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Topological conditional entropy
by
MICHAL MISIUREWICEZ (Warszawa)

Abstract. A new invariant of diserete dynamical systems — topological condit-
jonal entropy — i introduced. Its vanishing (ie. asymptotical h-expansiveness)
implies the upper semi-continuity of measure-theoretic entropy, regarded as a function
of an invariant regular normed Borel measure (and in particular — the existence of
a measure with maximal entropy). All the endomorphisms of compact topological
groups are shown to be asymptotically h-expansive. Expansiveness or h-expansiveness
also imply asymptotical h-expansiveness.

. A very short proof is given of the Goodwyn’s theorem on the bounding of measure-
theoretic entropy by topological entropy. Also a new proof is given of the formula
for topological entropy of a product of transformations.

§ 0. Introduction. In the present paper we consider continuous
transformations of compact Hausdorff spaces into themselves (cascades).
‘We define a new invariant, which e call ‘topological conditional entropy’.
It is bagsed on the notion of topological entropy ([1]), and it is also close
to the notiong of h-expansiveness ([6]) and asymptotical h-expansiveness
([15]). Some of its properties are the same ag those of topological entropy.
Topological conditional entropy is also connected with measure-theoretic
entropy, regarded as a function of an invariant regular normed Borel
measure. Unfortunately, it cannot be defined by means of the above
funection, and therefore topological tools cannot be avoided in some proofs
(contrary to some results concerning usual topological entropy admitting
a proof by a reduction to simple measure-theoretic facts).

§ L. Definitions. We shall consider a continuous transformation
f: XX of a non-empty compact Hausdorff space X into ifself. Such
a pair (X, f) is called & cascade.

Avet Y = X is called invariant (under f) it f¥ < X; it is called strictly
invariant it fY = Y. Xt (Z, g) is also a cascade, and if there exists a eon-
tinuous surjection p: X-—»Z such that gop = pof, then (Z,g) is called
a factor of (X, f).

Denote by # (X) the set of all covers of the space X containing a finite
subcover, and by %(X) the set of all open finite covers of X (we write
simply # and % it we consider only one gpace).
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For Y < X, Ac?, write ¥ < A if there exists an ae 4 such that
Y c 0. For A, Be# write 4> B (A iy a refinement of B) if « < B for
every ae A. For a tamily {4}z, let
Vo4 =N e aze A, for ie I} \
jel iel
(or Agv ... v 4, for a finite set I = {igy ovy Bn})-
CardI denotes the cardinality of the set I. If Cardl < co and 4;¢ 2
(resp. A) for ie I then, of course, also \/ A;e 2 (resp. A). The operation
, ol

1€
‘v preserves the relation ‘<’. The sets # and % are directed by the ve-
lation <. Clearly, for A,Be?, AvBxz A For AeP?, neZ, let f"A

n—1
={f"a: aec A}; for ne N, A} = \/ %A (if we consider only one trans-
. =0
formation, we write simply 4%).
For a non-empty set ¥ < X and a cover 4 2 write
N(Y, 4) =min{Oard0: Cc 4, Y = (J0}.

For the empty set put N (J, 4) = 1. For 4, Be# write
N(A|B) = maxN (b, 4).
beB

Further, N (4) = N (X, A). We write also @(X) = {X} ¥ (if we consider
only one space, we write simply @). Of course, we have
(1.1) N(A)=N(4|0) * for Ae2.

~ Now we list the simplest properﬁes of the function N, similar to
the properties of the functions expH for measure-theoretic entropy

(see [2]). ‘
Let A,B,0,De®?; Y,Z < X. The following inequalities hold:

(1.2) N(Y,4)<N(Z,B) for B34, YcZ,
(1.3) N(A|B)<N(C|D) for CO>4,B>D,
(L.4) N(f4|f'B)< N(4|B), (if f is surjective,

(L5)  NGf'Y,fd4d)<N(Y,A), | then the equalities hold)
(1.6) NAVB|O)< N(A|0)-N(B|4Av0),

1.7) N(AvB|OvD)< N(4|0)-N(B|D),

(1.8) N(Y,AvB)< N(¥,A)N(Y,B),

(1.9) N(4)< N(B)-N(4|B),

(1.10) N(A|B)< N(4|0)-N(0|B).

o Ineqna.li’pies (1.2)~(1.B) are obvious. For the proof of (1.6) let us
fix ce 0. Then there exists # < 4 such that ¢ « | and CardH < N (4|0).
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Now fov any ae I there exists B, = B such that cma UB, and Card B,
:ng(I%Iffiny). The family {anb: ae B, be B,} is a subfamily - of AvB[:
ity cardinality is not greater than N (4]C)-N(B|Av0) and its union
contains ¢. ' ‘
Inequalities (1.7)-(1.10) can easily be obtained from (1.6) b
] A8 2 ) . th
use of (1.1) and (1.3). _ (-0) by the
In view of (1.4) and (1.7) the sequence (logN (A"[B"));:f=1 is subaddi-
tive; therefore there exists a limit ‘ .

.1
, lim —log N (A" B") = h(f, A|B),

w00 N

which will be called the conditional entropy of f on the cover A with respect
to the cover B. Moreover, we have

(1.1.1) h(f, A|B) < log N(4|B).
Notiee that if 4 is an open cover, then h(f, A|0) is equal to the

familiar topological entropy of f on the cover A h(f, A).
Further, let :

B N .

W(f, ¥, 4) = hmsup—q;logN(Y, A™)
N—-00

for ¥ = X, A< 2. This number is, in general, different from fhe analogous
ones appearing in [4], [6]. ’

0.1‘: course, hif, X, A) = h(f, A). From (1.2)=(1.10) we obtain the

following inequalities (we list only those which will be necessary in the

sequel): . .

(1.12) Wf, Y, A)<h(f, 4, B). for B>4d, Yz,
(1.13) W(f, A|B)<h(f,C|D) for CzA, B>D,
(L14)  A(f, fAIf7 B) < W(f; A|B), ) (it f.is surjective,

(1.15) b(f, f Y7'f”lfl) < h(f, ¥, 4),] then the equalities hold)
(1.16) C M, A) < B(f, By (T, A|B),

(1.17) h(fy AIB) < h(f, A1O)+h(f, C|B).

In view of (1.13) there exists a limit (finite or infinite)
lHmb(f, ALB) = wuph(f, A|B) = h(f|B).
el : Al

Wo dall h(f1 B) the conditional entropy of f with respedt to the cover B, Notice

that h(f) = h(f|@) is the topological entropy of f.
In view of (1.12) there also exists a limit
limh(f, ¥, Ay =saph(f, ¥, A) = h(f, ¥).
A€l Al o

Of course, h(f, X) = W(f):
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From (1. 12 )~(1.17) we obtain:

(1.18) wf, Y)<h(f,Z) for YcZ,

(1.19) h(fl4) <h(f|B) for A>B,

(1.20) WFISTB) = MIIB), if f is a homeomorphism
(1.21) h(f:f—l Y) = h(f: Y); :

(1.22) b(f) < h(f, B)+h(f|B).

To prove (1.20) and (1.21) it should be noted that {f™4: AU} = A
if f is a homeomorphism.

