

Admissible translates of stable measures

Ъy

JOEL ZINN* (Amherst, Mass.)

Abstract. We investigate the structure of the set of admissible translates of a stable measure, and we obtain bounds on the size of this set. We then apply this to show that certain stable stochastic processes have no non-trivial admissible translates.

1. Introduction. It is the purpose of this paper to examine the set A_{μ} of the admissible translates of a stable measure μ on a real separable Hilbert space. For the special case of a Gaussian measure the set A_{μ} can be described, completely, through the characteristic functional of μ (see [5], Theorem 4.1). For a general infinitely divisible measure ν Gikhman and Skorokhod ([5], Theorem 6.1) have obtained sufficient conditions for an element of the Hilbert space to be an admissible translate of ν . However, the conditions of Theorem 6.1 [5] are difficult to verify. Theorem 6.2 [5] simplifies the conditions in the case of a stable measure, but unfortunately Theorem 6.2 is false. In contrast to [5] our main goal is to obtain information on the structure of the set A_{μ} (see Pitcher [13]) and to obtain measure theoretic and algebraic bounds on the size of A_{μ} . For example, we show that (i) A_{μ} is a cone in H, and (ii) A_{μ} is a Borel set of μ -measure zero.

The organization of the paper is as follows. Section 2 contains the preliminaries and Section 3 contains some general theorems on the structure of A_{μ} . In Section 4 we specialize to stable measures and in Section 5 we restrict our attention to stable measures on a real separable Hilbert space. Section 6 contains some results, which are useful for the applications given in Section 7. We conclude in Section 8 with some questions, and some remarks on these questions.

2. Preliminaries. X (and Y) always denote a real, Hausdorff, topological vector space (RHTVS). $\mathscr{D}(X)$ will denote the σ -algebra generated by the open sets of X, and the sets in $\mathscr{D}(X)$ will be referred to as Borel sets. μ will always represent a probability measure on $\mathscr{D}(X)$ and $\mathscr{D}_{\mu}(X)$ will denote the μ -completion of $\mathscr{D}(X)$. $\mathscr{M}(X)$ will denote the set of probability measures on $\mathscr{D}(X)$, and $\mathscr{M}(X)$ will be given the weak star topology.

^{*} Partially supported by NSF grant GP 28683.

If Φ is a measurable mapping of $(X, \mathscr{B}(X))$ into $(Y, \mathscr{B}(Y))$ and $\mu \in \mathscr{M}(X)$, then $\mu^{\sigma} \in \mathscr{M}(Y)$ will be defined by

$$\mu^{\Phi}(E) = \mu(\Phi^{-1}(E))$$

for all $E \in \mathscr{B}(Y)$. If $\Phi(x) = x + z$ (for some $z \in X$), then we write μ_z for μ^{Φ} . If $\Phi(x) = \tau x$ (for some $\tau \in \mathbb{R} \setminus \{0\}$), then we write μ^{τ} for μ^{Φ} .

DEFINITION 1. An element $a \in X$ is said to be an admissible translate (resp., singular translate) of μ , if μ_a is absolutely continuous (resp., singular) with respect to μ (denoted by $\mu_a \ll \mu$ and $\mu_a \perp \mu$, respectively).

Throughout A_{μ} (resp., S_{μ}) will denote the set of admissible (resp., singular) translates of μ . In the case where X has a non-trivial topological dual X^* , the characteristic functional of μ is the function on X^* given by

$$\hat{\mu}(x^*) = \int e^{i\langle x^*, y\rangle} \mu(dy),$$

for all $x^* \in X^*$, where $\langle x^*, y \rangle = x^*(y)$ for $y \in X$ and $x^* \in X^*$. If X is a Hilbert space, then we identify X^* with X and $\langle x, y \rangle$ means the *inner product* of x and y. For probability measures μ and ν on X, $\mu * \nu$ is defined by

$$\mu * \nu(E) = \int \mu(E - x) \nu(dx)$$

for all $E \in \mathcal{B}(X)$.

When we refer to a set G as being a subgroup of X, we, of course, mean that G is a subgroup under addition. Finally, m will denote Lebesgue measure on the real line.

3. In this section we present some general results on A_n .

Let G_{μ} (resp., G^{μ}) = $\bigcap G$ where the intersection is taken over subgroups G, of X such that $G \in \mathcal{B}_{\mu}(X)$ and $\mu(G) > 0$ (resp., $\mu(G) = 1$).

DEFINITION 2. A set C in X is said to be a cone if $c \in C$ and $\lambda > 0$ implies $\lambda c \in C$, and $c_1, c_2 \in C$ implies $c_1 + c_2 \in C$.

Proposition 1. Let μ be a regular, tight probability measure on X.

- (i) If $x \notin G^{\mu}$, then $\mu_x \perp \mu$.
- (ii) If A_{μ} is a cone in X, then $A_{\mu}-A_{\mu}\subseteq G_{\mu}$.

Proof. (i) Let G be a subgroup of X such that $G \in \mathcal{B}_{\mu}(X)$ and $\mu(G) = 1$. Then $x \notin G$ implies $G \cap (G - x) = \varphi$. Hence $\mu_x(G) = \mu(G - x) = 0$.

