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Abgiracr. A weighted analogue of the clags of funetions of bounded mean
oseillation of John and Nirenberg iy defined. The definition is motivated by the be-
havior of the Hilbert transform of any function which is bounded by a multiple of
the weight function. Estimates for the distribution of values of functions in the class
are given.

§ L. Introduction. In this paper, we consider a few results related
o0 a weighted version of the class of functions of bounded mean oscillation
of F. John and L. Nirenberg [6]. More specifically, we will study the
distribution. of values of functions in this class and give an analogue
of Stein’s result [10] that the Hilbert transform of a bounded function
is of bounded mean oscillation. Our version of this last result is a natural
extension of the weighted L norm inequalities for the Hilbert transform
given in [5]. Let f(x) and w(2) be locally integrable in R™ and let w > 0.
We then say that f is of bounded mean oscillation with weight w if there
is a comstant ¢ such that

(1.1) [ 1f(@)—frliw < o [w(o)do
I I

for all n-dimensional “cubes” I whose edges are parallel to the coordinate
axes. Here, fy is a constant depending on I which we will show can always
be chosen as the mean value of f on I:

17
Jr = miff(w)dm-

In fact, for any constant a,

J i@ —frlao < [ 150~ aldo+101a—f2,

* Supported in part by NSF Grant GP 38540,


GUEST


222 B. Muckenhoupt and R. L. Who«jrlen

and since

e~ = |f [f (@) —a]da| < Jifta)—alds,

we have

[1f @) —frldw <2 [ |f(z)~aldo.
I Iz

In case (1.1) only holds for those I lying in some fixed cube I, we say
that f is of bounded mean oscillation on I, with weight w. We will often
use the same ¢ to denote positive constants which may be different at
each occurrence.

The case w = 1 of (1.1) corresponds to that of John and Nirenberg.
Other weighted definitions of this class might be given: for example,

12)  [If(@)—odw@)ds <o [w(@)dn
i i )
where ¢; = ff(w)w(m)dm/fw(m)dw,
I i

for all 1. We will show in § 3 (Theorem 5) that if w satisfies & mild condition,
the class of f for which (1.2) is true is identical to the class of John and
Nirenberg. Our definition (1.1) is motivated by results about singular and
fractional integrals. In order to state some of these results, we will need
several definitions. First, a weight w is said to belong to Ayy 1< p << oo,
if there is a constant ¢ such that

1 1 v AP
(—Il—llfw(w)dm) (m;rfw(w) e ”dw) <e

for all I; and is said to belong Yo A, if there is a constant ¢ such that
w* () < cw () for almost all #, where w* is the Hardy-Littlewood maximal
function of w. (See [7].) The condition that wed, i3 the same as requiring
that

1

m}fw(w)dwg oesszm'f w

for all I. On the other hand, w is said to belong 19 A, if there exist o and
8 such that 0 << ¢, # < 1 and for every cube I and every measurable gubset
B of 1, Ef wdw < ﬁifwdm whenever |B| < a|I]. The statement that wed,
is equivalent to either of the following two: (1) wed, for some p; (2)
there are positive constants ¢, ¢, 6 and 7 such that

. .I;Ei 1 . IEI 8
(1.3) GI(III) <Efwdw/1fwdm§ oy (_IIT)

©
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for every Bl < I. (See [2], [8] and [4].) If T is a cube and ¢ is a positive
constant, let ¢l denote the cube concentric with I which is ¢ times as
long. It follows from (1.3) that if wed,, and ¢> 0, there are constants
6y, 63 > 0 such that

clgfwdw/fwdmgoz for all I.
el I

Finally, we say that w belongs to B, if there is a constant ¢ such that

w(t) 1
|I| H‘f Tw*;"m dt < O-I‘i_‘l*i{’wu)dt
for all I, where x; is the center of I. It is known that if wed,, 1< p <2,
then weB,. (For the case n = 1, see [5] Lemma 1; the argument for n > 1
is similar.)

For our results about singular integrals, we consider only the case
n =1, and let f denote the Hilbert transform of f. It will be convenient
to use a modified version of f: let '

Hf(x) = lim _i__l__&(_?ﬁ

a0t m_”|>,[w—y Y

]f(y)dy,

where x(y) is the characteristic function of |y| > 1. The reason for using
Hf is that it may exigt while f may not. If f and Hf both exist, as would
be the cage if, for example, feI?, 1< p < oo, then they differ by a con-
stant. .