We have, from the definition,
(1.23) L(f, A|B)<h(fIB) for Ae¥.
In view of (1.19) we can take the limit once more:

limh(f|B) = infh(f|B) = b*(f).
Bel B

We call h*(f) the (topological) conditional entropy of the tramsformation f

(or, more precisely, of the cascade (X, f)).
From the definition we have

(1.24) ()< h(flB) for Be.
Putting B = 0, we obtain
(1.25) B (f) < h(f).

§2. Conneq;ion with J-expansiveness. We first recall some notions
from Bowen’s paper [5]. Let (X, d) be a compact metric space and f:
XX a continuous transformation. The function d,, defined by

a,(®,y) = max a(f's, f'y),
<i<n~1

is a metric on X, equivalent to & (n =1,2,...). For a compact seb
YcZX, a>0,r,(Y,a)is the smallest cardinality of an a-network for ¥
in the metric d,, (an (n, a)-spanning set for Y). Further, put

(Y, a) _hmsupilogrn(y a), h(f,¥) =lm7(¥, a).
700 a0
B%(#) is a closed ball with the centre » and radius o in the mefric d,,

- N B@).

=]

D, (@)

Then
1f(a) = su}gh(j, @, (w)).

icm
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The transformation f is ealled h-empansive if there exists an ¢ > 0 such that
hy(a) = 0, and is called asymptotically h- -expansive ([15]) if hmh*(a) = 0.

We gshall point out the connection between these notlons and the

‘notions introduced in Section 1.

Levuma 2.1, Let ¥ = X; A, He¥; neN diam 4 < o < 3L, where L
is the Lebesgue number for E Then

N(Y, A" < r(X, o) S N(Y, B").
Proof. Tet ¢ be the minimal (n, a)-spanning set for Y. For me e,
k=0,...,m=1, we have B,(f*») < F; hence B"(x) < E". But U By (»

5> Y, and 50 (¥, a) SN(Y,B". Let O A", Yc UO,wOardO

= N(X, A"). Take one point from every ce ¢ and let b denote the set

n—-1

thus obtained. If wee = M fPaue 0, ayed for k=0,..

Ie=0
o, = Bo(f*®) for & =0,...,n—1; therefore, ¢ = B*(2).
(n, a)-spanning set and thus N(¥, A" < (Y, a). &
TunormM 2.1. Let X be a compact meiric space, and let (X, f) be a cas-
oade, a >0, A, BN, diam A < a < 3L, where L is the Lebesgue number

for H. Thew

-1, then

Hence b is an

h(fld)<

Proof. Taking in Lemma 2.1 the limit with respect to 4, Fe¥,
a—0, we obtain h(f, ¥) = h(f, Y) for a compact set Y. Thus, Rt (a)
= mp h(f, ®.()). Let 0. The number 2q is smaller than the Lebesgue

number of W; therefore (we use (1.2)): l\{,‘(diu(m ), O") < N (B3 (x), C")
< N(O"| B for n=1,2,..., and thus h(f, D.(2), 0)< k(f, C|E). Ta-
king the limit with respect to Oe A, we obtain h(f, (b . (%) ) < h(f|B), and
therefore &y (a) < h(f|H).

Let #> 0, &> 0. Propogition 2.2 from [5] states that theére exists
a ¢>0 such that n,(B(x), ) <cexp[(f+h;(a))n] for n =1,2,...,
we X. Let De¥ be a cover with the Lebesgue number greater than 26.
In view of Lemma 2.1, (1.2) and the inequality diam4 < a, we have

N (D" A" < sup N{B (@), D" < supr,(Bi(@), 6) < cexp|(f+ by (a))n].
2e X e X

a) < h(f|H).

When #-»c0, we obtain h(f, D|4) < ky(a)+ 8. Let 60, f—0; wé have
h(f, D|A)< hf(a) tor every De and therefore A(f|.4) < hf(a). m
CorROLLARY 2.1. For a cascade (X, f), where X is a metric space,
(a)  f 48 h-ewpansive < Bmh(f[A) = 0,
Ae

(b f 4s asymplotically h-empansive <> h*(f) = 0. m
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In the general case, where the space X is not necessarily metrizable,
the right-hand sides of (a) and (b) ean serve as-definitions of h-expansiveness
and asymptotical k-expansiveness, respectively.

§ 3. Properties of conditional entropy. In this section we examine
the basic properties of conditional entropy. The methods employed will
enable us to gimplify the proofs of some theorems concerning usual to-
pological entropy.

In some proofs we shall uge arguments of the theory of uniform
structures (see Kelley [14]). For a compact Hausdorff space X, denote
the set of all open symmetric neighbourhoods of the diagonal in X x.X
by R(X) (simply R if we consider only one space). It is the base for the
uniform structure on X. The topology in X defined Dby this structure
coincides with the original one. For any open cover A of X there exists
Le® such that {y: (x,9)e L} < A for any we X. BEvery such I will be
called a Lebesgue number for A

Two important properties of conditional entropy have already heen
proved: they are (1.22) and (1.28). The next ones are:

PROPOSITION 3.1. W*(f%) = [k|-1*(f) for ke N; or for ke Z if fis a ho-
meomorphism.

Proof. Observe that for a cover 4 we have (A”)}’ = A and that
for a fixed % the family {4%: 4<%} is cofinal with 2 This implies the
proposition in the general case; in the case of a homeomorphism apply
also (1.14). m

Prorosimion 3.2. Let ¥ be a non-emply closed invariant mbscl of X.
Then B*(f]y) < B*(f).

Proof. Let 4, BeA(X). Then we have N((4 [1,)[(ff[Y)) = N(AlB),
(d1p)* = A"|g, and therefore h(fly, (4|p)] Bly)g h(f To end
the proof notice that {4 |y: Ae (X))} = A(Y). m

From (1.22) immediately follows

PROPOSITION 3.3. If h(f) = oo, then also W*(f) = oo. m

ProrositioN 3.4, Let X = YU ... UY,, where the sets Y, are non-
empty, closed and invariant (4 =1,...,7). Then h*(f) = nmxh"'(f ly,)-

‘ et

Proof. The inequality maxh* (fly,) =< B () io]lows from Proposition
lisyr

3.2.Let 4, BeW(X). For n =1,2,..., N(4"|B") < Z'N(A'”ly B v,);
hence ‘
h(f, 41B) < llgﬂxh((fhr (Al (Blg,) < nl;wih(f!y (Blg,)-

To end the proof notice that for any By, ..., B, such that Bje W(Y;),
¢ =1, ..., r, there exists a Be A(X) such that B lp, 22 By ford =1,...,r. @
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A set ¥ e X iv called wandering it f"YAY =@ for n = 1,2,

A point we X iy called non-wandering if it has no wandering open nelgh-
bourhood. !

