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Admissible translates of stable measures
by
JOEL ZINN* (Amherst, Mass.)

Abstract. 'Weo investigate the structure of the set of admissible translates of
a stable measure, and we obtain bounds on the size of this set. We then apply this
to show that certain stable stochastic processes have no non-trivial admissible translates.

1. Introduction. It is the purpose of this paper to examine the set
A, of the admissible translates of a stable measure x4 on & real separable
Hilbert space. For the special case of a Gaussian measure the set 4, can
be described, completely, through the characteristic functional of u (see
[8], Theorem 4.1). For a general infinitely divisible meaure » Gikhman
and Skorokhod ([5], Theorem 6.1) have obtained sufficient conditions
for an element of the Hilbert space to be an admissible translate of ».
However, the conditions of Theorem 6.1 [5] are difficult to verify. Theorem
6.2 [B] simplifies the conditions in the cage of a stable measure, but
unfortunately Theorem 6.2 is false. In contrast to [5] our main goal is
to obtain information on the structure of the set A, (see Pitcher [13])
and to obtain measure theoretic and algebraic bounds on the size of 4,.
For example, we show that (i) 4, is a cone in H, and (ii) 4, is a Borel
set of u-measure zero.

The organization of the paper is as follows. Section 2 contains the
preliminaries and Section 3 containy some general theorems on the
structure of 4,. In Section 4 we specialize to stable measures and in
Section 5 we restrict our attention to stable measures on a real separable
Hilbert space. Section 6 contains some results, which are useful for the
applications given in Section 7. We conclude in Section 8 with some-
questions, and some remarks on these guestions.

2. Preliminaries. X (and Y) always denote o real, Hausdorff, topo-
logical vector space (RETVS). #(X) will denote the o-algebra generated
by the open sets of X, and the sets in #(X) will be referred to as Borel
sets. u will always represent a probability measure on #(X) and Z,(X)
will denote the u-completion of #(X). (X) will denote the set of prob-
ability measures on #(X), and #(X) will be given the weak star top-
ology.
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It © is a meagurable mapping of (X, #(X)) into (¥, #(Y)) and

uedt (X), then u®est(Y) will be defined by
p(B) = p(¢7(B))

for all Be #(Y). If ®(x) = w+2 (for some zeX), then we write u, for u?.
If &(x) = 7 (for some 7eR\{0}), then we write x° for u®

DrrINITION 1. An element ae X ig said to be an admissible transiate
(resp., singular translate) of u, if u, is absolutely continuous (resp., singular)
with respect to u (denoted by u, < u and g, | u, respectively).

Throughout 4, (resp., §,) will denote the set of admissible (resp.,

singular) translates of u. In the case where X has a non-trivial topological
dual X*, the characteristic functional of 4 is the function on X* given by

(@) = [ u(ay),

for all 2*eX*, where (z*, y> = a*(y) for yeX and a*eX*. If X is a Hil-
bert space, then we identify X* with X and (s, y> means the inner prod-
ugt-of # and y. For probability measures i and » on X, g ig defined by

v (B) = [ u(B—a)y(do)
for all HeZ(X).

When we refer to a set ¢ as being a subgroup of X, we, of course,

mean that @ is & subgroup under addition, Finally, m will denote Lebesgue
measure on the real line.

3. In this section we present some general results on A,.

Let G, (resp., 6*) = (M@ where the intersection is taken over sub-
groups &, of X such that Ge%,(X) and u(G) >0 (vesp., u(@) = 1).

DEFINITION 2. A set € in X is said to be a cone if ceC and > 0
implies AceC, and ¢,, 6,0 implies ¢, =+ cyeC.

ProPoSITION 1. Let 1 be a regular, tight probability measure on X.

(1) If ©¢@, then wu, | u.

(i) If 4, is & cone in X, then A,—-4, cd,.

Proof. (i) Let G be a subgroup of X such. that G e #,(X)and w(@) = 1.
Then 2¢G implies GN(G~2) =g, Hence u,(@) = u(G —u) == 0,

(ii) Let @ be a subgroup of X such that Ged,(X) and u(d) >0,
and let aed,. We are to show aed. Since 4 is regular and. tight, we may
choose G < @ such that Gye Z(X) and u(G,) > 0 (see [19], Odro]]a.ry 1.1).
Let H = {AcR*: JacG,}. H is a Borel set in R, since X is an RIITVS.

