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On the summability of Fourier series of
funections of /A-bounded variation

DANIEL WATERMAN (Syracuse, N.Y.)

Abstract. For fin ABV with 4 = {nf+1}, it is shown that the Fourier series of
1, SLf), is everywhere (0, f) bounded, —1 < f < 0, and everywhere (U, a) summable
for a > f. If fis continuous in {nf+1}-variation, —1 < g < 0, §[f] is everywhere (C, )
summable. These results hold uniformly on each closed interval of continuity of f.
If ABV = {nf*+1}BV properly, there is a continuous function f in ABV such that
S[f1is not (C, p) bounded at some point. A lemma on the continuity of the A-varia-
tion and & summability test similar to the Lebesgue convergence test are the principal
tools. A new proof is indicated for the fact that functions of harmonic bounded vari-
ation satisfy the Lebesgue test.

It is well known that functions of various generalized bounded vari-
ation classes have Fourier series which converge everywhere and converge
uniformly on each closed interval of continuity. Here we shall show that
the Fourier series of funections of one such class, the definition of which
depends on a parameter f, —1 < f< 0, are everywhere (C, f) bounded,
uniformly (0, g) bounded on each closed interval of continuity and, for
a > B, are everywhere (U, a) summable and uniformly (0, ¢) summable
on each closed interval of continuity. With an additional restriction, we
may choose a = p for > —1. We also show that, for § > —1, each larger
clags of ABV functions contains a continuous function whose Fourier se-
ries is not (¢, ) bounded at some point.

In § 1 we present the basic concepts and state the principal results.
In §2 we prove the result which shows in what sense the main theorem is
bost possible. In § 3 we establish a lemma on the continuity of the A-
varintion wehich is the prineipal tool in the proof of the main theorem. In
§ 4. wo prosent the proof of the main theorem and, finally, in § 5 we show that
the lemma of § 3 can be employed to furnish a simpler demonstration
of the convergence propertios of funetions of harmeonic bounded variation.

1. Definitions and results. Let f be a real function of period 2x. Let
/ denote a non-decreasing sequence of positive numbers 1, such that
1A, diverges, {I,} a sequence of non-overlapping intervals I,, = [a,, b,]
< [0,2n]), and let f(I,) = f(b,) —f(a,). The function f is said to be of
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A-bounded variation (ABV) if the A-variation of f,
Vatf) = sup{ 3 (L) |22 {L}} < oo

The collection of ABV functions is a Banach space with norm ||f|
= [f(0)| + V,(f). Let A™ = {Aym}y m = 0,1,2,... A function fof 4BV
is said to be continuous in A-variation if V m(f)—0 as m-—>oco. When

= {n}, the class ABV is referred to as the functions of harmonic bounded
variation. Wehave studied the convergence behavior of the Fourier series
of functions of this class in a previous paper [3].

Here we shall congider the summability properties of Fourier sories
of functions of class nf™}BV with —1< < 0.

For p = —1 it is clear that our class is exactly the functions of bound-
ed variation in the usual sense. A numerieal series > @, is said tobe (¢, —1)
summable if it converges and a, = o(n™"). It is said to be (¢, —1) boun-
ded if its partial sums are bounded and a, = O(n™"). For a series of func-
tions we may speak of uniform (¢f, —1) summability or boundedness on
a seb if the convergence and the order condition are uniform on that set.
Clearly, the Fourier series of & BV function is (¢, —1) bounded, convergent
everywhere, uniformly convergent on each closed interval of continuity,
and will, therefore, by a theorem of Hardy and Littlewood ([1], p. 121),
be (U, &) summable for every o> —I1 and uniformly (C, a) summable
on each closed interval of continuity.

It is known that functions of ABV have only simple digcontinuities.
We may assume, without loss of generality, that they are regulated, that
is, f(#) = :[flz+)+f(z—)] for each a.

Our main result is the following

TemorEM 1. The Fourier series, S[f1, of a function f of class {n®**} BV,
—1< B <0, is everywhere (C, §) bounded and is uniformly (C, ) bounded
on each closed interval of continuity. For a > B, S[f] is ewrm/where (0, a)
summable to sum f(x) and summability is uniform on each closed interval
of eontinwity.

If f is comtinuous in {nf+Y-variation, ~1< B << 0, then S[f]is every-
where (C, B) summable to sum f(@) and summability is wniform on each
closed imerval of continuity.

This result is best possible in & certain sense, as is expressed in our
gecond theorem.

THROREM 2. If ABV > {n#*'} BV properly, —1< p< 0, then there
18 & continuous function in ABV whose Fourier series is not (C, B) bounded
at some point.

The proof of Theorem 2 is quite direct. Theorem 1 is based on a test
for (€, ) summability obtained jointly with B.N. Sahney [2].