Let £ denote the set of all non-wandering points fm a transformation

Ji A=X. Of course, £ is non-empty, closed and invariant. We shall

prove the following theorem, an analogue of Bowen’s result concerning
usual topological entropy (cf. Bowen [3]):
TieorsM 3.1, Let (X, f) be o cascade, and let Q be the set of non- wan-
(lmm/ 7)01%“ Jor f. Then the conditional ent'op y of f is attained on Q, i.e.,
W) = B*(f ).
Proof. The inequality A*(f|g) < k*(f) follows from Proposition 3.2
We shall prove the reverse inequality.
Let B == {b,..., b} e W(L2). There emth i closed. cover of the space
&, {¢, -y @}y wueh that ¢, < b% for ¢ =1,...,r. The sets ¢; and Q\b;
are compact disjoint, and therefore there exists an open subset ¢, of a space
X such ﬂmm q; < ¢; and GN(O\Db) =@ (ie. cm!) ab);i=1,..,7

The set X\ Uob is compact and disjoint with 2. Hence there-exists a fmlte
family # oL w:mclm ing open subsets of X such that (JF > X\ Ua

Therefore, ¢ = FU{c,, ..., ¢} belongs to A(X). Now let us take arbltra,ry
HeN(X) and ¢ =0, erte A = HloeA(R). Take p such that

1 !
(3.1) og N (47| B) < B{(fla), 41B).
Let A == {ay, '.’., W} 3 write
(3.2) ' a = N(4?|B?).

The definition of N (A”[BP) tells us that there exists a mapping 7'
from {1, ..., r}¥ (the Cavtesian product of p copies of the set {1,...,7})
into the family of all subsets of the set {1, ...,s}?, such that for any
oe{ly .o, P

Pl
( m fw’:a/ri)
walla fanl)

Lot dy (¢ = 1,...,8) be an clement of B for which ¢, = d;nQ2. For
ae {1, ..., r}" wo have ‘

and CardTe < a.

-1 ‘
> () ban@
e}

p-L P-1 . Pl
(fﬁo‘/"""b&)r\[) @ Iﬂf‘i(aﬁm.ﬂ?)]hﬂ & (Q}f‘ibﬂ)f\!)

—1 p=-1 i
= U (1) e U (N1

rel'a o
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and thus

p—1 p-1 n--1 A n-1 .
0 = [Qr@\ L%.,( Qﬂf—mﬂ)] Nne o [Q)f-lon\ga (Qof-@d,i)] nQ.

Hence we ‘obtain

(3.3) iNR =0,
where
(3-4) °= ae{l )P [O 7 oa Ej'u(mf%dﬁ)]

Therefore there exists a fn:ute family @ of open wandering Subqets of X
such that

(3.5) UG:{EU(X\O ;)
=1

and @| = Bl q. Write D = Gu{d,, ..., d,}. We have D¢ A(X), D> 1.

Now we fix ke N and estimate the number N (D™ |(0*) from above.
Ep—1

Let @ s ce ™. Then ¢ = () ftaw; for some sets w;e €. If a set w belongs
7=0

to ¥, then it occurs in the sequence (w,, ..., Wy,..,) at most once. There-

fore we can divide the set {0,...,%k—1} into two sets P and @ in such

a way that CardP < CardF and there exist elements oje {L,...,7}"
k=1 -
for je @ such that ¢ = (M f~?v;, where

j=0
X for jeP,
ﬂof o” for je@Q.

In view of (3.4) and (3.5) we have
P 1
qf—%ccri\ L.g (_ﬂof"dn-) cec UG
for any oe {1,...,7}?, and thus for je@Q
p=1
e UGu U (N ) = U (@vfpr) (ﬂf”idw)-
velloy  i=0 n'l'aj 4l
For je P we have v; = X < (J.D?. Finally
(3.6) ¢c | f““"[U (@viiDr o U (ﬂf“dﬂ)]m ﬂf""(U]ﬂ’).

wello;  i=0
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The right-hand side of (3.8) can be rewritten as the union of & certain
family H < D It @ £ de H, d = hﬁ: I3, u;eD, then Card{i: w;e G}
< Oard@. Therefore from (3.6) we obtain -

Card (HN\{0})

Clard. &t

< 2 [( m(lf.?) (n&udG 05141(1(])” 1))71 Card Q—n (C&ld Dp))CardP]

e

< (Oard G +-1) kY (Oard @ Card (D7~ 1)) GBraG. gk. (Card (DF) ) Com

Hence we have N (D™ |(0*)< f-k¥-a*41 for some constants § and y
independent of & and thus

(8.7) h(j',])\()’)é%loga.

But D = H, and therefore (3.1), (3.2), (3.7), (1.13) and (1.23) iniply
W(f; B10) < M(fla); A1B) +e < h((f1a) | B) +5.

We have thus obtained the following result:
A ”:g%;“’ WS, BIC) <h((fla) 1B) +e

Taking the lmit with-respect to HeW(X) and e—0, we obtain

V3 R(f10) < B{(fle)|B). But from this and (1.24) it follows
BeU(@) Cean

that B*(f) < #*(flg). m
In the proofs of the further properties we shall have to be able'to
refine a given open cover in an essential way. For this purpose define

(a) the star of a set X with respect to a covw\A
§6(Y, 4y = {aed: anY =@},
(b) the star of a cover A
A = {st(a, A): ae 4}

(notice that the above doummon iy different from the one commonly
used).

0Of course, for AU we have St.4 < U;. also A > St 4.

Provosrron 8.6, The family {St.4: A<} is cofinal with U.

Proof. Let Ae and let e be a Lebesgue number for 4. There
existy o UeN such that UoUoU < L (where UoV = {(#, y)e X X X:

3 (#,2)e U, (2, )¢ V}). Then any finite cover chosen from the open

I

RN
cover {{ye X: (#,9)e Ullpex It & vefinement of 4. m
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A family 4 of subsets of a space X will be called a discover if elements
of A ave pairwise disjoint.

The application of the notion of stars is based on the following three
lemmas:

LEMMA 3.1. Let A be . finite cover of X, ¥ < X. Then there emists
a discover B < A such that
(a) bnNY @ for
(b) . e U {st(b, 4):

Proof. Assunie that B <= A is o discover fulfilling (a) but not (b). Then
there exists a point 4 ¢ ¥ which does not belong to the set (J {st(b, 4):
be B'}). Take ac A such that yea. Then B” = B'U{a} is also a discover
contained in A and fulfilling (a). Now the lemma follows from the finite-
ness of A (notice that @ is a discover fulfilling (a)). m

LEMMA 3.2. Let A be a finite cover of X; ¥ < X; let B be a discover

be .B,
be B}

contained in St A such that bNY #@ for be B; 0 <« 4, st(Y, A) = U (.
Then Card C > Card B.
Proof. Take a< A such that st(a, d)eB. Then anst(Y, 4) #@,

and thus there exists a ¢, ¢ O such that ane, # @. But then ¢, = st(a A)eB.
B is a discover .and therefore ¢, # ¢, prowded Sti(a, 4)  St(d, 4). Thus
Card(C = Card B. m

Lemma 3.3. Let A be a cover. Then St(4%) = (S6A) for I =1, 2, ...
Proof. If a;e 4 for ¢ =0,...,%—1, then

\1(0]"%” A e st (fHay, 14

k—1; therefore
k~-1

st{M ey, A%) =
=0

Thus St(A%) > (St4)% m
For cascades (X, f;), ie I, denote by [] fix [] X[ X; (fi X oo X[y
iel del ief

in a finite case) the transformation. given by the formula [[fi(@)ier
qied

== [ (t(ay, 4))

for j =0,...,
ﬂ/ Tt ( a,j,A)

J=0

= (fi0;)ier- For families A, of subsets of spaces X; (i = 1, 2), respectively,
wute AIxA2 = {0, X 0y: 0e Ay, 4 = 1,2} ’L‘he operations st and St,
as can easily be seen, commute with the operation of taking a product.