In the following theorem, |f}l, denotes the nsual L* norm of f.

Temorem 1. Let w be non-negative and locally integrable. Then a
nécessary and sufficient condition that there ewist a constamt ¢ such that

(1.4) J1Ef —(Bf)rldo < olfwl [wdo
I I

Sor all intervals I and all f for which fjw is bounded is that wed N B,.

In particular, it wed NB, and |f| < ow a.e., then Hf exists and is
of bounded rnean oscillation with weight w. In case wed,, 1< p< oo,
the factor i["wda; on the right-hand side may be replaced by

1 ~=(n-1)
. |1‘|(»~ j w“/‘”“‘)dm) ,
I ;
while if wed,, it is equivalent to
1 -1
[Iess inf w = |I] (ess sup ~—) .
I I w
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TEEOREM 2. Let w be non-negative and locally integrable.
(i) A mnecessary and sufficient condition that there ewists a constant

¢ such that
( 1) 1
ess sup
I

(1.5) S I] \ELf — (Hf)y] do < ollffol

for all I and all f for which flw is bounded is.that wull.' _ .
(i) Let 1< p < oo. A mecessary and sufficient condition that there
exist a constanmt ¢ such that

—1 »
( _[%_ fw_,/w-ndm)" I;T j Hf — ()l 0 < o|f fw]
I

{

(1.6)

for all I amd all f for which flw is bounded is that w0 ed,NB,.
The first part of Theorem 2 is a natural extension of the weighted

I? porm inequalities for} and is an analogue of a result (Theorem 7)
from [9] for fractional integrals. For 1 < p < o0, the weighted L” norm
inequality for fis

([ i) <ol [ o
it wed,. This may be rewritten as

( fifwuliydm)l/ﬂ < 0( flfw“ll”dm)w i wPed,;

that is, it
1 U» 1 . . 1fp*
wf'w“”dw wfzv” dn| <e,
] ¢ i ;

where 1/p+1/p' =1. As p—oo,
1 Y 1
(—« f w”l’(lw) - eSESUP —-,
III i I w

so the natural condition is

esysup —| [~—- | wdr) = ¢.
I P w/\|1] F:

This is exactly the requirement that Wedly.

An important feature of functions in the class of John and Niren-
berg is the exponential nature of their distribution functions. There is
an analogue of this property for functions of weighted bounded mean

& ©
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oscillation which depends on the 4, class to which the weight belongs.
In stating this result, we will use the notation My (B) = [wdx for the
# :

w-measure of a set B, and m,(I: g> a) for my(el: g(@) > a).
THurOREM 3. Let f be of bounded mean oscillation with weight w on I,:

) . 1
j If —frlde < cfwda;; Ir =—ffd:z:, I<=1,.
x I [I[ I
If w eAl, there are positive constants ¢, and c, such that
1.7 My (L2 |f = frlw™ > a) < 6,67 m,, (T)

Jor a> 0 and I<Iy, If wed,, 1< p< oo, and L/p+1/p" =1, there
w8 @ constant ¢, such that

(1.8) m(L: 1f —Frw™ > a) < (1 + a) ™ my, (I)
Jor a> 0 and I < I,.

As a simple corollary of Theorem 3, we will derive the next result.

TUBOREM 4. Let 1< p < oo and wed,. Then f is of bounded mean
oscillation on I, with weight w if and only if there 48 & constant ¢ such that

(1.9) f If—flw' " ds < e fwdﬁ
i 7

Jor all I < I, and every r which satisfies 1< r<poand r< oo.

Actually, if (1.9) holds for any w and any 7, 1< r < oo, it follows
eagily from Holder’s inequality that f is of weighted bounded mean. oscil-
lation. The opposite implication is the important part of the theorem. For
this, we will see that given wed, and f satisfying (1.1), there are values
of » slightly larger than p’ for which (1.9) is true. However, we will show
that given p, no r larger than p’ can be used in (1.9) for all fand w which
satisfy (1.1) and wed,. Moreover, given p > 1, there exist f and w for
which (1.1) holds and wed, for all ¢ > p, but for which (1.9) fails when
r=7p. ‘

The results dealing with the Hilbert transform are proved in § 2 and
those dealing with the distribution of | f—Ffyl in § 3. At the end of § 3,
we show that the class of functions satistying (1.2) is identical to that of
John and Nirenberg. We would like to point out that some of these results
and others have been obtained independently by J. G. Cuerva [8] using

. duality arguments.

