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Norm-decreasing isomorphism on hermitian elements and the group of
jsometric and invertible multipliers of a Bamach algebra

by
E. O. OSHOBI (lle-Ife, Nigeria)

Abstract. Lot 4; (i = 1, 2) be a complex Banach. algebra; T, a norm decreasing
algebra isomorphilsm of A; onto 4y; H(4;), the Banach space of hermitian elements in
A; and G (4,), the group of isometric and invertible multipliers in 4;. We show that

(i) If A;is unital, TH(4,) = H(d,), and TG (4,) = G(4s). But if 4; = 4, = 4
and TG (4d) = G(4), then TH (4) = H(4).

(ii) If 4; is a B* algebra, then T is a *-isomorphism.

(i) If A; has a minimal approximate identity; 7™, the induced map of the
multiplier algebra AT onto AP is a norm deereasing extension of T and I™
G4 = GAD).

We finally construet an example to show that 7' does not in general preserve -
G(4) and H(4).

1. Introduction. We shall investigate, in this paper, the effect of
norm-decreasing algebra isomorphism on hermitian elements H(A) and
the group of isometric and invertible multipliers ¢(4) of a Banach algebra
A. The motivation for this work is Wendel’s paper in [7] on the preser-
vation of G(4) by a norm-decreasing 7 when A is a group algebra,
Rigelhof’s in [5] when 4 is a measure algebra on a locally compact group,
and Wood’s in [8] where 4 is L?(G) for compact group. We shall indicate
that G(A) and H (A) are not, in general, preserved by a norm-decreasing T
But when G(A) is preserved, H(A4) is also preserved. .

This work is a part of the author’s Ph.D. thesis and I wish to express
my thanks to DrG. V. Wood of the University Cellege of Swansea for
his help and advice as my Supervisor throughout my three years stay
in Swansea. ;

2. Notations and definitions. We shall always consider Banach algebras
A over the complex field C [4, assumed to be without order (i.e. Y wed,
@A == (0) = 4 =0 or A» = (0) = @ = 0)]. We shall denote by R the
veal scalars and by 1, the identity in 4 if it has one. g(«) denotes the spectral
radius of wed.

9.1. DEFINTTION: Hermitian Blements (see [17). Let A be a complex
unital Banach algebra (i.e. 1e4 and {1 = 1). We denote by A* the dual
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space of 4 and by S(4) the unit sphere of A. Given xeS8(4), we define

D(4,0) = {fed*: f@) =1 = Ifl}. |

Given aed and zeS(4), let
V(A’ a,x) = {f(a$) fED(A7 m)}

and

V(d,a) = U{V(4,a,5): 2e8(4)}.

V (A, a) is called the numerical range of a. hed is hermition it V(4 ,h) « R
and we shall denote by H(A) the set of all hermitian elements of A.
B(A) denotes the Banach algebra of all bounded linear operators in.

A. L, (defined by Lo =aa YV acd med) denotes the loft multiplication
operator. The »ight multiplication oper ator R, is similarly defined.

If A has no identity, then hed is hermitian if Ly, eB(A4) is hermitian.

We shall need the following results on hermitian elements.

2.2. PrOPOSITION. Let A be a complex unital Banach algebra. Given
hed, the following statements are equivaleni:

(i) heH(A4);
(id) lim—i—{ill—l—iahll —1} = 0;
a—>0

(iii) Jlexpiah] =1 (aecR) (see Lemma 2, §5 of [1]).

2.3. PROPOSITION. H (A) is @ Banach space (see Lemma 4, § 5 of [1]).

9.4. DEFINITION : Multiplier algebras (see [2]). The bounded linear
operator g on A is a multiplier of A if ¢(zy) = (¢a)y = v(gy) Va, y<A4.
It p(ey) = (¢2)y, @ is said to be a left multiplier. @ is a right multiplier
it g(ay) = »(gy). To save repetition, we shall deal with Banach algebras
of left multipliers only in this paper; we denote this by A™. Clearly, L e4A™.
If 4 has an identity, then A = A™. peG(4) if ped™ and lp™ @] = |pz|
= |#] YoeAd. If 4 has an identity, then

= {m: |l = o~ =1}.

In fact, G(A4) is a topological group in the strong operator topology (SOT).
(see Lemma 1.6.1 of [2]). A net {p,} converges to ¢ in the SOT iff
lim |lp, & —@z| = 0 Veed. It converges in the weak operator topology
(\;!VOT) iff for each wed and y*<A* we have

Lim [y*(p,%) —y*(go)| = 0.