(ii) Let G be a subgroup of X such that $G \in \mathcal{B}_{\mu}(X)$ and $\mu(G) > 0$, and let $a \in A_{\mu}$. We are to show $a \in G$. Since μ is regular and tight, we may choose $G_0 \leq G$ such that $G_0 \in \mathcal{B}(X)$ and $\mu(G_0) > 0$ (see [19], Corollary 1.1). Let $H = \{\lambda \in \mathbb{R}^1 : \lambda a \in G_0\}$. H is a Borel set in \mathbb{R}^1 , since X is an RHTVS.

If m(H) = 0, then there exists an uncountable collection of positive real numbers $\{\lambda_a\}$ such that $\{H - \lambda_a a\}$ are pairwise disjoint. Hence $\{G_0 - \lambda_a a\}$ are pairwise disjoint. However, $\mu(G_0) > 0$ implies $\mu(G_0 - \lambda_a a) > 0$,

since A_{μ} is a cone. This is impossible. Hence m(H)>0 and therefore H=R. This in turn implies $a\,\epsilon A_{\mu}$.

For the remainder of this section we assume that X is also a complete, separable metric space.

Proposition 2. $A_{\mu} \in \mathcal{B}(X)$.

Proof. Since X is a complete separable metric space, there exists a compact metric space K, and a continuous injection $F\colon X\to K$ (see [6], Theorem 2-46, pp. 68-69). Note that F(X) is a Borel set of K (see, e.g., Theorem 3.9 [12]). The map $T\colon X\to \mathcal{M}(K)$ defined by $T(x)=(\mu_x)^F$ is continuous. By Theorems 2.10 and 3.1, [1], we know that the map $\Lambda\colon \mathcal{M}(K)\to \mathcal{M}(K)$ defined by $\Lambda(v)=$ absolutely continuous part of v with respect to μ^F , is $\mathcal{B}(X)$ -measurable. Hence $\{x\in X\colon \Lambda\circ T(x)=T(x)\}\in \mathcal{B}(X)$. We are done since

$$A_{\mu} = \{x \in X \colon \Lambda \circ T(x) = T(x)\}.$$

Proposition 3. Suppose that A_{μ} is a cone in X. Then either $\mu(A_{\mu}) = 0$ or A_{μ} is finite dimensional.

Proof. By Proposition 2, A_{μ} is a Borel set in X.

Let $v = \mu * \mu^{-1}$. Then A_v , which is also a Borel set, contains $A_{\mu} - A_{\mu}$. If $\mu(A_{\mu}) > 0$, then $\nu(A) \ge \mu^2(A_{\mu} - A_{\mu}) > 0$. If $\gamma = \nu$ restricted to A_v , then by Feldman [4] (see also Sudakov [18]), A_v , is finite dimensional.

PROPOSITION 4. Let X and Y be given and let μ be a probability measure on $\mathscr{B}(X)$. Assume that $\Lambda \colon X \to Y$ is measurable and linear. Then (a) $\Lambda^{-1}(S_{\mu\Lambda}) \subseteq S_{\mu}$ and therefore (b) $A_{\mu} \subseteq \Lambda^{-1}(S_{\mu\Lambda}^c)$. Note that if Λ is an injection then (c) $\Lambda^{-1}(A_{\mu\Lambda}) = A_{\mu}$.

4. In this section we restrict ourselves to stable measures (defined below).

DEFINITION 3. A probability measure μ on $\mathscr{B}(X)$ is said to be stable of index a if for any λ , $\tau > 0$, there exists $y \in X$ (y depends on λ and τ) such that $\mu^{\lambda} * \mu^{\tau} = (\mu^{\nu})_{\mu}$, where $\gamma^{a} = \lambda^{a} + \tau^{a}$.

DEFINITION 4. A probability measure μ on $\mathscr{B}(x)$ is symmetric if $\mu(A) = \mu(-A)$ for all $A \in \mathscr{B}(x)$.

PROPOSITION 5. A, is a cone in X.

Proof. Fix $0<\lambda<1$ and choose $\tau>0$ such that $\lambda^a+\tau^a=1$. Suppose that $a\in A_\mu$ and $\mu(E)=0$. Now there exists $z=z(\lambda,\,\tau)$ such that $\mu_z=\mu^\lambda*\mu^\tau$. Hence

$$\begin{split} \mathbf{0} &= \mu(E) \,= \mu_z(E+z) \,= \int \mu^\lambda(E+z-x) \, \mu^\tau(dx) \\ &= \int \mu(\lambda^{-1}(E+z) - \lambda^{-1}\tau x) \, \mu(dx) \;. \end{split}$$

Therefore $\mu(\lambda^{-1}(E+z)-\lambda^{-1}\tau x)=0$ for μ -almost all x. Since $a\in A_{\mu}$, we have $0=\mu(\lambda^{-1}(E+z)-\lambda^{-1}\tau x-a)=\mu(\lambda^{-1}(E+z-\lambda a)-\lambda^{-1}\tau x)$ for μ -almost all x. This yields

J. Zinn

$$\mu_{\lambda a}(E) = \mu_z(E+z-\lambda a) = \int \mu(\lambda^{-1}(E+z-\lambda a)-\lambda^{-1}\tau a)\mu(dx) = 0.$$

We have just shown $a \in A_{\mu}$ implies $\lambda a \in A_{\mu}$ for $0 < \lambda < 1$. Since $0 \in A_{\mu}$ and $G = \{\lambda: \mu_{\lambda a} \leqslant \mu\}$ is a semigroup in \mathbb{R}^1 , G contains $[0, \infty)$.