§ 2. Proofs of Theorems 1 and 2. We will prove the sufficiency of
Theorem 1 first. Thus, let we.d,,NB, and suppose that there is a constant
M such that [f] < Mw a.e. Since w «B,, w(y)[y|™* is integrable over ly} > 1.
Thevefore, f(y)ly|™* is integrable over l|y| > 1, and ; fl [1/(z—y)+

w—y| >

&
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+ 2 () y1f(y)dy converges absolutely at infinity for any &> 0. Since
we A, there exist p,>1 and a constant ¢ such that

1 Vo o1
(2.1) (,—lfl«fw"wlm) < omlfwdm
I .

for all I (see [7]). In particular, f is locally in L? for 1 < p < py. It follows
that Hf exists a.e. To show that Hf satisties (1.4), fix I and write ¢ = fy,;
and b = fyape, so that f = g+h and Hf = Hg-+Hh. Since gel® for
some p, > 1, standard results about the Hilbert trgnsform show that both
Hyg and § are locally integrable. Since Hg and g differ by a constant,
(22) [ 1By~ (Hy)ldw = [ 1§~ (§)ldo <2 If 1§ der.

i I

By Holder’s inequality and the norm inequality for the Hilbert transform,

- 1 . 1/py ( 1 A )up.,
< — | |g|Pod LelI||— Podg)
[ (g [ of “<oinfy [

1 1/py
— o) (ﬁ2 [ |f|”°dm) -

Since |f] < Mw a.e., it follows from (2.1) that
fl?}]dmgaM fwdm.
I 2I

Since w satisfies the doubling condition fwdmgaffwdw (zee (1.3)), we
o7 I

obtain by combining this estimate with (2.2) that
(2.3) [ 1Hg— (Hg);|do < oM [was.
i I

To prove an analogous result for Hh, let @, be the center of I. Then

1 1
Hh () — Hh do = e dy |d
[ o) —miaae Ifmf,c[%y ] sty aw
1 1
< 2t )y
@hfc‘f‘y”(,f T w) y

Since |f| < Mw a.e. and, for ye(2I)°,

/

I

1

! do < o |1|2)(y—y)*
T—Y WY h - ’

e ©
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the lagt integral is majorized by a constant times

2 w(y)
M|I — dy.
( 7 | G ¥

Oombining inequalities and using condition B, gives
If}l{h(m)_ﬂh(wo)ldmg oM [win.

Therefore, by the argument following (1.1), :

(2.4) [ [Hh (@) — (Hh)|do < oM [wde.
I b

It follows immediately from (2.3) and (2.4) that Hf satisfies (1.4).

We shall now prove the necessity of the condition in Theorem 1.
Thus, let w be non-negative and locally integrable and assume that
whenever . f/weL*, Hf exists and satisfies :

(2.5) [ |Bf — (Hf)zldo < cllfjwll, [wde.
) I

To show that wedy, let w, = w on the left half of I and w, = 0

-elsewhere, and let w, = w on the right half of I and w, = 0 elsewhere.

Letting f = wyy, we have f = w,+w, and Hf = Hw,+ Hw,. Consider
Huw,. For  in the right quarter RI of I, |ib,(%)| < T;—]— f wdz by a simple
I

estimate. Therefore, since by hypothesis

(2.6) [ 180, — (i03)7 1 dw = [ 1Hwy— (Hw,)ldw < ¢ [wda,
I I I

we obtain by extending the integration in the integral on the left side
of (2.6) only over RI that

fl('b~‘71)1|dm<0fwdm.
RI I

. 1 ) _ ~ -1
Thus, [(%);] ¢ il ffw de, and by a similar argument, [(we);| < ¢ T Ifw da.
x

It follows that

~

~ ~ 1
(el = @)+ (als| < 0 If wi.