2.5. DEFINITION. A net {#,} in a Banach algebra 4 is a left approwi-
mate identity if lim |z, 02— x| = 0 for each x<A. It is a right approvimaie
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identity if lim lo@,— ] = 0 for each wed. It is an appromimate identity
if it is both left and right approximate identity. It is minimal if hm Il

=1 in addition.

{L,: meA}is densein 4™ in the SOT iff 4 has an a,pprommate identity
(see Theorem 1 1.6 of [2]).

3. Isomorphism of H(4) and G(A).

3.1. THEOREM. Let T be a norm decreasing algebra isomorphism of
a complex unital Banach algebra A, onto another A,. Then

(i) TH(A,) < H({4,) and
(ii) TG (4,) < G(4,).
Proof. (i) Liet heH (4,); then

i

llexp iah)l =1, aeR by 2.2.

Since T' is algebraic, Texpiah = exp taTh. Hence

llexp taTh|l = ||[Texp ioh|]| < llexp iah] =1 VeaeR,
ie.
lexp iaThll =1 and TheH(A,).
This proves (i).
(i) Let @e¢G(4,). Then |of = o~ =1 since 4 = 4™ “Hence
T#| < ol =1 and |[Tz7' < |o7' =1. But To~! = (Tw)~. Therefore

[|Te)| = [(T®)~| =1 and (ii) is proved. m

Before proceeding with our investigation, we shall use 3.1 to show
that norm decreasing is sufficient for Corollary 4.8.19 of [3] to hold.

3.2. THEOREM. Any norm-decreasing isomorphism T between two B*
algebras A, and A, is o *.

Proof. It is known that if A is a Banach algebra Wlth an approximate
identity and 4 is the unitization of A, then

(1) H(A) = AnH(A) (see 1.3.6 of [3]).

Let T be an algebra isomorphism of a Banach a,lgebra, A, onto another

4, and T be detined thus:
T(w, a) =(T5,a), wecd;, aeC and (@, a)ed,.

Clearly, Tis an algebra isomorphism of A,, 4, and it is norm-decreasing
if T is norm-decreasing. The norm in 4, is defined by

I(ws a)ll = llol = |al -
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Hence, if 4; (¢ =1, 2) has an approximate identity, we have

TH(A,) =T (H(A,) = T{4,nH(A,) from (1)
< T(A)nTH(A,)
< A,nH(4,) by 3.1
= H(4,) from (1).

Since a B* algebra has an approximate identity, T then maps a hermitian
element™to a hermitian element. But an element of a B* algebra is hermitian
iff it is self-adjoint (see 2.1.3 of [3]). Hence T is a * .

We shall now show that under certain conditions 3.1 holds for non-
unital algebras. But we first prove a result which could be of independent
interest.

3.3. LemMA. Let 4; (i =1,2) be a Banach algebra with o minimal
approvimate identity. Supposethat T is a norm decreasing algebra isomorphism
of Ayonto 4,. Then T™, the induced map of A™ onto A™ is @ norm-decreasing
extension of T.

Proof. Let ¢4, T™ is given by

(2) T™p = TpT™  (see [6]).

We shall only show-that 7™ is a. norm-decreasing extension of T
as other properties of an algebra isomorphism can easily be verified. Let
{#,} be 2 minimal approximate identity in .4,. Then {T'z,} is an approxi-
mate identity in 4, and [Tz, <1. Let 2'ed,; we have

(I")(Tw, @) = (TpT™)(Tw, o) = (TeT " 'Tw,) -5 = (Ton)a' .
Hence
T p) (T2, a')| = |(Ton,)- o'
S VAN A
< lloll 2’
Also
limint [(T™) (Lo, o)l = |(T™p)a' | < ligpl ')

Therefore | T™9| < [ip|l.
Since {L,: weA} is strong operator cense in AT (see 2.5) and ||n]
= Ll Vzed,, T™ is a norm-decreasing extension of T.