COROLLARY 5.1. If μ is a symmetric stable measure on $\mathscr{B}(X)$, then A_{μ} is a linear subspace of X.

Proof. Since μ is symmetric, $A_{\mu} = -A_{\mu}$.

COROLLARY 5.2. If μ is a stable measure on $\mathscr{B}(X)$, which is regular and tight, then $A_{\mu} - A_{\mu} \leqslant G_{\mu}$.

Proof. Apply Proposition 1 (ii).

Remark. Let $M_{\mu}(\text{resp.}, M^{\mu})$ be the intersection of all linear subspaces M of X such that $M \in \mathcal{B}(X)$ and $\mu(M) > 0$ (resp., $\mu(M) = 1$). It has been shown by Dudley and Kanter [3] that $\mu(M) > 0$ implies $\mu(M) = 1$. Hence $M_{\mu} = M^{\mu}$. Hence in order to prove that for μ symmetric we have, for every $x \in X$, either $\mu_x \perp \mu$ or $\mu_x \sim \mu$, it is sufficient to show that $A_{\mu} = M_{\mu}$. (To see the sufficiency apply Proposition 1.) For a Gaussian measure on a real separable Hilbert space $A_{\mu} = M_{\mu}$ (see [19], Theorem 5) and hence for such measures we have the above-mentioned dichotomy.

COROLLARY 5.3. If μ is a stable measure, then either $\mu(A_{\mu}-A_{\mu})=0$ or A_{μ} is finite dimensional.

Proof. Apply Proposition 3.

Remark. If $A_{\mu}-A_{\mu}$ is finite dimensional and $\mu(A_{\mu}-A_{\mu})>0$, then $A_{\mu}-A_{\mu}=$ support of μ (by [3]). Hence either $\mu(A_{\mu}-A_{\mu})=0$ or $A_{\mu}-A_{\mu}=$ support of μ .

5. From this point on X will be separable Hilbert space.

Let μ be a symmetric stable measure of index α on $\mathscr{B}(X)$. In [9] Kuelbs has shown that there exists a symmetric, finite, positive Borel measure Γ on the unit sphere

$$S = \{x \in X \colon ||x|| = 1\}$$

such that

$$\hat{\mu}(y) = \exp\left\{-\int\limits_{\mathbb{S}} |\langle y\,,\,\theta\rangle|^a \varGamma(d\theta)\right\} \quad \text{(see also [8])}\,.$$

We will use the notation $\mu = [a, \Gamma]$.

At this point we give a conterexample to Theorem 6.2 [5]. Choose a finite positive Borel measure Γ on the unit sphere of an infinite-dimensional (separable) Hilbert space, such that the support of Γ is all of S.

Then, for $a \in H$,

$$a = \lim \frac{\|a\|}{\Gamma(E_n)} \int\limits_{E_n} \theta \Gamma(d\theta), \quad \text{ where } \quad E_n = \left\{\theta \varepsilon S : \left\| \frac{a}{\|a\|} - \theta \right\| < \frac{1}{n} \right\}.$$

Now, Theorem 6.2 [5] implies that $a \in A_{\mu}$, i.e., $A_{\mu} = H$, contradicting Proposition 3. For another counterexample see [20].

Now let $H_0 = \{y \in X : \int_S |\langle y, \theta \rangle|^a \Gamma(d\theta) = 0\}$. H_0 is a closed subspace of X. Let $H = H_0^{\perp}$. Then it is easy to see that $\mu(H) = 1$. Now complete H with respect to the metric $\|\cdot\|_{a,\Gamma}$ given by

$$\|y\|_{a,\,\Gamma} = egin{cases} \left[\int\limits_{\mathcal{S}} |\langle y,\, heta
angle|^a arGamma(d heta)
ight]^{1/a} & ext{if} \quad lpha\geqslant 1, \ \int\limits_{\mathcal{S}} |\langle y,\, heta
angle|^a arGamma(d heta) & ext{if} \quad 0$$

Note that

$$\|y\|_{a,T} \leqslant egin{cases} \|y\| \, arGamma^{1/a}(S) & ext{if} & lpha \geqslant 1\,, \ \|y\|^lpha \, arGamma(S) & ext{if} & 0 < lpha < 1\,, \end{cases}$$

and hence $\|\cdot\|_{a,\Gamma}$ is continuous. Let $B(\alpha,\Gamma)$ denote this completed space. We, therefore, have the continuous injection $i\colon H\to B(\alpha,\Gamma)$. Since i is one to one and has dense range, and since H is a Hilbert space, the adjoint map $i^*\colon B^*(\alpha,\Gamma)\to H^*=H$ is one to one and if $\alpha\geqslant 1$ has dense range. Note, also, that i is a compact operator, and hence so is i^* .

THEOREM 6. If $a \in X \setminus i^*(B^*(\alpha, \Gamma))$, then $\mu_{\alpha} \perp \mu$.