Lemma 3.4. Let (Xy,fy), (Xq,fa) be cascades, @ +# ¥, = X, and lot
A; be a finite cover of X; (¢ =1,2). Then

(a) N (T, St8t4,) N (Y, St864,) < N(st(¥y 2 Xy, Ay X 4y), Ay x4y,
(b) V(Y X Xy, Ay XA) SN (Yy, 4;) N( Xy, Ay).

iom°®
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Proof. The inequality (b) is obvious. We shall prove (a).

In view of Lemma 3.1 there exist discovers B; = 8t.4, such that.
bnY, 4@ for beB; and Y, c U{sb b, 8t4,) beBi} 1 =1,2). The
last  inclusion  implies (‘,utdlf = N (! ’i, StStAi). We have B, xB,
e Stdy x Btdy =864, < 4,). B, Als’g is a diseover; moreover b (Y, X ¥,)
# @ for be By By, and thercfore, in view of Lemma 3.2, if Jl o
s6(Vy X Xy, Ay X Ay) tor some (! = Ay xA,, then Card( = Card (B, xB,)
= Curd B, Card By, =

Now we are able to prove the next property of conditional entropy:

TirporeM 3.2, Let (X, 1y), (Xg, f2) be cascades. Then

W ) = B ()0 ()

From Lenima 3.4 (b) it follows that

h(fys

for 4y, Bye W(Xy), 1 == 1, 2. In view of the fact that {A, xA,: 4;eA(X,),

@ ==1,2} is cofinal with (X, xX,), this inequality yields R (fy X fa)
SRR B (fy) Lot Ay, Bie W(X,), Ay B; for ¢ =1, 2, We have

s (by > by, Ay <

CProof.

Ag | Ba) b h(foy Aol By) 2 B(fy % fay Ay X A4 1By X By)

Ay) @ sti(by % by, By X By)e St (B, X By)

for bye By, 4 == 1,2, Lemma 3.4 (a) implies for n = 1,2, ...

N(SUS6(AD) | BY) - N (S686(45) | BY) < N (4, X A5)"Sb((B, x By)Y)).

Hence, in view of Lemma 3.3 and (1.3):

(fyy SUSEAL| By h(fyy SU86 44| By) < h(fy X fa, Ay X A5 186(By X By)).
In view of DProposition J»I“ and the fact that the Tamily {4;x4,:
)y 4o, 2 N cofinal with QI(XIXX) the “above inequality
gives the inequality h*(fy) 1 (f2) < B*(fy X fa)-

Remark 3.1. Theorem 3.2 can be genomhzed by induction to the

])x'mlucb of an wrbifrary tinite number of transtormations: B(fi % oo XFu)

R emark 3.2. Pukting in the proot of Theorem 3.2 B; = 6(X,), we
obtain u simple proof of the theovem on the topological entropy of the
product due to Goodwyn [L1]: h(fy Xfa) = b(fy) -+ (f2). This theorem cam,
in the yame way, be generalized by induction to the product of an arbitrary
finite number of transformations. The foregoing considerations result
finally in wnew proof of the following theorem (also due to Goodwyn [11]):
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TuporEM 3.3. Let (X;,f;) be cascades (i =1,2,...). Then
m([15) = 2 nh
i=1 i=1
Proof. Write

0

;% =u([]x).

fe=]

={A>< {Q‘Yi}: AeQIQin)} for b =1,2,...

The family of open sets {a x H X;: a is an open subset of

o1

[T X,

’Lal

k=1,2,...}is a base of the space ” X,, and therefore the family U pI

'L=1 Joeil
is cofinal with 2,. Denote by m: H X~ H X, the natural I)I‘O]ectlon
Notme tha,t the sequence (). 1s ascendlng and that %( H fir 4)
= h(” fiy m,A) for Ae ;. Hence

Fe—

h(!jf) = m limh(ﬁfi, 4) = hmh(I—[ff)

00 Ae‘l[k =1 Te-»00 Bl

k-1 0
=lm Y h(f) = Sh(f) =
lim 2 2 (£

Concerning conditional entropy, the following analogous . theorem
also holds:

TuroREM 3.4. Let (X;, f;) be cascades (i =1, (f] fil <
Then i=1

ANEE

i=1 =1

Proof. We have

00 k-1 . I—1
([ = ([ ([T = 3w ([T,
1= = fua] dunfs
But 0<R* .m fi)< h(ﬁfﬁ = i}’f] h(f;) for k =1,2,..., and therefore
}rlmh*([][ fi) = 0. Thus

o0

h*(n ) —hmZ R*(f,) Zh"' (f). m

=1 f>00 327 =1

icm
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§ 4. Connection with measure-theoretic entropy. Now twe shall examine
the connection between topological condmonal entropy and measure-
theoretic entropy.

Denote by M(X) the space of all Borel regular normed measures
on X and by (X, f) the subspace of those measures from Mi(X) which
are invariant with respect to f. We shall consider these spaces with the
wealk-* topology. It is a well-known fact that they are both compact.

Now we prove an important fact, which allows us to simplify some
proofs (e.g. Bowen [6], [6], Goodwyn [10]) and to give a very short proof
of Goodwyn’s theorem. This fact can be found in Denker’s paper [7]
though it is not explicitly formulated there.

PRrROPOSILION 4.1. Let ueM(X,f); let A be o finite Borel partition
of X. Then there ewist a finite Borel partition B of X and a cover (e A(X)
such that

() (ff f:
(b) (B|0) <2

Proof. Let A = {ay,...,a,}. There exists a number s> 0 such
that if w(e;—b;) < e fox ¢ =1,...,r for a partition B = {by, by, ..., b},
then the condition (a) holds (see e.g. Smorodingky [16], Lemma 5.8).
‘We choose compact sets b, contained in a; such that u(a,\b;)<<e for
i=1,...,r (this iy possible because the measure u is regular) and we

take b, m*X\p .
t=1,...,7. Osfit and (b) also holds. m

TrmorEM 4.1 (Goodwyn [10]). Let (X,f) be a cascade, peM(X, f).
Then h,(f) < h(f).

Proof. Let A be a finite Borel partition of X, B and C as in Prop-
osition 4.1. The well-known inequality H,(B") <log N (B") forn=1, 2, ...
gives h,(f, BY< h(f, B). In view of Proposition 4.1, (1.11). and (1.16)
we geb

h'[A(f’ 'A') G hu(f) B)

Now we define O = {64,...,6}, ¢ =byUb; for

+L<R(f, B) +L< h(f, 0)+B(f, BIO)+1
< h(f)+(log2+1).