If m(H) = 0, then there exists an uncountable collection. of positive
real numbers {1,} such that {H — 4,4} are pairwise disjoint. Hence
{Gy— 2.4} are pairwige disjoint. However, u(@o) > 0 implies WG —A,a)>0,

©
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since 4, is a cone. This ig impossible. Hence m (H) > 0 and therefore
H = R. This in turn implies aecd,.

For the remainder of this section we assume that X is also a complete,
geparable metric space.

PROPOSITION 2. 4,eZ(X).

Proof. Since X iy a coniplete separable metric space, there exists
a compact metrie space K, and a continuous injection. F: XK (see [6],
Theorem 2-46, pp. 68~69). Note that F(X) is a Borel set of K (see, e.g.,
Theorem 3.9 [12]). The map T: X4 (K) detined by T(z) = (u,)" is
continuous. By Theorems 2.10 and 3.1, [1], we know that the map
A: A (K)—>H (K) defined by A(v) = absolutely continuous part of v with
respect to u¥, is #(X)-measurable. Hence {weX: Ao T () = T'(2)} e B(X).
We are done since

A, = {0eX: AT (z) = T(m)}.

ProrostmIoN 3. Suppose that A, is a cone in X.

Then either u(A,) =0 or A, is finite dimensional.

Proof. By Proposition 2, 4, is a Borel set in X.

Lot » = w*u™". Then 4,, which is also a Borel set, contains 4,—4,.
If p(A,) >0, then »(4A)> u*(4,—4,)>0. If y =y restricted to 4,,
then by Feldman [4] (see also Sudakov [18]), A4, is finite dimensional.

PROPOSITION 4. Let X and Y be given and let u be a probability measure
on B (X). Assume that A: X—Y is measuwrable and linear. Then (a)/l“l(S”A)
< 8, and therefore (b) A, < A~1(S2A)' Note that if A is an injection then
(e) A‘I(A#A) =4,

4. In this section we restrict ourselves to stable measures (defined
below).

DEFINITION 3. A probability measure u on #(X) is said to be stable
of index o if for any A, v > 0, there exists y<X (y depends on 1 and 7)
such that plsp" = (4),, where ¢* = 2*+2°

DEFINITION 4. A probability measure x4 on %(x) is symmetric if
u(d) = u(—4) for all AeZ(z).

ProrosITIoN 5. A, ds @ cone in X.

Proof. Fix 0 < A< 1 and choose v > 0 such that 2“4-7* = 1. Suppose
that aed, and u(B) = 0. Now there exists 2 = 2(4, ) such that u, = p'*u’.
Hence ‘

0= pu(B) = p,(B+2) = [ u'(B+e—a)u (do)
= [p(\ B +2) — 47 1) pu (do) .
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Therefore p(A™'(B+2)—A"'tx) = 0 for p-almost all . Since aed,, we
have 0= p (A" (H+2)— i w0 —a) = (A" (B +2— Aa) — A~ 7z) for p-almogt
all z. This yields .

talB) = po(B+e—da) = [u(27(B-+2—4a)—~ 2" ta)u(ds) = 0.

We have just shown aed, implies Aaed, for 0 <1< 1. Since 0ed, and
G = {A: uy, < u} is & semigroup in R, @ contains [0, co).

CoROLLARY B.1. If u is a symmetric stable measure on %H(X), then
A, is a linear subspace of X.

Proof. Since x is symmetric, 4, = —4,.

. CorOLLARY B8.2. If u is a stable measure on #(X), which is regular
and tight, then A,—4,<@,.

Proof. Apply Proposition 1 (ii).

Remark. Let M,(resp., M*) be the intersection of gll linear sub-
spaces M of X such that MeZ(X) and u(M) >0 (resp., u(M) = 1).
It has been shown by Dudley and Kanter [3] that u(M)> 0 implies
4(M) = 1. Hence M, = M*. Hence in order to prove that for u symmetric
'we have, for every weX, either u, | u or u,~u, it is sufficient to show
that 4, = M,. (To see the sufficiency apply Proposition 1.) For a Gaussian
measure on a real separable Hilbert space .4, = M, (see [19], Theorem 5)
and hence for such measures we have the above-mentioned dichotomy.