Proof. It is enough to show that $\mu_a \perp \mu$ for $a \in H \setminus i^*(B^*(a, \Gamma))$, since $\mu(H) = 1$. We claim that there exists a sequence $\{b_n\}_{n=1}^{\infty} \subseteq H$ such that $\|i(b_n)\|_{a,\Gamma} \to 0$ and $\langle a, b_n \rangle = 1$ for all n. Suppose not. Therefore for every sequence $\{b_n\} \subseteq H$ such that $\|i(b_n)\|_{a,\Gamma} \to 0$, we have $\langle a, b_n \rangle \to 0$. Hence if we define \overline{a} on i(H) by $\overline{a}(i(x)) = \langle a, x \rangle$, then the above assumption can be rephrased as saying that \overline{a} is continuous on i(H) in the metric $\|\cdot\|_{a,\Gamma}$. Therefore we can extend \overline{a} to a continuous linear functional on B(a, I). But note that $\langle x, i^*\overline{a} \rangle = \langle ix, \overline{a} \rangle = \langle a, x \rangle$ for all $x \in H$. Hence $i^*(\overline{a}) = a$ or $a \in i^*(B^*(a, I))$, a contradiction.

Now choose $\{b_n\} \subseteq H$ such that $\|i(b_n)\|_{a,r} \to 0$ and $\langle a,b_n \rangle = 1$ for all n. We have

$$\int e_{\mathbf{i}}^{i(\langle x,b_n\rangle}\mu(dx) = \hat{\mu}(tb_n) = \exp\left\{-|t|^{\alpha}\|i(b_n)\|_{a,F}^{e(a)}\right\} \to 1$$

as $n \to \infty$, where

$$\varepsilon(\alpha) = \begin{cases}
1 & \text{if } 0 < \alpha < 1, \\
\alpha & \text{if } 1 \leqslant \alpha \leqslant 2.
\end{cases}$$

Therefore $\langle \cdot, b_n \rangle \to 0$ in μ -measure and hence some subsequence $\{b_{n_k}\}$ of $\{b_n\}$ converges to zero for μ -almost all x. On the other hand,

$$\int e^{it\langle x,b_{n_k}\rangle} \mu_a(dx) = e^{it\langle a,b_{n_k}\rangle} \hat{\mu}\left(tb_{n_k}\right) = e^{it}\hat{\mu}\left(tb_{n_k}\right) \to e^{it}.$$

Therefore $\langle \cdot, b_{n_k} \rangle \to 1$ in μ_a -measure, and thus a subsequence of $\{b_{n_k}\}$ converges to one for μ_a -almost all x. Hence $\mu \perp \mu_a$.

Corollary 6.1. $M^{\mu} \subseteq i^*(B^*(\alpha, \Gamma))$.

Proof. Fix $a \in H \setminus i^*(B^*(a, \Gamma))$. For any sequence $\{y_n\} \subseteq H$, define

$$M\{y_n\} = \{z \in H: \lim \langle z, y_n \rangle = 0\}.$$

 $M\{y_n\}$ is clearly a measurable set which is also a linear subspace. By the proof of Theorem 6 we see that there exists a sequence $\{b_n\}\subseteq H$ such that $\langle a,b\rangle_n=1$, $\|i(b_n)\|_{a,r}\to 0$ and $\mu(M\{b_n\})=1$. However, $a\notin M\{b_n\}$ and hence $a\notin M^\mu$.

In the next proposition we find a sufficient condition for the singularity of the symmetric stable measures. Let $\mu_i = [a_i, \Gamma_i]$ (i = 1, 2) be given.

PROPOSITION 7. If $\{\|\cdot\|_{a_i,\Gamma_i}\}$, i=1,2 are not equivalent metrics on X; then $\mu_1 \perp \mu_3$.

Proof. If $\{\|\cdot\|_{a_i,\Gamma_i}\}$, i=1,2 are not equivalent, there exists (for example) $\{x_n\}\subseteq X$ such that $\|x_n\|_{a_1,\Gamma_1}\to 0$ and $\|x_n\|_{a_2,\Gamma_2}=1$ for all n. Hence $\hat{\mu}_1(x_n)\to 1$.

Thus there exists a subsequence $\{x_{n_k}\}$ such that $\mu(M\{x_{n_k}\})=1$ where $M\{x_{n_k}\}$ is defined as in Corollary 6.1). By Dudley and Kanter's zero-one law [3], $M\{x_{n_k}\}$ has μ_2 -measure zero or one. If $\mu_2(M\{x_{n_k}\})=1$, then $\hat{\mu}(x_{n_k}) \to 1$, by the Bounded Convergence Theorem. However, $\hat{\mu}_2(x_{n_k})=\exp\{-\|x_{n_k}\|_{2_{n_k}}^{4(\alpha_2)}\}=\exp\{-1\} \neq 1$, a contradiction. Hence $\mu_2(M\{x_{n_k}\})=0$ and thus $\mu_1 \perp \mu_2$.

6. In this section we present results which will be useful in applications to stable processes.

PROPOSITION 8. Let $\{\xi_k\}_{k=1}^\infty$ be a sequence of independent random variables such that $E[e^{it\xi_k}] = e^{-|t|^\alpha}$, for some fixed $a, 0 < a \leqslant 2$. Let μ be the measure on \mathbf{R}^∞ induced by the sequence $\{\xi_k\}$. Then $\mathbf{A}_\mu = \{a \in \mathbf{R}^\infty \colon \sum_{k=1}^\infty a_k^2 < \infty\}$.