Since by hypothesis-

[1f=(Hrldw = [ \Hf—(Hf)ldo < o [wia,
I I I
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we obtain

flde < do =¢ [fdo.
If|f|dw<clfwm ciffw

Since 3> 0, it follows from [11], Vol. 1, (2.10) on p. 284 and (2.25) on
p. 256 that

e L f f(l»{~10g+~;—)dw< [ufi+pao<e f fio.
Now let 0<p<l, Bcl, fwdw>ﬁfwdw and 1, {o:elf w (@)

ﬂ }
— di¢. From (2.7
> 217 w (2.7,

fw(l—l—log*—w—)dwg ¢ fwdm,
Wy 7

i
go that

I .
(2.8) (1 +log™ §|IE|! ) fwdm <e fwdm.

Since fwdw> ] fwdw and f wdw 18 f'wd'v, it follows that [wda

iy

> 1B j wdz. Subsmtutmg 1nto (2 8) we obtaﬂn

Bl
(1—1—1 g+2]E|) fwd.z; ifwdm,

or (L-+log* (B111/2 |B]) ) < 2¢/p. Hence, there exists o guch that 0 < a <1
and |I]/|B| < 1/e. This shows that wed,, since 11‘, |B) < alI| then
fwd:c < ﬁf'wdm

To show that weB,, fix I and let f = f, = min[k, wy,], where % is
a positive integer and J is the part of (2I)° which lies to the left of I.
By (2.5),

J1Hf — (Bf);dw < ¢ [ wia,
I . I
with ¢ independent of & and I. Therefore,

1 1 1 , -
[ mf[f(m_y t_y)f(y)dfy]dt do < adem.
i Ly v

Since f is bounded, we may interchange the two inner integrals in this
expression to obtain .
dt
an

olf(z

de <o | wde.
f

©
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This inequality is true a fortiori if the outermost integration on the left
is extended only over the left quarter LI of I. But for zeLI and yedJ,
it is mot hard to see that

f( L L)M et
w—y iy (m—y)*’

I

where %, is the center of I. Since f > 0, we obtain

17| f([ ,U) dv/) v < ¢ fwdx,
I

2 f(y) .

or

Since an amnalogous result holds for the part of (2I)° which lies to the
right of I, it follows that

. fly)
[P wdx.
e (o 1)2 f

Letting ko0, we obtain from the monotone convergence theorem and
the doubling condition that e B,. The proof of Theorem 1 is now complete.

Proof of Theorem 2. To prove Theorem 2, we first note that the
sufficiency follows from Theorem 1. In fact, if wed, or if wed,NB,,
then wed,NB, and so, by Theorem 1, (1.4) holds. However, if wed,,
then.

fwdnn c[I[ess infw = c[II/ess sup 1

and if wed,, 1<p< oo, then

. 1 1-p
j wiw < ¢|I| (»— f w—l/w—wczm)
I "[I s

Corrvespondingly, (1.5) or (1.6) holds.
To prove the necessity of the condition in Theorem. 2, let f = wy; for
a given I. Then since

b

f‘ w(y) ay

Fon =| | 5=

it follows that for #el0l — 9I

- 1 1
(2.9) floi< - [y,
I
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and for webl — 41,

. 11 x

(2.10) E-l—ﬁlfwdyé I (@)l

‘We have
[F~Puldo= [ 1f~Puddot+ [ 1f=(Puarldo.
107 101-91 5I--4I

In view of (2.9) and (2.10), the integmnd of at'least one of the integrals

on the right is bounded below by —- f wdy. Therefore,

24 |[|
(2.11) [\ = Parlw > 5 [ wiy-
107

If (1.5) holds, then

[ 1~ Pt = g [ 17—t

101

[10[ |

< cessinfw < cessinfuw,
0r I

and if (1.6) holds;
(~1)
< ~1(n~1)
oz | e (37 g )

1 ~(@-1)
<¢ (—fw"”“’“”dm) .
[} 4

Using (2.11), we see that wed, in the first case and wed,, in the second.
To show that weB;, we need only consider the second case. Since the

inequality
1 -
1< |- | wd w‘l“’“l’dw)
( i If ) ( [ f

is always true, (1.6) implies (1.4). Therefore, by Theorem 1, (1.6) implies
that weB,. This completes the proof of Theorem 2.

