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On the surjective (injective) envelope of strictly
(co-) singular operators

by .
LUTZ WEIS (Bonn)

Abstract. The surjéctive envelope of strietly singular operators equals the
injective envelope of striotly cosingular operators and an operator T: XY belongs
to these envelopes if and only if one of the following equivalent conditions is fulfilled :

() Tor every hounded sequence (z;) = X there is a weak Caunchy subsequence
of (T'ay).

(b) T'(X) containg no subspace igomorphic to ;.

(e) T(X) has no quotient space isomorphic to 1, with 2-absolutely summing
quotient map.

Introduction. A. Pietsch has remarked that the strictly singular
operators form an injective but not surjective operator ideal ([7], 5.1.4,
§.1.5) and that the idesl of strictly cosingular operators is gurjective but
not injective ([7], 5.2.4, 5.2.5). In this paper, we shall prove the character-
ization of the surjective envelope of strictly singular operators and the
injective envelope of strictly -cosingular operators cited in the abstract
(Theorem. 3).

Firgt, we explain some motions and definitions.

Let X, ¥, Z always be Banach spaces and let Ux be the closed unit
ball of X. By B(X,Y) [W(X, ¥)] we mean the space of all continuous
limear [wealkly compact] mappings from X to Y. An operator Te<B(X, ¥)
is an isomorphism, if it is one-to-one with closed range. For every X, X*
is the space I°(Uy) and JE: XX is the usual embedding. Furthermore,
Xin 1, (Uy) and by Qi we denote the usual quotient map Q% : X'—X.
Tt M be a normed space and let 1< p < co. An operator T: M—~Z
is peintegral [6], if T admits the following factorization:

M z z
s
o( UM')"'"""""L_—"‘”’)' Lp (Uarry 1)

where u is a probabiliby measure and I the canonical injection.
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An operator ideal A (see: [7], 1.1.1 or [12]) is called proper, if for
all infinite-dimensional Banach spaces X we have:
A(X, X) # B(X, X).
An operator ideal A is called surjective [injective], if for all surjective
operators Q «B(Z, X) [isomorphisms J e B(Y, Z)] and SeB (X, X) we have:
8QeA(Z,Y) [JRcA(X,Z)] implies Sed(X,Y).
' By [7], 3.2.2, 3.6.2, the surjective envelope A’ [injective envelope AN
of an operator ideal 4, that is the smallest surjective [injective] operator
ideal containing A, is characterized as follows

(%) A(X,Y) = {TeB(X, Y): TQkA (X, Y)}, '
AN(X,Y) = {TeB(X, Y): JETeA(X, Y°)}.

In order to describe the envelopes of strietly singular and strictly
cosingular operators, we shall need the following notion from [2]: Let
Z Dbe a class of infinite-dimensional Banach spaces.

(a) An operator TeB(X, Y) is said to be F-singular provided that
for no Fe# does there exist isomorphisms J,: F—X, Jy: =Y such

that the diagram
b ¢ o ¥
\ /
n
commutes.
(b) An operator TeB(X, Y) is said to be F-cosingular, pr ovidccl that

for no Fe# does there exist surjective operators Q,: X-—F, @,: YT,
such that the diagram

¥ ” v
],Y
commutes. ‘

I & contains all infinite-dimensional Banach spaces, then the F#-singu-
lar operators are called strictly singular (or semi-compact; [8], p. 252,
or Kato-operators [7], 5.1.1) and the Z-cosingular operators ave culled
strictly cosingular (or cosemicompact, [8], p. 257, or Pelcayriski-operators,
[7], 5.2.1).

By 8, resp. € we denote the ideal of strictly singular resp. strietly
cosingular operators.

icm
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Characterization of §° and (7.

1. PRovostuion. Let TeB(X, Y). Then the following are equivalent:

(a) TeS*(X, Y);

(b) I'(X) contains no subspace isomorphic to 1,3

(¢) I i ly-singular.