Proof. This follows from Shepp [15] (or LeCam [10]) and the fact that the stable density has finite Fisher information.

In the applications to stable processes we will only need that $\sum_{k=1}^{\infty} a_k^2 = \infty$ implies $\mu_a \perp \mu$. This follows more easily from Dudley [2] (Theorem 2).

COROLLARY 8.1. Let $\mu = [a, \Gamma]$ be given where the support of Γ is the orthonormal set $\{e_k\}$ in X and $\Gamma\{e_k\} = \lambda_k$. Then

$$A_{\mu} = \left\{ x \, \epsilon \, X \colon \sum_{k=1}^{\infty} \frac{\langle x, e_k \rangle^2}{\lambda_k^{2/\alpha}} < \infty \right\}.$$

Proof. Consider the map $A: X \rightarrow \mathbb{R}^{\infty}$ defined by

$$\Lambda(x) = \left\{ \frac{\langle x, e_k \rangle}{\lambda_k^{1/\alpha}} \right\}_{k=1}^{\infty},$$

and note that the andom variables ξ_k on \mathbf{R}^{∞} given by $\xi_k(x)=x_k$ satisfy the hypotheses of Proposition 8.

Remark. Under the hypotheses of Corollary 8.1 it is easy to see that if $\alpha \ge 1$.

$$i^*(B^*(a, \Gamma)) = \left\{ x \in X \colon \sum_{k=1}^{\infty} \frac{|\langle x, e_k \rangle|^{\beta}}{\lambda_k^{\beta/\alpha}} < \infty \right\}$$

where $1/\alpha + 1/\beta = 1$. Hence (in this case) $i^*(B^*(\alpha, \Gamma)) \neq A_\mu$ unless $\alpha = 2$.

DEFINITION 5. A stochastic process $\{Y_t\colon 0\leqslant t\leqslant 1\}$ is said to be a stable process of index α if the finite-dimensional distributions of $\{Y_t\}$ are all stable (of index α).

Let $\{X_t: 0 \le t \le 1\}$ be the stable process of type α such that

(i) $\{X_t\}$ has stationary and independent increments and

(ii) $E\lceil e^{uiX(t)}\rceil = e^{-t|\mu|^{\alpha}}$.

For the remainder of this paper $\{X_t\}$ will always denote such a process. Let $D[I^2]$ be the Skorokhod space of real-valued function on the square $I^2 = [0,1] \times [0,1]$, which has been studied by Straf [17] and Neuhaus [11]. Similarly let D[I] be the usual Skorokhod space (again, see, e.g. [17]). For a function $g \in L^a = L^a([0,1],m)$ the stochastic integral $\int_0^1 g(t) dX(t)$ has been defined by Schilder [14]. Hence for $f \in D[I^2]$ we may define the process $\{Y_t \colon 0 \le t \le 1\}$ by the formula

$$Y(t) = \int_0^1 f(t,s) dX(S).$$

It is not hard to see that Y is a symmetric stable process with sample paths in $L^2[I]$. We now prove a Fubini-type result.

PROPOSITION 9. Let $\{X_t: t \in I\}$ be as above. Then if $f \in D[I^2]$, we have

(*)
$$\int_{0}^{1} \left[\int_{0}^{1} f(t,s) \, dX(s) \right] dt = \int_{0}^{1} \left[\int_{0}^{1} f(t,s) \, dt \right] dX(s) \text{ a.s.}$$

Proof. Choose $\{f_n\} \subseteq D[I^2]$ such that

$$f_n(t,s) = \sum_{j=1}^{N_n} c_{j,n} 1_{I_{j,n}}(t) 1_{I_{j,n}}(s)$$

and (see Straf [17]) f_n converges to f uniformly. Since (*) holds trivially for f_n , we need only show:

(i)
$$\int\limits_0^1 \left[\int\limits_0^1 f_n(t,s)\,dX(s)\right]dt \to \int\limits_0^1 \left[\int\limits_0^1 f(t,s)\,dX(s)\right]\,dt$$

in probability and

(ii)
$$\int_{0}^{1} \left[\int_{0}^{1} f_{n}(t,s) dt \right] dX(s) \rightarrow \int_{0}^{1} \left[\int_{0}^{1} f(t,s) dt \right] dX(s)$$

in probability.