COROLLARY 5.3. If u is a stable measure, then either wld,—A,) =0
or A, is finite dimensional.

Proof. Apply Proposition 3.

Remark. If 4,—4, is finite dimensional and wu(d,—A4,) > 0, then

A,~4, = support of u (by [3]). Hence either w4, —4,) =0or 4, ‘A,4'

= support of u.

5. From this point on X will be separable Hilbert space.

Let # be a symmetric stable measure of index a on & (X). In [9]
Kuelbs has shown that there exists a symmetric, finite, positive Borel
measure I' on the unit sphere

8 = {eX: |l = 1L}
such that
Ay) = exp{~ [ Ky, OIT(@O)]  (seo also [8]).
§

We will use the motation u = [a, I'].

. {At thig ;point we give a couterexample to Theorem 6.2 [5]. Choose
a finite positive Borel measure I" on the unit sphere of an infinite-dimen-
sional (separable) Hilbert space, such that the support of I ig all of S.

e ©
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Then, for acH,

el |l @ 1 1}
= lim ——— | 6I'(d0 her B, ={0:8:||— — 0]l < —¢.
@ =l s ,f 40), where - { ; “ TR
“y
Now, Theorem 6.2 [5] implies that acd,, ie., _A',‘ = H, contradicting
Proposition 3. For another counterexample see [20].

Now let Hy == {yeX: J [<y, 631417(d6) = 0}. H, is a closed subspace

of X. Let H = Hy, Thenhit is easy to see that u(H) = 1. Now complete
H with respect to the metric |||, given by
' [[Ky, 051 T(@o) it a>1,
S
Il t 1<y, 851 I(as) H#o<a<l.

I~
Note that
8y it ax=1,

K . < .
Il < ‘ WiErs) it 0<a<1,
and hence |||, r i3 continuous. Let B(a, I') denote this completed space.
‘We, therefore, have the continuous injection ¢: H->B(a, I'). Bince 7 is
one to one and has dense range, and since H is a Hilbert space, the adjoint
map i*: B*(a, I)-H" = H is one to one and if o> 1 has dense range.

. Note, also, that 4 is & compact operator, and hence so is i*.

TarOREM 6. If acX\i*(B*(a, I'), then p, 1 p.

Proot. It is enough to show that u, | u for acH\i*(B*(a, I')), since
w(H) =1. We claim that there exists a sequence {,};; < H such that
ll# (bp)la,r—>0 and <a, b,> =1 for all n. Suppose not. Therefore for every
sequence {b,} = H such that [i(b,)ll,,,—0, Wwe have {a, b,>~>0. Hence
it we define @ on ¢(H) by Z(i(z)) = {a, x>, then the above assumption
can be rephrased as saying that @ is continuous on ¢(H) in the metric
I |lo,z- Therefore we can extend 7 to a continuous linear functional on
B(a, I'). But note that {w, *a) = {iw, @) = <o, x> for all weH. Hence
i*(@) = a or wei*(B"(q,I"), & contradiction.

Now choose {b,} = H such that [i(b,)l,r—0 and {a,b,> =1 for
all n. We have -

[ y(dw) = s (1b,) = exp {— 0|6 (b)) 1

a§ n-=oco, where

1 i 0<a<l,
s(a) = N
o i 1l<a<<2,
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Therefore (-, b,>—0 in p-measure and hence some subsequence {b, } of
{b,} converges to zero for p-almost all 4. On the other hand,

« il > by, > N
fe ¥ () = 61 " /"(tbnk) = ‘(tbn,)

Therefore (-, b, >—1 in u,-measure, and thus a subsequence of {0y} con-
verges to one for u,-almost all ». Hence u | u,.

OOROLLARY 6.1. M* < i*(B*(a, I')).

Proof. Fix acH\i*(B*(a, ). For any sequence {y,} < H, define
M{y,} = {zeH: lim{z, y,> = 0}.