A has been arbitrary, and therefore h,(f)< h(f)+(log2+1). But this
is true for every continuous tra.nsformatmn of X into itself for which u
is invariant, in particular for f* instead of f. Hence, for n =1, 2,

hf) = b < U+
<h(f). m

;(mgz—m = h(f)ﬁ(logz +1).

Therefore, 7, (f)
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In the sequel we shall need the following simple inequality:
" LEMMA 4.1. For finite Borel partitions A and B,
H,(A|B) < logN(4|B).
Proof. For any be'B
Hu!b//z(b)(A- ’b) =

log N(b, A) < log N (4|B),

and therefore
H,(A1B) = > u(b)

bel3
Formula (1.22) is valid also for measure-theoretic entropy, namely:

: PROPOSITION 4.2 (cf. Bowen [51). Let D be a finile Borel partition
of X, ueM(X,f). Then '

T, () < hu(f, D)+ 1 (fID).

Proof. Let 4 be a finite Borel partition of X and let B and C be as
in Proposition 4.1. In view of Lemma 4.1,

H,(B" < H,(D") +H,(B"|D") < H,(D")+1log N (B"|D")
‘ Cfor mo=1,2,.
D)+h(f, BID). Applying '1’rop0si‘gi0n 4.1,

H e € (Al)) <logN(4|B). m

and therefore h,(f, B) < h,(f,
(1.11) and (1.17), we obtain ‘
/L”(f,' < h,(f, B —!— hﬂ(f, y+h(f, B ~|~1

< hu(fy DY+N(f, O1D)+h( f,B\C'
, < h(f, D) +h(f| D)+ (log2 +1).
A has been arbitrary, and therefore h,(f) < h,(f, D)+ h(f|.D) -+ (log2 +1).
But this is true for every continuous transformation of X into itself for
which g is invariant and for every finite Borel partition of X, and there-
fore for m =1,2,... (it is easy to see that h,(f", DY) = nh,(f, D) and
L(f*|.D7)= nh(f1D)):

: 1 1 1. 1
hlf) = — I (") < - h(f%5 D)+ h(f*| DF) -+ -(log 2 -+-1)

= l,(f, D ‘I—/b(fID ~!~~(10g +1).

Thus b,(f) < hu(f, D)+ h(f| D). m
Let us consider the measure-theoretic entropy regarded as a function
of a measure: & (f): M(X, )R, Denote by Ay (f) = Limsuph, (f) k. {f)
N . : Pemfl ‘
(we assume oo —oo = 0) for ueIMN(X,f). Notice that hi(f) = 0 iff k (f)
is upper semicontinuous at the point u. :

icm°®
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Now we generalize Theorem 3 of [15].

TromormM 4,2, Let (X, f) be a cascade, ue M(X, f). Then i (f) < K*(f).
Proof. ILh(f) = oo, then, in view of Proposition 3.3, also h*(f) =
Henee we can assume h(f) < oo. Let 4 = {ay,..., a,}e?I. Take a cover
B = {by, ..., b} e A such that b, = a; for ¢ = 1, . Then take conti-
nuous functions ¢;: X-+[0, 1] such that g,z = 1 f01 meb and g8 =0
for @¢a;, & =1,...,r. For some ae[0,1] we have ,u(U rp;‘{a;) =0;
therefore Lhe lmms Borel partition ¢ = {% [a, 1], ¢t [a, 1]\(}“1 [a,1], ...

, o e, L]\U @i [a, 1]} consists of sets with boundaries of measure 0.

We also have 0 4. Take ¢ > 0. For a fixed n, the partition ¢" consists
also of sets with boundaries of measure 0, and therefore for some open

. 1 !
neighbourhood U, = (X, f) of u we have — H ,(C") > -1~H,,(0“) —¢& when-
0 m
ever ve U,. Thus, in view of Proposition 4.2,

L
= lim — I ,(0") z limsupsup —1—IIv(G”) -

nero0 nroo  veUy T

h’u(.f) 2 h/»(f! 0)

= limsup sup hy(f, 0y~

nwer00  vally,

> limsupsuph,
n~o0 vely,

flC —e

= limsup b, (fy — h(fld) —

Vel

¢ hag Deen arbitvary, and therefore hy(f) < h(f|A). But 4 has also been

* arbitrary, and thus R}(f) < *(f). m

JororrAry 4.1 (cf. [18]). If f is asymplotically h,-owpamwe, then
there ervists a measure with mawvimal entropy for f. :

Proof. If f is asymptotically h-expansive, then & (f) is an upper
semicontinuous function on the compact hpace mx f , and therefore
it attainsg its supremum. =

Remark 4.1. Dinaburg’s theorem ([8], proof in the general case
[91, [17]) asserts that the topological entropy of a transformation f is
the hest. estimation of the measure-theoretic entropies of f, ie., k(f)
= sup b (f). But an analogous theorem for &* and &) is not valid (see

Iz A .
'qumnjg]é} 6.4).

In some cases the-following fact will be useful for the computation
of topological conditional entropy: '

ProposteioN 4.3, Let (Y,)2., be a descending. sequence of invariant
dlosed subsets of X. Let (U,)%., be a descending sequence of open subsets
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o0 [}

of X such that Y, < U, for n=1,2,...and N U, =N7Y, =Y #@.
n=1 n=1

Then

B*(f) = limh(f|y)—h(fly) (we assume oco—oco = 0).
N0 :
Proof. From Dinaburg’s theorem it follows that for any = there
exists a measure u,< M(X, f) such that h},n(j) = h(fly,) —1/n and supp u,
= Y,. Let ueM(X,f) be a cluster point of the set {u,}rm,. We have

p(INY) = (G XNT,)) = lim u(X\T,).

N->00
But, for n fixed, 4, (X\Y,) = 0 for almost every k&, and therefore u(X\U,)
= 0. Therefore, suppu = Y. But in view of Goodwyn’s theorem we have
(f) << h(fly). Applying Theorem 4.2, we obtain:

hyu(f) = liminth,, (f)— k. (f)

> lim[h(flg,)

n~—>00

=1/n]—h(fly) ——hmh fh’ —h(flg).

Remark 4.2. If X is a metric space, then the assumption of the exist-
ence of the sets U, is fulfilled automatically; it suffices to put U,
= U IntBy,(2).

zely,

One can apply the above proposition in order to computeé the topolog-
ical conditional entropy in the examples from [12], [15]. The conditional
entropy in these examples turns out to be equ’ul to the usual topological
entropy.