To show (i) we shall compute the characteristic function of

$$\int\limits_0^1 \Big[\int\limits_0^1 \big(f_n(t,s) - f(t,s)\big) \, dX(s) \Big] \, dt$$

and show that it converges to 1. But

$$\begin{split} \sum_{j=1}^{N} \left[\int_{0}^{1} \left(f_{n}(t_{j-1}, s) - f(t_{j-1}, s) \right) dX(s) \right] (t_{j} - t_{j-1}) \\ &= \int_{0}^{1} \sum_{i=1}^{N} (t_{j} - t_{j-1}) \left(f_{n}(t_{j-1}, s) - f(t_{j-1}, s) \right) dX(s) \end{split}$$

has the characteristic function

$$\Phi(u) = \exp \left\{-|u|^{a} \int_{0}^{1} \left| \sum_{j=1}^{N} (t_{j} - t_{j-1}) (f_{n}(t_{j-1}, s) - f(t_{j-1}, s)) \right|^{a} ds \right\}.$$

Now since f_n and f are bounded, we have (by approximating the integrals and taking limits):

$$\int_{0}^{1} \left[\int_{0}^{1} \left(f_{n}(t,s) - f(t,s) \right) dX(s) \right] dt$$

has the characteristic function

$$\Psi(u) = \exp \left\{ -|u|^a \int_0^1 \left| \int_0^1 (f_n(t,s) - f(t,s)) dt \right|^a ds \right\}.$$

Therefore, since $f_n \rightarrow f$ uniformly,

$$\int_{0}^{1} \left| \int_{0}^{1} \left(f_{n}(t,s) - f(t,s) \right) dt \right|^{a} ds \rightarrow 0.$$

This yields

$$\int_{0}^{1} \left[\int_{0}^{1} f_{n}(t,s) dX(s) \right] dt \rightarrow \int_{0}^{1} \left[\int_{0}^{1} f(t,s) dX(s) \right] dt,$$

in probability. (ii) follows even more simply.

For $z \in C(I)$ the characteristic function of

Since the paths of Y (for $f \in D[I^2]$) are in $L^2[I]$, Y induces a measure μ on $L^2[I]$ which is symmetric stable of index α . Hence $\mu = [\alpha, \Gamma]$. We shall now describe Γ in terms of the given f, if $\alpha < 2$.

$$\int_{0}^{1} z(t) Y(t) dt = \int_{0}^{1} \left[\int_{0}^{1} z(t) f(t, s) dX(s) \right] dt$$

is

$$\Phi(u) = \exp\left\{-\left|u\right|^a \int\limits_0^1 \left|\int\limits_0^1 z(t)f(t,s)dt\right|^a ds\right\} \quad \text{(apply Proposition 9)}.$$

Now define $\Phi: I \rightarrow S$ by

$$\Phi(s) = \frac{f^s}{\|f^s\|_2}, \quad \text{where} \quad f^s(t) = f(t, s)$$

(we will also define $f_t(s) = f(t, s)$) and $\|\cdot\|_2$ is the L^2 -norm). For $A \in \mathcal{B}(S)$, let

$$\Gamma_0(A) = \int\limits_{a^{-1}(A)} \|f^s\|_2^a ds$$
.

Then

$$\begin{split} \int\limits_{S} |\langle z,\,\theta \rangle|^{a} \varGamma_{0}(d\theta) &= \int\limits_{0}^{1} \left| \int\limits_{0}^{1} z(t) \frac{f(t,\,s)}{\|f^{s}\|_{2}} \, dt \right|^{a} \|f^{s}\|_{2}^{a} ds \\ &= \int\limits_{0}^{1} \left| \int\limits_{0}^{1} z(t) f(t,\,s) \, dt \right|^{a} ds \,. \end{split}$$

Hence, since the symmetric measure on the sphere is uniquely determined by μ , we have $\Gamma = \frac{1}{2}[\Gamma_0 + \Gamma_0^{-1}]$.

For the rest of the paper we make the following assumptions:

- (i) $f \in D[I^2]$,
- (ii) span $\{f_t: t \in I\}$ is dense in $L^2[I]$,
- (iii) span $\{f^s: s \in I\}$ is dense in $L^2[I]$.

Consider the map $A: L^2 \rightarrow L^2$ defined by

$$(\Lambda x)(s) = \int_0^1 x(t)f(t,s)\,dt.$$

(i) and (iii) imply that Λ is an injection. (Note that Λ is clearly continuous.) By (i) and (ii) we have that the range of Λ is dense in L^2 and hence in L^2 . Since $\|x\|_{a,\Gamma} = \|\Lambda x\|_{ra}$, we obtain $B(\alpha, \Gamma) = L^a[0, 1]$.

Now if $a = i^*(b^*)$, then

$$\int\limits_0^1 b^*(s) \Bigl[\int\limits_0^1 z(t) f(t,s) \, dt \Bigr] \, ds \, = \int\limits_0^1 z(t) \Bigl[\int\limits_0^1 b^*(s) f(t,s) \, ds \Bigr] \, dt \, .$$

Hence

$$(i^*b^*)(t) = \int_0^1 b^*(s)f(t,s)\,ds.$$

We record the above remarks as

Proposition 10. If f satisfies (i), (ii) and (iii) (above), then $B(\alpha, \Gamma) = L^a[I]$ and

$$i^*\big(B^*(\alpha,\Gamma)\big) = \Big\{x \in L^2[I]\colon \, x(t) \, = \int\limits_0^1 b^*(s) f(t,s) \, ds \, \, for \, \, \, some \, \, b^* \in \big[L^\alpha[I]\big]^*\big\}.$$

Corollary 10.1. If f satisfies (i), (ii) and (iii) and 0 < a < 1, then $A_{\mu} = (0)$ and moreover, $a \neq 0$ implies $\mu_a \perp \mu$.

Proof. $(L^a[I])^* = (0)$ for 0 < a < 1. Now apply Proposition 6.