3.4. THEOREM. Suppose T is a norm-decreasing isomorphism of A4,
onto A, (4; as in Lemma 3.3 above). Then

(i) TH(A,) = H(4,) and
(i) TG (A7) = G{47).
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Proof. Since A7 (¢ =1,2) is a complex unital Banach algebra,
(ii) is clear from 3.1 and 3.3. (i) Let heH(A4,). Then L,eH (A7) (see 2.1).
Since I™ is norm-decreasing (by 3.3), T™ Ly is in H(A™ by 3.1 (i).
Now, let #,¢4, and x,e4,; then

(T™ Ly @y = (1L, T @, = T (w,(T5)) = (Twy)@, — Ly, a,.

Hence

T"Ly, = Ly, cH(AD), ie. TheH(4,). m

3.5. Remark. Lemma 3.3 is not known to be true if 4; (1 =1,2)

contains neither an identity nor a minimal approximate identity. We
also have no counterexample. But if 4; has the operator norm, and T
is norm-decreasing, then T™ iy clearly norm-decreasing on {L,: weAd}.
Hence TH(A,) = H(A,) in this case. It is not clear, however, whether
I™ maps G(A7) onto G(A™) or not. ’
- 3.6, Remark. Norm-deeréa.sing always implies isometry on H(A4)
and G(4) if 4 is a unital Banach algebra: The case for G(4) is clear from
the proof of 3.1. Let heH. Then o(h) = |Ib]l (see [6]). Since T is
algebraic, o(h) = o(Th) and Th is a hermitian element of A by 3.1.
Hence |k} = (k) = o(Th) = |Th]. However, if T is an isometry, then
it preserves both H(A) and @G(4). For LP(@) and M (@) algebras, norm
decreasing of T' was sufficient for the preservation of G(A™). It is easy
to generalise the L'(@) case by assuming

(1) that 4 has a minimal approximate identity H

(2) that G(4™) is strong operator dense in A™ and

(3) that no closed proper subgroup of G(4™) is -dense in A™.

Assumption (3) is not necessary in general for let 4 = (O([0, 1]).
Then G(4) ={fed: |f(®)] =1 Vaec[0,1]}. F = {feG(4): f(0) =1} is
& proper subgroup of G(4). But both G(4) and F generate A by .Stone-
‘Weierstrass’ theorem. However, since 4 is a B* algebra, T is an isometry
(by an earlier paper). Hence TG (A4) = G(4). The following assumption
on A also generalises the preservation of G(4) by a norm-decreasing
T when 4 = M(G) for discrete G:

(i) 4 has an identity.

. (i) Every element ¢4 is the norm limit of the linear span of the
group G(4) of isometric and invertible elements of A.

(iii) No subgroup of G(4) spans 4.

Rigelhof in [5] proves the case for loeally compact group @ but the
topologies involved are the strong operator and the weak® topologies.

If A i3 a finite-dimensional Banach algebra, then H(A) is a finite-
dimensional Banach space (see 2.3)  and since isomorphism preserves
dimensionality, TH(A) = H(A).
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Preservation of G(4) by a norm-decreasing 7' implies the preservation
of H(A4) as we now show. )

3.7. THEOREM. Let T be a norm-decreasing algebra automorphism of
a complex unital Banach algebra. Then TG(A) = G(A) implies TH(A)
=H(4).

Proof. Let G4(4) be the group generated by I = {exp ih: he H(4)}.
Then G, (4) = G(4) since [expih| = 1. In fact, TG4 (4) = G,(4): for let
@ = expih. T = Texpih = expiTh. But TheH(A) by 3.1. Hence
TzeGy(A). Since G(4) = TG(A) by hypothesis; T 'z <G(4) and T™'a =
T~ expih = expiT-'h. Therefore, lexp iT*h|| = |T x| = 1, i.e. T~ %
<H(A) by-2.2. Combining this with 3.1, we have TH(A) = H(4) and
TG, (4) = @4 (4). .

3.8. Remark. The converse of 3.7 is not known. It is, however,
clear that &y(4) is not necessarily dense in G(4): For, let 4 = O(x),
(7 the unit circle in the complex plane). G(4) = {feC(m): lifll = [If ! = 1}
and B = {exp ig: g is a real-valued function in C(w)}. Let zem. Then
#G(4) = G(4) but 2B & B. It is clear, however, that TH(A) = H(4)
implies 7¢,(A4) = G,(4).

We shall conclude this paper with an example to show that norm
decreasing isomorphism .does not, in general, preserve G(A) and H(4).