M{y,} is clearly a measurable set which is also a linear subspace. By the
proof of Theorem 6 we see that there exists a sequence {b,} = H such
that {a, b3, =1, li(d,)ll,r—>0 and u(M {b,}) = 1. However, a ¢Jl/[{b } and
hence @ ¢ M*.

- In .the next proposition we find a sufficient condition for the
singularity of the symmetric stable measures. Lt u; = [a;, I3] (¢ =1, 2)
be given. ’

PropostrIon 7. If {||* [, h © =1, 2 are not equivalent melrios on X;
then py |ty

Proof. If {|- H,,ir}, % =1,2 are not equivalent, there exists (for
ex?m)plei {,} = X such that nwnll.,],pl—a»o and [#,lla,,r, = 1 for all n. Hence
H1\Z,

Thus there exists a subsequence {, } such th

-~ at u(M{w,}) =1
where M {m, } is defined as.in Corollary 6]]) By Dudley and Ig%,ntex’s
Zero-one law [3], M{w,} has u,-measure zero or one. If uy(M {, }) } =1,
then i(z, n,)—>1; DY the Bounded Convergence Theoren. I:towevel:c s (@,

= exp{— o, 9.} = exp{—1} £ 1, a contradiction. He
=0 and thus 4, | 4. noe iy (M {,,))

6. In this section we present results which will be useful in applications
to stable processes.

ek I;ROPOSI;I“EION 8. Eo;t{g-‘,c},ﬁ,l be a sequence of independent random variables
uch that H[e"r] = ¢=° for some fized a, 0 < a2, Let ,u be the measure

.on R* induced by the sequence {&). Then A, = {aeR*: Z’ o}, < col.

Proof. This follows from Shepp [15] (or LeCam [10]) and the fact
that the stable density has finite Fisher information.

In the applications to stable processes we will only need. that Z = oo

implies g, | . This follows more easily from Dudley [2] (Themrem 2).

e © ‘
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QorOLLARY 8.1, Let u = [a, I'] be given where the support of I' is the
orthonormal set {e;} in X and I'{e,} = A,. Then

had , 2
A, = {weX: @ o < oo}.

12/11
k=1 T

Proof. Consider the map A: X—>R® defined by

<{L‘ (’lc>

A(w) = {"E”“ .

and note that the ,andom variables &, on R® given by & (@) = x, satisfy
the hypotheses of Proposition 8.

Remark. Under the hypotheses of Corollary 8.1 it is easy to see

that if a>1

|<{L‘, e7c>|lﬂ < Oo}

i*(B*(a, r)) ={meX: "—'7;6/(1

k=1
where 1/a-1/8 = 1. Hence (in this case) *(B"(a, I')) # 4, unless a = 2.

DuFINITION 5. A stochastic process {¥;: 0 <t <1} is said to be a
stable process of indew o if the finite-dimensional distributions of {Y3}

are all stable (of index a).
Let {X,: 0 <t<1} be the stable process of type guch that

) {X,} has stationary and independent increments and
(i) BeMEO] = ¢hH®,
Tor the remainder of this paper {X;} will always denote such a process.
Let D[I*] be the Skorokhod space of real-valued function on the’
square I* = [0, 1] [0, 1], which has been studied by Straf [17] and
Neuhaus [11]. Similary let D[I] be the usual Skorokhod space (again,
see, e.g. [17]). For a function geL* = L*([0, 1], m) the stochastic integral

J ¢(1)dX (1) has been defined by Schilder [14]. Hence for feD[I*] we
0
may dofine the process {¥,: 0 <<t< 1} by the formula

Y (1) = [f(t,8)dX(8).
0

Tt is not hard to see that ¥ is a symmetric stable process with sample
paths in L*[1]. We now prove a Fubini-type result.
ProrosIiioN 9. Let {X,: tel} be as above. Then if feD[I®), we have

() ufl[oflftst ()] at f[fftsdt]dX()
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o
o
[5]

Proof. Choose {f,} = D[I*] such that

Z wLr,, 01z, (8)

j=1

and (see Straf [17]) f, converges to f uniformly. Since (x) holds trivially
for f,, we need only show:

@) : fl[j'f,,(t, s)dX(s)] dt—+f1[j'f(l, s)dX(s)'] dt
(] [\ '] ’

in probability and

11, 11 )
(i) [[[fatts 911 ax(s)~ [ [ [f(t,9)at] ax(s)
N 0 0 0 0
in probability. ‘
To show (i) we shall compute the characteristic function of

1

J1[ (Gatts ) =12, 9) ax (s)] a

0

and show that 4t converges to 1. But

N 1
g[of Falty- (t-1, ) 4 (8)] (t; —1,_y) i
1 1\_7‘1 ‘
Bt PXCEUBACRDES VRIS &)

has the characteristic function

1

D(u) = exp{~ lu]“f
0

N
2 Ot Falhon, )= (s, ) [*as).

Now since f, and f are bounded, we have (by approximating the integrals
and taking limits): ' )

0f|0ffnm f(t, 8))dX (s ]m

has the characteristic function

( ——exp{ lufe flflfﬂts)~—fts) ds}

10
Tt
&
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Therefore, since f,—>f uniformly,

11
ﬂf(fwt 8)—f(t, S)dt‘ ds—>0.
00
This yields
1 1 11
f[ff”(t’ ”dX(‘*)] d"’f[ff(t, s)dX(s)] t,
0 0 e

in. probability. (ii) follows even more simply.

Hince the paths of Y (for feD[I*]) are in IL*[I], ¥ induces a
measure p on .L*[I] which is symmetric stable of index o. Hence u
= [a, I". We shall now describe I' in terms of the given f, if a< 2.

For ze((I) the characteristic function of

Jem @it = [[[=f,9) dX(s)]ﬁ dt

is

“ds} (apply Proposition 9).

D (w) =exp{—- |u|“f1U1

Now define @: I8 by

D(8) = L_:-, where  f(t)=f(¢, s)
I7°He
(we will also define f(s) = f(t, 8)) and |- |, is the Z*-norm). For 4 « Z(S), let

Iy(4) = [ Ifilids.

o=1(a) 8

[ e, oprotas) = [
5 0
1
-/

0

Then. -

f a(t “ f"li dt\ Ifelads

0

1
ufz csdt]

Hence, since the symmetric measure on the sphere is uniquely determined
by u, we have I' = [ 171
For the rest of the paper we make the following assumpbions:
(i) feD[I*, :
(i) span{fy: tel} is demse in L*[I],
(i) span{f®: sel} 4s dense in L*[I1.
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Oonsider the map A: I*—I* defined by
' 1
(do)(s) = [@()f(t, 8)dt.
5 .

(i) and (iii) imply that 4.is an injection. (Note that A iy c}'ea'r].y continuous.)
By (i) and (ii) we have that the range of 4 is dense in I* and hence in I°
Since [#ll,r = Il4al,, We obtain B(a, I') = L°[0, 1].
Now if a = i*(b*), then
1

1 1 R 1 N
[ [[=f, @] as = [ ()] [5* ()12, s)ds]dt.
0 0 0 0

Hence
1

(@) (1) = [B*(s)f(t, 8)ds.
0
We record the above remarks as
ProposrTION 10. If f satisfies (i), (ii) and (iii) (above), then B(a,I")
= I°[I] and
1
i*(B*(a,I) = {.’L‘ELZEI]: @(t) =fb*(s)f(t,s)cls for some b*e[L“[I]]"}.
S i :
CoROLLARY 10.1. If f satisfies (i), (i) and (i) and 0 < ¢ < 1, then
4, = (0) and moreover, a # 0 implies u, | .
Proof. (Z°[I])* = (0) for 0< a< 1. Now apply Proposition 6.
OoroLLARY 10.2. Let{X{®} and {X} be stable processes with indices
« and f (# a), respectively, such that {X{¥} and {XP} have stationary,
independent increments.,, Let

1

1
[ 10, 9)dXs),  and  Z(1) = [ g(t, 5)ax0(s),
0

0

(1)

i

N

where f and g savisfy (i), (ii) and (iil). Then the measures wond v induoced
by Y and Z, rvespectively, are singular. '
Prootf. Apply Proposition 7.