§ 3. Proofs of Theorems 3-5. To prove the remaining results, we will
need the following two lemmas. We recall the notation m,, (M) == L[ w dw.

LevmA (3.1). Let 1< p< co and 1/p+1 [p" = 1. If wed,, there is

a constant ¢ such that
My (mel s w(w) < f) <o (ﬂ-—]—ll— W'm (I)
N T U (M)

for all I and every § > 0.
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Proof. We have
1 1y . , . :
mw(I: w << ﬂ) = My (I — > —) < ,Bp fwl.—p dr = [31) fW%/(pFl)dw.
w B i i
Since wed,,

L v NPT (1 -1
(wlﬂlfw e ”dm) go(ﬁl—ffwdm) = ¢|I|/my,(I)

Hence,

. T 1Y Ko B o 1V ([
My (Lt w<< B) < [m (I)] L] = [mw(l)] My, (L) .

The second lemma is a weighted version of the Calderén—Zygmund
decomposition lemma [1]. By (1.3), any wed, satisfies the doubling
condition m,,(2.I) << emy,, (I). .

LeMMA (3.2). Let w satisfy the doubling condition, and let f be a non-

1
negative function which satisfies D f fwdz<s for a given I and s.
I

w
Then there exist non-overlapping subcubes I, & =1,2, ..., of I, and a con-
stant ¢ depending only on w such that f<s ae in I—JI, and s
1
L —— | fwdm < ¢'s.
h mw(IIc) I}{ h
Proof. The proof is nearly identical to that of the usual Calderén—
Zygmund lemma. Subdivide I into 2" non-overlapping subecubes of

equal size and collect those subcubes I’ with f fwda > s. Continue

1
mw(I ’) I
subdividing each of those for which this average is at most s, collecting
at each stage those cubes for which the average exceeds s. The totality
of collected cubes, ordered in any way, is {I,}. By construction,

-1
o j fwdx > s,
while for each % there is a cube J), containing I, with

1
=o' and e [fudo<s
k

w

Therefore,

{fwdw 8,

Mg T) Vo
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and so, by the doubling condition,

.__.—-1 ffwdw <08
mw(Ik) Iy

Finally, every ze I— ) I, belongs to a sequence of cubes J,, with |,,[-0

and L f fwdz < s. For almost every such #, JJebewuo s differentia-
mw(J )Jm
tion theorem gives

(@) = lim - 1l M[JI jf? din

me-ro0 My (¢ (

fla) =

This completes the proof.

Proof of Theorem 3. The proof of Theorem 3 is bhased on the
method of John and Nirenberg [6]. The arguments for p == 1 and 1 < p < co
are slightly different. Let f satisfy

Jir-site<o, 5= ‘ITffdw,

m, (I

for all subcubes I of a given I,. Replacing f by f/e¢, we may assume from
the beginning that ¢ = 1. Thus, let # denote the class of all pairs f and
I, such that

—— — <1 for al I,.
mw(I)jflf filde <1  for alll = I,

The cube I, is not fixed; it may vary with f. For any pair f and I, inZ, let
Ma; I) = 4(f; Lo; o; I)“‘mw(‘ﬂel [ () ~ frl (@) >a)

for ¢> 0 and I < I,. Then, by Tschebyshev’s inequality,
1 .
Ma; I) < f f=lddo < Zmy(D), I< I,

Let #(a) = supi(a; I)/m,(I), where the supremum i hldmn over all
I = I, for all pairs fa,nd I, in#. Thus, #(a) < Min[1/e, 1]. We will prove
Theorem 3 by showing that, given w, there arve comtﬂlntﬂ c(,, Oy g, and.
03 larger than 1 such that if ¢ > ¢y and wed, 'then F(a) <z oge72 and
if a>¢, and weAp, 1< p< oo, then F(a) < caa'“'

For a given pair f and I, m."i we have

f\f Howis<1, Ie,.

m’ll)

©
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1
Apply Lemma (8.2) to I, |f— fll‘,;v— and s, § > 1, to obtain non-overlap-
ping {I;} in I such that

1 . :
(3.3) ]f"fllz,'g sae in I—JI,,
(3.4) o fu —fldn <
-4 § Sy ¢'s.
'm’w([}c) !
It s < a, (3.3) implies that \f—«ffizumg a a.e in I—{JI;, so that

s D) =T =i > ) < Smw(fk (=t > o).