COROLLARY 10.2. Let $\{X_i^{(a)}\}$ and $\{X_i^{(b)}\}$ be stable processes with indices a and β ($\neq \alpha$), respectively, such that $\{X_i^{(a)}\}$ and $\{X_i^{(b)}\}$ have stationary, independent increments. Let

$$Y(t) = \int_{0}^{1} f(t,s) dX^{(a)}(s), \quad and \quad Z(t) = \int_{0}^{1} g(t,s) dX^{(\beta)}(s),$$

where f and g satisfy (i), (ii) and (iii). Then the measures μ and ν induced by Y and Z, respectively, are singular.

Proof. Apply Proposition 7.

7. In this section we will show that the set of admissible translates of the measure associated with the process X_t (defined previously) is trivial. Note that $X(t) = \int\limits_0^1 1_{[0,t)}(s) dX(s)$, and $f(t,s) = 1_{[0,t)}(s)$. Therefore $x \in i^*(B^*(\alpha, \Gamma))$ if and only if $x(t) = \int\limits_0^t g(s) ds$ where $g \in (L^a[I])^*$. By Corollary 10.1, $i^*(B^*(\alpha, \Gamma)) = (0)$ if $0 < \alpha < 1$.

For $1 \le a < 2$ we must do a little more work. For $t_0 \in [0, 1)$ and $t_i \downarrow t_0$ define the map $A: D(I) \rightarrow \mathbb{R}^{\infty}$ by

$$\Lambda(x) = \left\langle \frac{x(t_i) - x(t_{i+1})}{(t_i - t_{i+1})^{1/a}} \right\rangle_{i=1}^{\infty}.$$

By Proposition 8, $A_{\mu^{\wedge}} = \{a \in \mathbb{R}^{\infty}: \sum_{k} a_{k}^{2} < \infty\}$. By Kakutani [7], $A_{\mu^{\wedge}} = (S_{\mu^{\wedge}})^{c}$ and therefore, by Proposition 4, $A_{\mu} \subseteq \Lambda^{-1}(A_{\mu^{\wedge}})$. We now conclude that $x \in A_{\mu}$ implies that

$$\sum_{i=1}^{\infty} \frac{|x(t_i) - x(t_{i+1})|^2}{(t_i - t_{i+1})^{2/\alpha}} < \infty$$

for all sequences $\{t_i\}_{i=1}^{\infty} \subseteq I$, which are strictly decreasing. If

$$\frac{x(t_i) - x(t_{i+1})}{t_i - t_{i+1}}$$

converges to a non-zero constant, and

(**)
$$\sum_{i=1}^{\infty} (t_i - t_{i+1})^{2/\beta} = \infty \quad \left(\frac{1}{\alpha} + \frac{1}{\beta} = 1\right),$$

then

$$\begin{split} \sum_{i=1}^{\infty} \frac{|x(t_i) - x(t_{i+1})|^2}{(t_i - t_{i+1})^{2/a}} &= \sum_{i=1}^{\infty} \frac{|x(t_i) - x(t_{i+1})|^2}{(t_i - t_{i+1})} (t_i - t_{i+1})^{2/\beta} \\ &\geqslant \sum_{i=N}^{\infty} \left(\frac{c}{a}\right)^2 (t_i - t_{i+1})^{2/\beta} &= \infty. \end{split}$$

This would contradict $x \in A_{\mu}$. However,

$$\frac{x(t_i) - x(t_{i+1})}{t_i - t_{i+1}} = \frac{1}{t_i - t_{i+1}} \int_{t_{i+1}}^{t_i} g(s) ds \quad (g \in L^{\beta}(I)).$$

If $g \neq 0$, it is not hard to construct a sequence $t_i \downarrow t_0$ such that (*) and (**) hold. Hence g = 0 a.e. and x = 0.

Remark. Let $\{Y_t\colon 0\leqslant t\leqslant 1\}$ be a symmetric stable process with independent increments. Suppose also that $\{Y_t\}$ is stochastically continuous. Then $E[e^{iuY(t)}]=\exp\{-\gamma(t)|u|^a\}$, where

- (1) $\gamma(0) = 0$,
- (2) v is non-decreasing
- (3) ν is continuous.

If we let $\delta(t) = \inf\{s: \gamma(s) \ge t\}$, then $Z(t) = Y(\delta(t))$ is equivalent to X(t). Define

$$A: D(I) \rightarrow D([0, \delta(1)])$$
 by $A(y)(t) = y(\delta(t))$ for $y \in D(I)$.

By Proposition 4(c), $A^{-1}(A_{\mu^*}) = A_{\mu}$, where μ is the measure on D(I)induced by Y. By the above results $A_{\mu} = (0)$ and hence $A_{\mu} = (0)$.

Note that the non-existence of non-trivial admissible translates of X_t (or Y_t) also follows from Theorem 7.3 [5].