7. In this section we will show that the set of admissible translates
of the measure associated with the process X, (defined previously) is
1

trivial. Note that X (1) = [1,,(s)dX (s), and F(2, 8) = Ly y(s). Therefore
J i

¢
@¢5"(B* (a, I") if and only if o (t) = [ 9(s)ds where ge(L°[T])*. By Corollary
o
10.1, i*(B*(a, I')) =(0)if 0 < a< 1.

icm°
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For 1< < 2 we must do a little more work. For toe[0,1) and t;)¢,
define the map A: D(I}-R>® by

A@) = <M“(t’)'m(tj;;‘)> )
(ti—t1) i=1
By Proposition 8, 4,. ={acR*: 3 a} < o). By Kakutani [7], A,
1]

= (8,~)° and therefore, by Proposition 4, 4, < A7 A,
We now conclude that wed, implies that

o0

PRI .

(=)

for all sequences {1}, < I, which are strictly decreasing.
If

B (%) — (1)
) D

converges t0 a non-zero constant, and

o

1 1
(%) Z(tf“th)m = 00 (—a— + = 1),

=1
then

Im((ttz): #(t) :_Z & (t;) — @ (%40)* (fg — 1y, )P
=1 g i=1

4 b)) (8 —1;14)
[ e\
> 2.1 (_t;) (ti— 1) = oo,
=N,
This would: contiradict sed,. However,

@ (ty) — w(t, ) 1 i

S = [ g()ds (geIA(D)).
b=t bt L

It g +# 0, it is not hard to construct a sequence ;{1 such that () and
(*%) hold. Hence ¢ = 0 a.e. and 2 = 0.

Remark. Let {¥;: 0 <t 1} be a symmetric stable process with
independent inerements. Suppose also that { ¥,} is stochastically continuous.
Then H[e™®] =exp{—y(t)|u|*}, where

5 — Studia Mathematica LIV.$
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(1) y(0) =0,

(2) y is non-decreasing,

(3) y iz continuous.

If we let 0(t) =inf{s: y(s)>
to X (t). Define

A: DI)=D([0,6(1)]) by A =y(5(H)

By Proposition 4(c), 47'(4,~) = 4,, where g is the measure on D(I)
induced by Y. By the above results 4,. = (0) and hence A4, = (0).

Note that the non-existence of non-trivial admissible translates of
X, (or ¥;) also follows from Theorem 7.3 [5].

t}, then Z(1) = ¥(4(1)) is equivalent

for yeD(I).

8. We end this paper with some questions and remarks.

We can always write I” = I [y, where I’ sits on finite—dimeinsi.onu{l
sets, and I, (F) = 0 for any finite-dimensional set. Lctw = L'a, j,’f]’ and,
foo = [0y I, ]. Then p = upxpy,. It Tp(F) > 0 for some flnl,‘r.e-(mn,enm011&21
set F, then Iy = I+ TP, where I'Y is I restricted to ¥ and I
=I—I'®. Hence uy = uP»pf) and certainly 4 gy # (0). Therefore
.A,‘J, #(0). Also, 4,> Auf—l—AMw. *

QUESTION 1. Is 4, = 4, +4, 1 :

Note that in the case of {X(?)}, I = 0 and 4, = (0).

QUESTION 2. Is A Yoo always trivial?

Recall that via Theorem 5 [16], if aed,,, then g~y X u? == v, where
P iz the projection of X onto the one-dimensional subspace generated
by a, and @ = I —P (I is the identity). Hence the measure on the sphere
T, associated with » has an atom, and the rest of its support is contained
in the orthogonal complement of the span of {a}. Assume that one could
show that u; = [a, ;] and p,~u, implies (]‘”1)"9'\)([1/‘2)@' Thep»sinc_e
aed,  implies wr~uE X p? =9, we would have (L)oo ~()oos Which is
impossible. Hence we would have 4, = (0).

It is easy to see that Theorem 6 is directly related to Theorem L [2].
In [2] Dudley applies Theorem 1 to obtain a hetter bound on 4, in the
case where I" sits on an orthonormal set. However, in the proof (Theorem 2)
Dudley uses some non-linear functionals. It would be interesting to know
if one could prove Theorem 2 [2] using only linear functionals.
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