Hence, for 1<s<aand 0y <a

(8.8) Aoz I)

" 1 1
= 2, o (Ila: I =Tyl > a—-?’) +2m'w (Ich Vg —fil > V)-
e k

We will estimaite each of these two sums. Since the pair f, I, belongs to F,
the terms of the first sum on the right of (3.5) are A(a—y; I,). Since
Z(a-—y, I) < F(a—y)m,(l;), we obtain for the first sum at most
Fla—yp) me I). By (3.4), '

36 Dmta<s > [ir-pla< f =il < (1),
Iy

Therefore, combining inequalities, our estimate for the first sum (3.5) is

8

. e F(a—y)
I Y e amy) < T2, 0.
For the second suw. on the right in (3.5), we have by (3.4)

My (1)
D“l f” —hilde S o=

We will estimate the terms of the second sum differently for p = 1 and
1< p<< co. If wed,, then my, (L)l <e¢ ebq 1nf w. Therefore, combining
inequalities, we obtain

(38) Ufy~fil = m f (f=fr)do| <

- — < ( <““‘"‘0(08 SSi f )
3.9 v A Lt |, —F y| << my, (L w essinf w).
( . ) 'mw( e ‘fl}n fll > 3 k 1,


GUEST


234 B. Muckenhoupt and R. L. Wheeden

"

Now choose s =2, y = 2¢'¢. Then if a >y, we have 1< ¢ < a and
0 < y < a as requived. (Note that ¢, ¢ > 1.) From (3.9)

1 .
ey (Ik |fIk—fII'E >y|< mw(Ik: w < eS?]nf W) =0
k

so that the second sum in (3.5) is zero. Therefore, by (3.5) and (3.7),
Ma; I) < 37 (a—y)m,(I) if o>y and I < I,. Hence, & (a) < §# (a—y)
if a>y. If m is a positive integer and o satisfies my < a << (m--1)y, it
follows that# (a) < 27 F (a—p) <... < 27"F (a—my). SinceF (a —my)<1
and m > afy—1 for such a, we obtain.

1-2 —-(~1-10p{2)u
Fla)<2™"<L2 "=2¢ 7 .
. 1 g s
Therefore, with ¢, =2 and ¢, = —1og 2, F(a) < 6,672 i a>9y and
Y

weA,. This completes the proof of Theorem 3 in case wed,.
Next, suppose wed,, 1< p<< . By (3.8),

1 ; o's my, (I,
(3'10) Moy (Iln: lflk *fll —’l;J_ > V) é Mgy (Ilc: w < 7 _JllT;r]L)‘) .

By Lemma (3.1), the right-side of (3.10) is at most ¢[¢s [y 17 m,(I;). If we
now add over k and use (3.8), our estimate for the second sum. (3.5) is

i £au
Sl =i o) < e[S X matmy

<[ ]2 L
¢ **7—}—‘ —g’l)?«w(I) = ¢ —;F-mw(I)A

Combining this and (3.7), we obtain from (3.5) that
Fla— -t
(3.11) Mo D)< e [Jﬁs-i'l + fw] iy (T)
, Y

if 1 <s<a, 0<y<o I<I, and wed,, 1< p< co. Now choose
s =47¢", y = af2 and ¢, = max[s, ¢ 27", Then (3.11) implies

(3.12) Fla) < 4*”37(%) topa™® i a> g

We will show by induction that if ¢, < a < 2¢, and m is a non-negative
integer then

(3.13) F(2™a) < (2007 (2™ a)™7",

©
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~When m = 0, F(2"a) < 1< (2¢,)”"a?. Assuming (3.13) for m—1, we

have from (3.12) that
F(2"a) <47V F (2" a) +6,(2"a)
<47 (200) (2" a) ™ 4 0 (2™ @) V'
= (267 (2" )27 427 7.
Since 277 27 gh? < 27 - 97 < 1, (3.13) follows. Therefore, if a > ¢,
F(a) < (200 @, which corapletes the proof of Theorem 3.
Proot of Theorem 4. By Hélder’s inequality,

J1i=fdde< ([ 1f=seroot=ao)"( [ waa)"
I I

for 1< r< oo, Llr--1jr" = 1. Therefore, if f satisties (1.9), that is, if
[If=Felwt" do < c}f wdw for some r, then
I j

[15=tildo < o ([ wda """ = " [wda.
i I 1 .

