is natural to ask whether for
Banach spaces F with a basis one can replace in the above result “basic
sequence” by “basis”. The following theorem shows that the answer is
negative:

THROREM 1.3. For every Banach space B with a basis and with sep-
arable conjugate space B* having no basis, there ewisis an equivalent norm
H-11l on B such that for every basis {x,} of B we have e (Lfad) < 1, where
[fa] is the coefficient subspace for {=,}.

Proof. Note first that such spaces F exist, by the results of P. Enflo
[4] and J. Lindenstrauss ([8], Corollary 3 and the remark preceding
Corollary 4). Now, if {#,} is a basis of such a space F, with coefficient
functionals {f,}, then (e.g. by [11], p. 112, Theorem 12.1) {fu} is a basis
of [f,] and hence [f,] 7 B*. Consequently, by Corollary 1.2, for any
equivalent (KK)-norm {||+|[| on B we have ¢, ([f,1) < 1, which completes
the proof.
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2. An application to projections of H'* onto (). The following
theorem solves in the affirmative a problem raised by W. J. Davis and
W. B. Johnson [2].

THEOREM 2.1. Let B be a non-reflewive Banach space. Then there emists
a norm ]+ ||] on B, equivalent to the initial norm on H, such that there ewists
no projection p of morm |l|pl]| =1 of E*™ onio »(H).

Proof. Since ¥ is non-reflexive, by [2], Lemma 2 there exists a sep-
arable subspace W of B* such that B™ # »(B)+W=. We shall show
that any norm |||-||] as in § 1, Theorem 1.2, with respect to this W, has
the required property. Assume, a contrario, that p is a projection of
B onto x»(B) with |||p]|] =1. Since B # »(B)-+-W+, there exists
& @cKer p\W+. Then for V = Ker @ we have V+ = (P>, whence, by
the remark following (0.1),

1

2.1 m SN
(2.1) NP lemaca |l

i (V) =

On the other hand, wehave V' $ W (since otherwise W o V' = (> 2 P),
whence, by §1, Theorem 1.2, ry.,,(V) <1, in contradiction with (2.1).
This completes the proof. ‘

Remark 2.1. If (B, |[|-]]|) is such that there exists no Pprojection
» of norm [||p||| =1 of B* onto »(H), then B is not isometric to any
conjugate Banach space (see e.g. [3]). Thus from Theorem 2.1 we obtain
again the result of W. J. Dams and W. B. Johnson ([2], Theorem) that
every mnon-reflexive Banach space admits an equivalent norm under
which it fails to be isometric to a conjugate Bamach space.

ProBrEM 2.1. Let F be a non-reflexive Banach space. Does there
exist an equlva.lent% norm ||[-||] on. F such that for some constant ¢ > 1
(depending perhaps on the space ) there exigts no pro;eotlon p of norm
Pl < O of B* onto »(E)?

The above proof of Theorem 2.1-shows that am affirmative answer
to § 1, Problem 1.1 (b), would imply an affirmative answer to Problem 2.1.

In connection with Problem 2.1 one might ask whether for any C > 1
every non-reflexive Banach space admits an equivalent norm [1+]]| under
which there exists no projection of norm < ¢ of F** onto % (). However,
the answer is negative, e.g. for any equivalent norm ||{-||| on a quasi-
reflexive space H of order 1 (ie., with dim B*/x(B) =1) and for any
¢ > 0 there exists a projection p of B** onto » (&) of norm Hpll < 2+e.
This also shows that if there exists a ¢ > 1 a5 in Problem 2. 1, and inde-
Pendent of the space B, then we must have € < 2.

4
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