3.9. ExamPLE. Let (" be the Banach space of all sequences of hounded
variation with norm defined by

(3) Il = 12l 4+ 3l —al  for @ <0,
n=1

and C”, the Banach space of all convergent sequences with supremuin
norm

(4) le”| = suplal,| * for a’eC”,

0" is clearly a Banach algebra under pointwise multiplication. ¢’ is also
a Banach algebra under pointwise multiplication, for it can be shown
by induction that

k Ie
(il 3 lan s =) (W14 ) Wi —50)
n=1

n=1

k
> |oyi |+ 2 @ 1Yne:— TnYnl Y positive integers k.

n=1

If we allow % to tend to infinity, then

Iyl < lllyl, @,y <.
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All other properties are easily verified. ¢' and C” are then complex unital
Banach algebras with sequence (1) as the unit element and e, as the basic
elements 1 each of them (e, is the sequence with 0 in every entry but
the nth which is 1 and (1) is the sequence with 1 in every entry).

‘We now define the Banach algebra 4 as the direct sum of ¢’ and ¢’
(4 =C @ C") with norm defined by

(@', @)l = max {llz’ll, ="}, (@', ®")ed, a'cC’, 2"<C".
We define a map T on 4 thus:
T, x") = (U, U,
where
U, =@, nxz1,

,7 ’

U =a, U, =%,, mn>1.

Clearly, 7' is linear, multiplicative and one-to-one. It is also easy to
show that 7 is onto. T is norm-decreasing since

', &)l = max {jaf]+ > 10,4, —ay], sup lay 1}
ron=]

> max {|o5] + ) 05,1 — ], max [[a]], suplay |1}

= max {|U"], [T}
= [IT (2, 2")].
Using the fact that xeH (C') implies limi {I1 +2ax|—1} =0, it is
a0 O

easy to show that H(C') is the set of all real scalar multiples of the identity
in ¢" and H(C") is the set of all real convergent sequences in C"’.
Using the fact that x< H(C) = |lexp fax| = 1, it is also easy to show
that '
H(C')QH(C") = H(4).
Suppose
() eH(C) and (p,)e H(C).

Then ((4), (u,)jc H(4) and, by definition,
T((2), () = (), (v0))
where )
v, =X cand v, =p,,, n>1.

But not every element of H(A) is of the form ((4), (v,)). Hence TH(4)
= H(4).
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It can also be shown, by calculation, that
G0") = &' c0': &' = ("), acR}
and
G(O”) — {wue 01/: 2 = (eiﬁ‘n)}.
It is easy to show that }
(@0, G(0")) = @G(4).
Hence
T((e™), (¢#m) = ((¢), (ky)),
where

k=6 and k, =" for n>1.

Since not every element of G(4) is of the form ((e"“), (kn)), TG +# @.
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A converse to some inequalities and approximatioms in the theory< of
Stieltjes and stochastic integrals, and for nth derivatives

by
L. C. YOUNG* (Madison, Wisconsin)

Abstract. The object of this report is to establish by counter-examples the best
possible character of theorems recently obtained about stochastic integrals and Stieltjes
integrals, and about nth derivatives and finite differences. The hypotheses involve
a pair of estimate functions subject to the convergence of a corresponding integral
or Y-geries, and it is shown that the divergence of this integral or series render in each
case the conclusion false.

1. Our notation will be largely that of [6], [7]. Let n be a positive
integer, and let p(u), w(%) be functions defined for 0 < w <1, such that
@ is non-negative and Borel measurable, while y is continuous and mono-
tone increasing, and takes the value w(u) =0 only at u = 0; further
suppose that, for 0 < 1< 1,

(1.1) plaw) = (34" e(u),  p(iu) = dip(w).

We denote by {i} a decreasing sequence h, (» = 0,1, ...) with limit
0 and with initial term %y, < 1. We write

Y = () "g(h)p(h,),
»=0
and we denote by Y its partial sum for 0 < »<< N. For n =1, h, = 27,
the series (1.2) occurs in [2] and it then econverges or diverges with the
sum Xo(1/v)y(1/») previously introduced in [5]. This last sum has been
termed Y-series by Lesniewicz and Orlicz [1]. We prefer here to term
Y-series the series (1.2): it was itself introduced, for # =1, in [3].
We say that the sequence {1}, or the ¥-series ¥, satisfies the condi-
tion O(1), if for each » the ratio h,_,/h, is an integer expressible as an
integer power of 2, and satisfies the condition C€(2) if

(1.3) 29(h) < p(h,-y) < 8p(h,).

(1.2)

1
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