Thevefore, f is of bounded mean oscillation with weight w.
Oonversely, suppose that f is of hounded mean oscillation with
weight w. Then, for 0 < 7 < oo,

[ —fdrw=rdw = [(f—flw™ywis =r [ & 2(a; I)da,

I i b
where A(a; I} = my(L: |f—frlw™> a). I wed,, then by Theorem 3,
Aa; I) < 6re7%2%my, (I). Therefore,

[l ~forwt=rdw < oyr [ ate™sdam,(I) = omy(I).
I 0

On the other hand, if wed,, 1 < p < oo, then by [7], Lemma 5 (extended
to n dimensions on p. 222), there exists s > 0 such that weA,_,. Therefore,
by Theorem 3,

J1f = folrwt="dw < ey [ a1+ 0)™0Y dam, (1)

z 0
T 0<r< (p--e), this is & constant times m,(I). Since p’ < (p—¢),
it follows that f satisties (1.9) for 0 < r < p', Wwhich completes the proof
of Theorem. 4. . '

Note that the proof ghows that if f is of bounded mean oscillation

with weight w and wed,, 1 < p < oo, then (1.9) even holds for r slightly
larger than p': r < (p—¢)' for some &> 0. However, we will now give
an examyple ‘which shows that, given p, no ¢ larger than p’ can be used
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in (1.9) for all f and w which satisty (1.1) and we4,,. Given p and » satistying

1<p< ooandr>9p, let

w=a" 12y,
Then wed,, on [0, 1]; in fact, 297 (1 —2)¥ " e.d, on [0, 1]if 1< g<< p < oo.
Let f =1 on [0, ] and f = 2 on [}, 1]. Then fis of bounded mean oscil-

lation on [0, 1] with weight w. To see this, note that if I < [0, 1] and.
% ¢I, then jf]f—flldm = 0, while if 47, then ‘

JIf—fldo< [(f+fao<4ill  and  m,(I) > o],
i 7 {1l
On the other hand, taking I = [0, 1], we have f; =} and (2]
1/2
[ =flw o> [ (37 [0 (3P dw = oo, 3]
I 0 ‘ [4]
since (r'—1)(1—r) = —1. Therefore, f and w do not satisty (L1.9) for r,
Changing the roles of the indices, we see from the same argument that [5]
J satisfies (1.1) with w = #”~'(1—)*"", but that f and w do not satisty
(1.9) with r =~ p" even though w belongs to 4, for all ¢ > p.
We conclude by sketching the proof of the result related to (1.2) which el
‘was mentioned in the introduction. [
) 'TH:EOREM 5. Let weA,,. Then f satisfies (1.2) for all I < Iy if and only
if fis of bounded mean oscillation on Iy; that is, if and only if there is o con- (8]
stant ¢ such that for all I < I,
(9]
If—filde < e |I].
[[ fI = | I [10]
Proof. If f is of bounded mean oscillation on I,, then by the result:
of John and Nirenberg (Theorem 3 above with w = 1), (I: |f=f¢l > o)l {11]

< e 6”2} for I <],. Since Wedy, (1.3) implies m,(I: |f—Ffy > a
< ce,e™@m (1) for I < I,. Therefore, ‘ ! Tl

If \f =frlwds = [ m,(I: |f—f;l > a)da < ¢ my( 1),
0

A simple argument like that following (1.1) now shows that
flf—'c,]wclws: ¢“my(I) where ¢y = - 1 '{mdw.
R mw.n(l) i '

Conversely, suppose that wed,, and f satisfies (1.2) for T < I,. An
argument exa‘,ctly like that of John and Nirenberg (the proof of Theorem,
3f corresponding to 4, and w =1) using w-measure everywhere instend
of Lebesgue measure, and using the Calderén-Zygmund lemms in the.
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form of Lemma (3.2), shows that my,(I: |f—e;| > a) < 6,62 m,,(I) for
I < I,. Since wed,, (1.3) implies

(L: |f—el > a)l < oe~@ 1| for I< I,

which, of course implies that f is of bounded mean oscillation. This com-
pletes the proof of Theorem 5.
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