Proof. (a) = (b). Let M be a subspace of T(X), 1somorphle to 1,
and let @: Z—X be a surjective operator. Define N = Q-*T-1(.M). Since
TQ |y N-=M is open, there exists a sequence (2,) = N, |12, < 0 < oo such
that (y,) = (L@Qz,) is equivalent to the unit vector basis of I,. Therefore,
we can choose a constant ¢’ such that

13t < 11| 3t <O1TQI Y il < 0-0-1201-| 3 At
Tywa ] Hmal =l ==l

for all (A,)el,. Honce, TQ is not strictly singular.

(b) == (e). Trivial.

(¢) = (a). If (a) is false we have (by ()): TQ% ¢ S(X*, ¥). Then TQ% is
not l,-singular because (e.g. by [9], Corollary 1, p. 29) every closed infinite-
dimensional subspace of I,(I") contains a subspace isomorphic to .
Thus T is not I;-singular,

9. ProrofrrroN. We have Te0'(X, Y) if and only if there is mo
imfinite-dimensional complete quotient space of T'(X) with p-integral quotient
map for some 2 << p < co.

Proof. a) Let T¢C¢!(X, ¥). By () there iy a commutative diagram

7%

X » ¥ T A

- “\\ hl
~y
‘where h,y, I, are surjective operators and dim Z = oo.

By [97, Theorem 3.7, hy is either weakly compact or there is a subspace
M of ¥*, isomorphic to I, such that hy |y is an isomorphism. Then &, (M)
is complemented in Z and has a reflexive quotient space since I* has such
a quotient space. Thus, in the above diagram, we may assume without
loss of generality that #Z is reflexive.

Now from [10], Corollary 11, it follows that h, is p-absolutely summing
for some p = 2. Since ¥* is 1501’1101‘1)]110 to0 some space C(K), I compact,
B, must even be p-integral ([6], Satz 45). So hy I F |z I8 p-integral and
surjective,

b) Tiet h: T(X)~Z be a p-integral surjective operator. In order
to prove T'¢(? (X, ¥) we may assume I'(X) = ¥ (because ¢! is injective).

7 — siudla Mathematica LIV.3
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Now choose an operator hy: C(Up)—Z such that b = Ind%. As a p-in-
tegral operator, b must be weakly compact. So we get the following com-
mutative diagram

f T YT O(Up) S (T

where hy, = T and O(Up)" is a P-space. Hence, by (%), T¢0'(X, Y.

3. TunorEM. Let TeB (X, X). Then the following are equivalent:

(a) For every sequence (m,) < Ux, (I@,) has a weak Oauchy subse-
quence.

(b) Te('(X, X).

(¢) There is no quotient space of T (X) isomorphic to 1, with 2-absolutely
summing quotient map.

(d) TeS*(X, X).

(e) No subspace of T(X) is isomorphic to 1.

Proof. (a) = (b). Let : T'(X)—Z be a surjective p-integral operator.
As a p-integral operator i transforms weak Cauchy sequences into Cauchy
sequences with respect to the norm ([6], Satz 20). Then, by (a), AT
X—~Z is surjective and compact. Consequently, Z is finite dimensional.

(b) = (c): see Proposition 2. (d) < (e): see Proposition 1.

(e) = (e). Let M be a subspace of 7'(X), isomorphic to I,. Consider
a surjective operator h: M —sl,. By [3], Theorem 4.1, h must be 1-absolutely

summing, hence 2-integral ([6], p. 43) and may be factored as shown
by the following diagram:

T(X).__
o \“\~«\\ I
M C - 2 O0(Upr)
hl ;
1
Iy

where 7, is 2-integral. Since O'(U,.)"" is a #-space, there is an operator
g making the diagram commutative. Thus, (¢) is false.

(e) = (a). This follows from a deep result of Rosenthal ([11], [1]):
-If no subsequence of (y,) = ¥ is a weak Cauchy sequence, then there
is a subsequence (ynk) of (y,), equivalent to the unit vector basis of .

On the envelope of operators 289

Part of these equivalences also follows from [4], Proposition 3, which
wag discovered independently.