§ 5. Flows. Now let us consider a continuous tlow {¢'},.p on a non- '

empty compact Hausdorff space X. We can write, as in the discrete
case, AT = VT p~tA for Ae, T> 0. The application of this notion
€[0,
is based on t[he)following proposition:
- ProrositioN 5.1. For AeN, T >0,
> AT
Proof. Let LeN be a Lebesgue number for 4. Let m: X x X X
%[0, T]—+X x X be the natural projection; let @: X x X x [0, T]-+X x X
be the mapping defined as follows: &(w,y,1) = (¢'w, ¢'y). Olearly, & is
continuous. Write Z = = (P~ (X xX \L)). Z is compact and symmetric.
If there exists a point ze X with (z, ®)e Z, then there exists a number
te [0, T] such that (p'm, ¢fw)e X x XN\L, but this is impossible. Hence
U =X xXN\Z is an element of %. For any (#,y)e U and te [0, T] we
have (¢'w, ¢'y) e L; therefore any finite cover B chosen from the open
cover {{y: (@, y)e Ul}sex is a refinement of A, m

there ewists a Be such that

icm°
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In view of the above proposition, for A¢ U and T > 0, AZ belongs
to 2. For A, BeU the funetion logN(AZ|B%) iy, as in the discrete
case, sul)(uddlilve therefore there exists a limit

O A
Jim Zlog ¥ (A7 [Bg) = haoy(p, A|B).

Further, in the same way ag in the discrete case, we obtain

I"ﬂow(‘l” | B) = li.m 7"]‘.lnw(‘p7 A |B) = sup 77’110w(‘]’7 4|B),

h’l)}tlnw(‘/)) hm hyow (91 B) = lnf h’ﬂow(q’ |B),

Tt (1) == Py (9 10) -

TioRkM 5.1, Let {¢°),.n be a continuous flow on o compact Hausdorff
space X. Then for Te R:

(a) h(p") = 17| hpow (9),
() W* (™) = |} Bow (9)-

Proof. We may assume that 7' > 0; for 7 = 0 the theorem is ob-
vious; for T' < 0 it is & consequence of the case 7' > 0 and the formulas
W) = h(f™Y) and B (f) = B*(f).

Let 4,B,0,DeN, B> AL, D> 0F. For ne N we have

N((A5)0 | Doy) < N(AGF10F7) < N (Byr |(0F)3);
thus
I(g™y A% D) < T Ty (g, 410) < (9", BIOF) < (p"105).

In view of Proposition 5.1 the family {A%: Ae A} is cofinal with U; there-
fore we can take the linit with respect to A. We obtain

(5.1) BT | D) << T T (910) < B(9T|0F)  for D =07,
Putting ¢ = D =0, we obtain h(¢") < T hyoy(p) < h(gpT), whence (a)
Tollows.

Taking in (6.1) the limit with respeet to D, we obbaiin B*(¢T)
S By (9| O) < (@™ |OF), and (D) lollows, because C is arbitrary. m
CoROTLARY B, Under the assumptions of the theorem

(a) h(g") = 1T1-h(¢"),
(b) B (@T) = |T)-h*(¢"). =
Remark 6.1, The part (a) of Corollary 5.1 has already been known,

but it has heen 1)1'0ved only for metric spaces (Dinaburg [8], Bowen [4]).

6 ~ Studin Mathematica LV.2
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Remark 5.2. In the whole of Section 5 (except the case T'< 0 in
Theorem 5.1 and in Corollary 5.1) all the theorems are valid for a one-
parameter semigroup {¢%}s, of com‘.muous transformations of a space X
into itself (a semiflow).

§ 6. Counterexamples. We have proved some properties of topological
conditional entropy which are similar to the properties of usual topolog-
ical entropy. In this part we shall give examples which show that some
other properties of this type are not valid.

In the whole of Section 6 the symbols for spaces and transformations
will be fixed. :

Examrir 6.1. Let us consider the product of a countable number
of copies of the compact discrete two-element topological group Z,:
Q@ =]]Z,. Q is a metric compact group. The shift; given by I'(2)7. ..o
= (Y2 —cos Yi = 41, I8 & continuous transformation 7': @-+@. It is
well known that T is expansive and k(1) = log2.

Let P = {0}u{l/n}i>,< R. P is a compact metric. space. Take
X =PxQ; f=idp xT. f: X=X is a homeomorphism. We have ()
=1log2 and f is h-expansive (from the proof of Theorem 3.4 it follows
that the product of two h-expansive transformations is also h-expansive).

Denote by Y the space obtained by identifying all the points of X
with the first coordinate 0. Y iy a compact metrizable gpace. {0}x @
is a subset of X strictly invariant with respect to f, and therefore there
exists exactly one homeomorphism ¢: ¥—¥ such that mof = goum,
where m: XY is the natural projection. We have i(g) < h(f) = log 2.
Besides, glumxq 8 conjugate in a natural way with I. Hence % (g)= log 2.
In view of Proposition 4.3 and Remark 4.2 we have also A*(g)= log 2.
Thus we see that a factor of an h-expansive tra,nsformamlon may hfwe
positive conditional entropy. m

It is not a very surprising result, because the image of an open cover
needs not be open (in fact, in the above example, if for some A e N(X)
we have h(f|A4) = 0, then =(4) is not open). But, as the next example
shows, even the assumption that a projection from X onto ¥ is open
is not sufficient.

ExAMPLE 6.2. Let p,: @@ (n=1,2,...) be defined as follows:

“n
Pl o = (YR cwoy Yo = 2 @ (addition ix in Z,). The following

J=i—n

properties of p, are easy to check:
(6.1) p, s aomfinubus,
(6.2) for any cylinder (i.e., a set Co_ v, = {(@)5 o € Q2 @) = & for

i1 < &}) we have Pule i, =@ f B <y
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(6.3) puol =Top,.
Now let us define p: X—¥ as follows: p(0,s) = 0; p(l/n,a)"

= (Lfn, py®), # =1,2,... From properties (6.1)-(6.3) we obtain:
(6.4) p s continuous,
(6.6) p 18 6 surjection,
(6.6) pof=gop,
(6.7) p 98 an open Mmapping.

The properties (6.4)-(6.6) are obvious. To prove (6.7) notice that the family
of all the sets of the form « X0y_jrene, © X, Where a is open in P, i an
open base for A7; the image of such a .set under the mapping p is, in view
of (6.2}, a sot of the form.

oL
U =
/(Q) H{Sﬂ}Xog—kj’j,“.’skj’j,

where b is open in P. m ‘

If kow =k, then we have h{y) = suph(wl,c_lm) (Bowen [4]). The
next example shows that the above theorem is not valid for A* instead
of h.

DxAwrrn 6.8, Let ¢: ¥—P be the natural projection. We have
g0g = g, h*(g) =log2, but for every weP the transformation g| Yy
iy expamnsive. m

Now we shall show that the upper semi-continuity (even. the constancy)
of the measure-theoretic entropy does not imply asymptotical h-expans-
iveness of a transformation.

Examrrn 6.4. Let R < @ be a closed, T-invariant subset such that
T|g is uniquely ergodic and k(T |z) = » > 0 (see Hahn, Katznelson [13]).
Tix a point o = (w)i. < B and let o" = (0f)2 - (i =1,2,...) be
defined by o, = w; for j =0,1,...,n~1, keZ. Now define a closed
(I' % g)-invariant set Z by

7 = ‘(m, NeQ XY (4 =0, ve R) or (ye{%} X R, &= T! " for gome j)‘.

@ =T x ¢|y iy 0 homeomorphistm of Z onto itself. We shall compute the
conditional entropy of 7 The family of all open. finite covers of Z of the
form.