8. We end this paper with some questions and remarks.

We can always write $\Gamma = \Gamma_t + \Gamma_m$, where Γ_t sits on finite-dimensional sets, and $\Gamma_{\infty}(F) = 0$ for any finite-dimensional set. Let $\mu_f = [\alpha, \Gamma_f]$ and $\mu_{\infty}=[a,\,\Gamma_{\infty}].$ Then $\mu=\mu_f*\mu_{\infty}.$ If $\Gamma_f(F)>0$ for some finite-dimensional set F, then $\Gamma_f = \Gamma_f^{(1)} + \Gamma_f^{(2)}$, where $\Gamma_f^{(1)}$ is Γ_f restricted to F and $\Gamma_f^{(2)}$ $=\Gamma_f-\Gamma_f^{(1)}$. Hence $\mu_f=\mu_f^{(1)}*\mu_f^{(2)}$ and certainly $A_{\mu_f^{(1)}}\neq (0)$. Therefore $A_{\mu_f} \neq (0)$. Also, $A_{\mu} \geqslant A_{\mu_f} + A_{\mu_{\infty}}$.

QUESTION 1. Is $A_{\mu} = A_{\mu f} + A_{\mu \infty}$? Note that in the case of $\{X(t)\}$, $I_f = 0$ and $A_{\mu} = (0)$.

QUESTION 2. Is A always trivial?

Recall that via Theorem 5 [16], if $a \in A_{\mu}$, then $\mu \sim \mu^{P} \times \mu^{Q} = \nu$, where P is the projection of X onto the one-dimensional subspace generated by a, and Q = I - P (I is the identity). Hence the measure on the sphere Γ_{ν} associated with ν has an atom, and the rest of its support is contained in the orthogonal complement of the span of $\{a\}$. Assume that one could show that $\mu_i = [a, \Gamma_i]$ and $\mu_1 \sim \mu_2$ implies $(\Gamma_{\mu_1})_{\infty} \sim (\Gamma_{\mu_2})_{\infty}$. Then since $a \in A_{\mu_{\infty}}$ implies $\mu \sim \mu^P \times \mu^Q \equiv \nu$, we would have $(\Gamma_{\mu})_{\infty} \sim (\Gamma_{\nu})_{\infty}$, which is impossible. Hence we would have $A_{\mu_{\infty}} = (0)$.

It is easy to see that Theorem 6 is directly related to Theorem 1 [2]. In [2] Dudley applies Theorem 1 to obtain a better bound on A_{μ} in the case where Γ sits on an orthonormal set. However, in the proof (Theorem 2) Dudley uses some non-linear functionals. It would be interesting to know if one could prove Theorem 2 [2] using only linear functionals.

References

- [1] L. E. Dubins and D. Freedman, Measurable sets of measures, Pacific Journ. Math. 14, No. 4 (1964), pp. 1211-1222.
- R. M. Dudley, Singularity of measures on linear spaces, Z. Wahrscheinlichkeitstheorie verw. Geb. 6 (1966), pp. 129-132.

- [31] R. M. Dudley and M. Kanter, Zero-One laws for stable measures, preprint.
- [41] J. Feldman, Non-existence of quasi-invariant measures on infinite-dimensional linear spaces, Proc. Amer. Math. Soc. 17 (1966), pp. 142-146.
- [5] I. I. Gikhman and A. V. Skorokhod, On the densities of probability measures in function spaces, Russian Math. Surveys 21 (1966), pp. 83-156.
- J. G. Hocking and G. S. Young, Topology, Addison-Wesley 1961.
- [7] S. Kakutani, On equivalence of infinite product measures, Ann. Math. 49 (1948), pp. 214-224.
- M. Kanter, On the spectral representation for symmetric stable random variables, Z. Wahrscheinlichkeitstheorie verw. Geb. 23 (1972), pp. 1-6.
- [9] J. Kuelbs, A representation theorem for symmetric stable processes and stable measures on H. Z. Wahrscheinlichkeitstheorie 26 (1973), pp. 259-272.
- [10] L. LeCam, On the assumptions used to prove asymptotic normality of maximum likelihood estimates, Ann. Math. Stat. 41 (1970), pp. 802-828.
- [111] G. Neuhaus, On weak convergence of stochastic processes with multidimensional time parameter, ibid. 42 (1971), pp. 1285-1295.
- [12] K. R. Parthasarathy, Probability Measures on Metric Spaces, New York-London 1967.
- [13] T. S. Pitcher, The admissible mean values of a stochastic process, Trans. Amer. Math. Soc. 108 (1963), 538-546.
- [14] M. Schilder, Some structure theorems for the symmetric stable laws, Ann. of Math. Stat. 41 (1970), pp. 412-421.
- [15] L. A. Shepp, Distinguishing a sequence of random variables from a translate of itself, ibid. 36 (1965), pp. 1107-1112.
- [16] A. V. Skorokhod, On admissible translations of measures in Hilbert space, Theory of Prob. and Appl. 15 (1970), pp. 557-580.
- [17] M. Straf, Weak convergence of stochastic processes with several parameters, Proceedings of the sixth Berkeley Symposium on Mathematical Statistics and Probability 2 (1972), pp. 187-221.
- [18] V. N. Sudakov, Linear sets with quasi-invariant measure, Dokl. Akad. Nauk. SSR 127 (1959), pp. 524-525 (Russian).
- [19] J. Zinn, Zero-One laws for non-Gaussian measures, to appear in Proc. Amer. Math. Soc.
- M. Kanter, An addition to my earlier paper "On distinguishing translates of measures" and some further corrections, preprint.

Received April 18, 1974 (820)