4. OoROLLARY. There is no class F of Bonach spaces such that the
dass of F-cosingular operators equals €. But for every TeB(X, ¥) we
hawve:

T 1y-cosingular = TeC’ = T 1™-cosingular.

Proof. If T ¢, we see as in the proof of Proposition 2 (by 3(e))
that 1T cannot be l,-cogingular. If 7' iz not I°-cosingular, there is an
operator h, making the diagram

7 . J%
X >V ¥ Y™
. -~
-~
—~
7
-
-~
lmk

commutative. By () it follows, that T ¢ C7.

Tinally, we assume that €7 is equal to a class of & -cosingular operators.
Since the embedding 1,o-1* does not belong to €7 (3.(e)), & contains a sep-
arable quotient space Z of I°. By [9], Theorem 3.7, Z must be reflexive
and we conclude: Id,e ¢?((3(a)). On the other hand, Id, is not F-cosin-
gular contradicting our assumption.

5. OoRoLLARY. Let X be o Banach space. Then the following are equi-
valent:

(a) X contains no -subspace isomorphic to 1,

(b) For every Y, we have B(X, ¥Y) = 88X, X),

(¢) For every Y, we have B(X, Y) = (/(X, ¥).

Proof, If there is some T ¢8°(X, Y), then, by 1(c), X containg
a subspace isomorphic to I;. Conversely, if M is a subspace of X isomorphic
to 1,, we extend the embedding M<-I* to X.

Since every Z,-space (see [3]) is weakly complete and has the
Duntord-Pettis property (see [8], O II, §7), Corollary 6 is a partial
goneralization of [b], Theorem 1.

6. ComoLrAwY. Let Y be weally complete. Then for every X we have

S(X,Y) =0X,Y) =WIX, ).
Moreover, if in addition X, resp. ¥, has the Dunford-Pettis property we
hawe
S(X, Y) =W(X,Y), rep OX,¥)=WZX,TX).

Proof. Theorem 3 and [8], C II Theorem 7.7.

The author wishes to thank Professor F. Schock for his advice and
encouragement during the preparation of this paper.
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A criterion for compositions of (p, g)-abselutely
summing operators to be compact

by
B. MAUREY (Ptiris) and A, PELCZYNSKI (Warszawa)

Abswact. I (9))jw1,2,...,2¢ 8re (py, 2)-absolutely summing operators, and

M
M pjl=1/2, then the composition SyrSar—1 ... 8y is compact.
Jet

Results. Let co> p>¢q>1 and let X, ¥ be normed linear spaces.
Recall that a bounded linear operator 8: X->Y is said to be (p, q)-abso-
lutely summing if there exists a positive constant ¢ such that for all finite
Sequences @y, Ba, ..., o, in X (n=1,2,...)

(Do <o sw | }] 1@ (o)1) .
Jeml

AL N [ gIE <
The greatest lower bound of the constants ¢ satisfying the above in-
cquality is denoted by s, 4(8).
The main result of the present paper is:
TasorEM 1. Let M be a positive integer, let X, be Bamach spaces
(k =0,1,..., M), and let Sy X;_,~X, be (Pys 2)-absolutely summing
operators (2 < P < © fcw k=1,2,..., M). Then the condition

Zp > 91

k=1
implies the compactness of the composition Sy Sy 1. ... 8.

Clombining Theorem 1 with the well-known fact (cf. Kwapien [4])
that it T: X~Y¥ is a (p, ¢)-absolutely summing operator, then T IS also
(P, @) d.bqo]utely summing for every pair (P, 7) such that p~' — g™ =~ —g~ ~1
and P > p, we geb

ConorrArY L. Let M be a positive integer, let X, be Banach spaces
(k = 0,1, . M) Zet 8y Xpy =Xy, be (Pry dr) absolmelJ summing operators,
and Tot 0 < q,, Lopile 27l 1< g, <2 for b=1,..., M. Then the con-

dition
M
Dot - gt > 27

Jow L
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