{0"'31:!'-'l“lc}(n.,./I,....‘a,“)azflﬂ’l x

X v [{a xR} (

2

[X 3 ”m
1'1,‘ i ey UL 2 K
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where ¢ = {0} U{1/i}2,, = P, is cofinal with % (Z) (remember that {{1 /i}}7;"
is an open cover of {1/i)7"). But for a cover B of the above form we have

{@™ x({L/m} X R) < B" for n =1,2, ..., and therefore
1[ 1 . 1}
m il S ™ L™ —{xh
h((p]B)}h(tp,{w }X(i'm,] XR)) mh(q: Ao }x({m xR
- B (g™ gam ) = WI™[g) = h(T|g) = 7.
. P lgo™yx {1/m}x ) m R

Tt is easy to check that k(@) = y, and thus also A*(p) = y. Denote by u,
the unique measure from M(Z, p) whose support is contained in R x{0},
and by w, the unigue measure from IN(Z, ¢) whose support is contained
L in [Q x{({L/n} xRYINZ (n = 1,2,...). It is eagy to see that they are well
detined, ergodic, and that there are no more ergodic measures in (7%, ¢).
Hence for any upeM(Z, ) there exist numbers ¢, 0, n =0,1,2,...,
such that Yg; =1 and p = 3 ¢:u;- We have h,(p) = y, because h, (p)
=0 =0 .

=y forn =0,1,2,...8

Remark 6.1. We can use the spaces and the transformations defined
in Example 6.4 to obtain a slightly stronger result than that of Example
6.2. Namely, the transformation ¢ with positive conditional entropy may
be a factor even of an expansive transformation under an open mapping.
Take a factor of ¢ under idg x ¢. It is expansive, but ide is its factor under
an open mapping.

The next example shows that it is possible for an inverse limit of
expansive transformations not to be even asymptotically h-expansive.

Bxamerm 6.5. Write ¥, = {1/k}io1 XQU{0}, gn: Yu—>Tos gulum?_ 0
=id xXT, ¢,0 = 0. We have projections z,,: Y,—>Y,; for n > m defined

ag follows:
S A
w7, 1 By =

Tum0 = 0. It is easy to see that (X, ¢,)m; With mappings (T,m)psm form
an inverse system with the limit (X, g). All g,’s are expansive, but
B(g)>0. m

l .
(-70—, m) for k<m,

0 for k> m,

§ 7. Cascades with a homogeneous measure., Bowen in [§] proved
that any continuous group endomorphism of a Lie group is h-expansive.
We can see at once that this statement is not valid for an arbitrary com-
pact group instead of a Lie group, because no countable infinite product
of tramsformations with positive entropy is h-expansive. But we shall
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show that every continuous group endomorphism of a compact group
is asymptotically h-expansive if its entropy is finite. For this purpose
we shall use the notion of a homogeneous measure.
Leti (X, f) be a cascade and let ueM(X). For Ae U write

» . .

P(d) = a:[:i'{a cd: wea, [bxi(we b=pla) = u®)]}.
Of course, I(4)e . The measure u iy called f-homogeneous if there exist
mappings D(+): A-»A and of-): A->(0, co) such that for any Be,
ko ly, we P(EY, de DI we have

(7.1) w(d) < o(B)- u(a).

It iv eany o check that for X being metric the above definition is equiv-
alent to the definition given by Bowen [4].
For Ae, let
M(A) = maxpu(a); m(4d) = min u(a).
ek : ae PRy
For Bz A we have My (B) < My,(4), and therefore for an f-homogeneous
measure :

(1.2)  My(D)<s o(B)-my(H) for ~ D,Ee¥, D=DE), k=1,2,...
LsmmA 7.1, Let A, Be, Bz A. Then
N ((86.BY"] A%y -my (B) << My (S6.A4).

Proof. Let a be the element of A* for which the number N (a, 8t(B%))
is the largest. In view of Lemma 3.3, St(B") > (StB)¥, and so this number
is not smaller than p == N ((StB)’“ [A¥). In view of Lemma 8.1 there exists
adiscover ¢ = P(B") such that ena  @for ce Cand thate < U {st(c, B"):
¢e O} (because st(o, P(BY) < st(c, B¥). We have Oard{st(c, B"): ¢c C}

k—1
< Oard 0, and therefore Card( > p. Let a = (M f~*a;, a;e 4. We have
1=0
U0 e st(a, B
o1

] Je=1
e (VY §b(f " ay, f71B) & N 'st(a, B) Ciﬂ Fist(ay, A)e (SEA).
) wal

Loml)

enco
P (B) < (U 0) < M (St4). m

Ticnorum 7.1, Let (X, f) be a cascade, h(f) << oo, If there ewists an

J-homogeneous 'measure e M(X), then f is asymptotically h-expansive.

Proof. Putting in Lemma 7.1 4 = 6, B = H, we obtain

(7.3) N(StBY) m(B) <1 for  He.
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The following inequality is obvious:

(7.4) 1< N(DY-M,(D) for Ded.

Hence M, (D) > 0 for De; from this and (7.2) it follows also that m, (By

> 0 for B <. Thus from (7.2) and (7.4) we obtain

1
> ———  for
™) 2 oEmem

and from (7.2) and (7.3) we obtain
¢(B)

(7.5) D,Be<¥%, D> D),

(7.6) D,Be%, D= D(H).

Putting F = B in (7.5) and D = 8t 4 in (7.6) and applying Lemma 7.1
to them, we get

- AR kY oo (i (_LL_. 7 7\ a( )
(71.7) N((StB)F| 4% < N{(StH, N(D%)-¢(B)
for 4,B,D,Be¥, St4 >D(H), D=D(B), Bz A.

Hence ‘
(7.8)  h(f, StB|4) < h(f, D)—h(f, St1)
for A,B,D,EeW, Std =D(H), D=D(B), BxA.

We may take the limit with respect to D:
(7.9)  R(f,StB|A) < h(f) —h(f, StH) ‘

; for A,B,HeW, St4 = D(H), Bz .
‘Now we take the limit with respect to B, applying Proposition 3.5:
(7.10)  R(flA)SK(f)—n(f,86H) for A,EeWN, Std = D(B).
Further, take the limit with respect to A4:

' () < h(f) —h(f, StB)  for

(7.11) He .

Finally, taking the limit with vespect to X and applying Proposition 3.5
once more, we obtain (notice that here we use the assumption that
h(f) < co): ‘

(7.12) (<0 m

The assumptions of Theorem 7.1 are difficult to check directly.
But they are a consequence of certain other conditions, pointed ont below,
which admit a much simpler verification.
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Let G be a group. Let @ be a (left-hand) action of @ on a space X
(i.e., & homomorphism of & into the group of all homeomorphisms of X).
We shall write @ = (Pg)w for ge @, ve X. An action is called transitive
it ¥V 3 g-@ ==y An action is called equicontinuous if the family &(@)

w, e X getd
ol homeomorphisms of X onto itself is equicontinuous, ie., for any
Ve N(X) there existy & We R(X) such that if ge@ and (2, 9)e W, then
(9w, g y)e V. A meavare ue M(X) is called invariant with respect to an
action @ if ue Q M(X, Dg).
e

Tiworim 7.2, Let (X, f) be a casoade. Tel G be a group and T: G-»@G
a homomarphism. Further, let ® be o transitive equicontinuous action of @
on X such that f(g @) = Tg-fo for we X, ge G Let a measure ueM(X)
be invariant with respect to ®. Then p is f-homogeneous.

Proof. Note that
(713)  (gw) = T -
Let geGy, ¥ < X, ne N. We have

g (XY = {o: fHg @) e X} = {0 T frwe ¥} = f (T X).

[

for gel, e X, n=0,1,...

Hence
(714 g (f ™YY o fY(A"g X))  for ge@, Yo X,n=0,1,...

Now take He 2. The action @ is equicontinuous, and therefore there exists
an open nom-empty subset U of X such that the set {(z,y)e X xX:
1 @, yeg: Ul is contained in some Lebesgue number of B. Write
et
n-1

UL = N17T,,

el 1=0

Up={geX: Aw,yeg- U},

for we X, n,z— 1,2,... From the definition of ' U, it follows that U, < #
for we X. Tor we X and ke @ we have

Uy = {yeX: Ao, k™" yeg Ul = {pe X: 5(1;70-'m,ze7cg~ U}.
. el e

But the left-hand side multiplication by % is an isomorphism of ¢ onto
itwelf, and therefore we obfain

(7.15) Toe Uy s Uy 2e X, ke,

In view of (7.18)~(7.18), for 4 ==0,...,n—1 we have
01Uy, =TT ) =T Ugtp) =5 Ty

and thus

(7.16)

for

g UL = UL, for weX,ge@, m=1,2,... ° :
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Now we choose a finite cover D(H) from the open cover {g- Uy
n~1 X
of X. Let we de (D(E))*. Thenwe d = () (g, U) for some g, ..
) =0
Hence fizeg; U, and therefore ¢, U Uﬂ-. for 4 =0,...,n-1 Conge-

quently, d = Uy, Thus we have ¢

oy i€ G,

wede (DB (n==1,2,...).

(717)  p(d)< (UM if only

Now fix we .X. We have Uf,[I < a; for some ae M, 4 == 0, ..., 0 -~1. Henco
n—1

ze Ul < (fa;e B*, and so

=0
1

(T.18)  w(Up) <max{u(a): seaec B} for wel, n=1,9,...
The measure x is invariant with respect to @ and @ is transitive; thus

from (7.16) it follows that

(7.19) w(Up) = (U for @,yeX, n=1,2,...
In view of (7.17)~(7.19) the measure x is f~homogeneous (put ¢(kF) = 1). m

Evidently the’ above theorem is also valid for & right-hand action
of a group. S

Now we shall show the simplest examples of transformations with
finite entropy for which the assumptions of Theorem 7.2 are falfilled,

Bxampre 7.1. Let G be a compact group and f: G-+@ & continnous
homomorp]iisql, h(f) < co. Put in Theorem 7.2 X == @, T == f, u the Haar
measure of @, and let the action be right side multiplication. Then the
assumptions are fulfilled. Hence f is asymptotically h-expansive. If we
take fz = Tn-g, (g, is a fixed element of @), i.e., an affine transformation,
then the assumptions of Theorem 7.2 are also fulfilled. m

Exampre 7.2. Let G be a locally compact group with a tlosed sub-
group H such that X = G/H is compact and there exists n G-invariant
normed measure on X. Then a continunous homomorphism 7': G->@
which preserves H induces a continuons transformation fi XX, The
action of @ is natural.*We assume also h(f) < co. All tire agsmpliony
of Theorem 7.2 are very eagy to check, except, maybe, the equicon-
tinuity of the action. But the natural projection ¢ -»G JH is uniformly con-
tinuous and the superposition of a uniformly continwous mapping with
an equicontinuous family of mappings gives an equicontinuous family
of mappings. Hence the transformation J detined above in agymptotically
h-expansive. m *

§ 8. Connection with pressure. Let (X,f) he & cascade and let p: @
X R be a continuous function. The notion of topological entropy may
be generalized to the notion of Dressure L(f, p) (see [177).
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The following facts are stated in [17]:

PO ) P(Fg) = sy () pdud.

peIN(X,,

It for some peeIM(X,[), the equality P(f,q) = by (f) +[ @duo holds,
then uy i called an equilibrium state for (f, ¢). If k. (f) is an upper semi-
confiinuous function, then

(LS 9) [ pdul.

(8.1) h(f) =" inf

peC(X,R)

Thus Theovem 4.2 yields the following

JorotrAryY 8.1, If f is asymptotically h-expansive, then there emists
an equilibrium state for (f, ¢) for every pe C(X, R) and the formula (8.1)
is valid for every measure pe M(X, f). m

In Section 7 we have given some important examples in which the
assumptions of this corollary are fualfilled.

We may remark that it is easy to answer the question, raised in [17],
whether the formula (8.1) is always valid. The right-hand side of (8.1) re-
garded as o funetion of s an infimum of & family of continuous functions,
and therelore it is upper remicontinuous. Hence (8.1) is valid for every
we MX, f) it A (f) is an upper semicontinuous function.
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A reflexive Banach space which is not sufficiently Euclidean

by
WILLIAM B, JOUNSON* (Columbus)

Absweact. An oxample is given of a roflexive Banach space with unconditional
hagis which is not sufficiently Ruelidean.

I, Introduction. Tn [8], Stegall and Retherford ask whether every
reflexive Banach space ¥ is sufficiently Buclidean; i.e., whether Y con-
tains a sequence (I,) of subspaces with supd(H,,l;) < oo for which
there are projections P, of ¥ onto M, satistying sup [P, < co. (d(E, F)
is the Banach-Mazur distance coefficient inf{|Z'|||77"|: T is an isomor-
phism from B onto F}.) This problem has a negative answer. In fact,
we construct & reflexive Banach space Y with unconditionally monotone
basis for which [Pz 2-%d(W, )~*n'* for any projection P from ¥
onto an n-dimensional subspace W.

Wo use standard Banach space theory notation as may be found

e.g. in [6]. We would like to thank Professor T. Figiel for simplifying the
proof that the example constructed in Section II is reflexive.

II. The example. We work with the space X of sequences of scalars
which have only finitely many non-zero coordinates. Given a set F of.
integers and we X, B is the sequence which agrees with # in coordinates
in @ and is zero in the other coordinates. A sequence (E,)7, of sets of
positive integers iy called allowable provided H;NE; =@ for ¢ j and
B, < [n-L, oo) for L=i<n We will construct & norm ||| on X for
which the unit vectors (e,) form an unconditionally monotone basis so
that the completion of (X, |||) is reflexive and X satisties

W
flo]| == nmjx(l]wll(,o, fwup L}J \Bwli: (By)f is allowa.’ble}).
das]
Al Tuclidean subspaces of ¥ = [6yy] ave badly complemen?ed
it X satisties (%) and (p (n)) grows fast enough. The proof of this agsertion
makes use of the following proposition, whose proof is omitted because
it involves only & nonessential modification of the argument for Theorem
A in 7] and a standard. perturbation argument.

* Yupported hy NSI GP-33578.
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