As is usual we denote the Fourier series of an irtegrable function f of
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period 2= by S[f] and set

() = @, (6; ) = § [f(@+1) +Ff(2—1) —2f ()],

D) = 0,(t;)) = fl(p(%)id%-
0

Our test is embodied in the following
TuroreMm. S[f] is (C, B) summable to f(z)
@ ot which
(i) f]J(lz,) = 0(h),
(il) @(m)—D(nw—h) = o(h7F),

-1
(iii) [ e —glitnl 4 _

,—1 < <0, at every point

o(nf) as g = -rc/('n,—k—"ttv)—%)

and summability is uniform over any closed interval of continwity where con-
ditions (i1) and (iii) are satisfied uniformly. If f is bounded, condition (ii)
maey be ommed if f is requlated, conditions (1) and (ii) may be omitted.

If (i), (ii"), (i) denote (i), (ii), (iii) with “o” replaced by “O”, S[f]
will be (C, B) bounded at every point & at which (i'), (il'), (ili") hold, and uni-
Jormly (C, B) bounded on every set on which the conditions are satisfied
wniformly. If f is bounded, conditions (i') and (ii") may be omitied.

‘We turn next to the proof of Theorem 2.

2. Proof of Theorem 2. Since ABV o {n’"}BV properly, there is
a sequence, {a,}, such that a,x0, ¥ a,/l,< oo and 3 a,/n’* diverges.

For axe[0,2n] let (i, n) = (20+8/2)n, 7'(i,n) = (2i+1+5/2)y
Let g, be the characteristic function of the interval I, = (v(4, ), v/ (i, n)).
Let

n-1
ful®) = Dagy, for  @el0, 2n]
=1
and be of period 2= on the real line. Clearly, in ABV,
n--1
Wall<2 > a;/d;, =b, =0(1) as s—oo.
21 (2 n

Lotting of (w; f) denote the nth (C, 8) mean of S[f] at &, for some 6(%),
10()] =5 1, wo have ([4], p. 80)

an :qiu [(n + ﬁg_l ) - ‘7‘;@] 268

WO‘ﬁ(O;fM) ""‘J fn(t) 1[1( sm( /2))2 %(2Sin(t/2))2 dt

n~-1

im1 Iy,
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n—1
1 2 ; 2 0 N %
= Aﬁz B\ (G fd )‘ 2 i
(77/4-——'2*" W’_F_é " .TC

=1 —— =1 |—7 (i ,n)
n—1 n—1
0 N1 @ 0/ 7 &;
= T o
fe=1 i=1

where ¢ and ¢ are independent of #. The lagt swun is O(L) a8 #--o0; the
first becomes unbounded. Thus
lloh (05 ) = 1 65,(05 fu)l [by=>00

a8 n—>oo0, implying that there is an f e ABV for which {d®(0; )} is unbounded.
Since the continuous functions of ABV themselves form a Banach space
and the f, can be modified so as to be continuous without any substantial
change in the argument, we have the desired result.

3. Preliminaries to the proof of Theorem 1. We have already defined
the /-variation of a function f with domain [0, 2=]. If I is any closed
interval in [0, 2] and {I,} denotes a collection of non-overlapping in-
tervals, we may define the A-variation of f on I to be

Va(f3 1) = sup{ Df(L,)/lni {L,} such that I, < I}.

The following lemma on the continuity of the 4 -variation will be of consi-
derable use to us.

LemMA. Let f be of dlass ABV on I = [a, b]. Then

(i) if f is right continuous at a,

Valf; [0, 2])>0 as xNa,
if f is left continuous at b,
Va(f; [w,b1)—~0 as @b,
(ii) of [w,ylc I°, then .
Valfs 2, 91 —0

as © and y fogether approach either a or b.

Proof. It is clear that (i) implies (i), for if we suppose [#,y]< I°
and set g(2) = f(x) for ze(a,d) and g(a) = fla--), g{b) = ¢(b—), then
¢ is right continuous at ¢ and left continuous at b and

0< Valf; [, 9]) = Valg; [0, 91) < Valgs [a, y) >0 as g™ 4.

Similarly,
0 Vulf5 [, y]) < Vylg; [#,0)>0  as  axb.
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Thus we need only prove (i). We consider only the case in which fis right
continuous at a. °
There is a collection of non-overlapping intervals {I,}¥1, s
: 1 uch that
If(LIx, I, = [a, b], f(I,) #0 for each n, and .

Ny
D I3 > 3 4(f; [a, bY).
1

Sinee f is right continuous at ¢, we may assume that I, = (@, b] for each .
‘hoose y,e(a, b) such that

¥ .
[o, 1] N Llen =0, y<(a+b)/2,
and I < (a, y,] implies

PO < min{|f(L)]: » =1,..., Ni}.

Then there is a collection of non-overlapping intervals {In}ﬁi 41 Such that
[f(L)x , we have I, = (@, y,] and f(I,) # 0 for each n, and

Na .
D) T hrey > 3V alf5 [0, 92]).-
N]-{-l B
Continuing in this manner we can choose, for k¥ =1,2,...,y,xa (by
choosing ¥y, < (6 +y,)/2) and Iyy1s +oos Iy, ,» noOn-overlapping inter-
vals contained in [y, y;] With

Np1

DI ey, > 3V alf5 [0y 9])

Nyl
and. [f(Z) .
Lot |f(L,)| = ay,1/4, =b,. Then a, 0, b, = O(L). Now V(f; [4, b])
> D a,b, implies that given &> 0, there is an N such that

x©
Z a,b, < e
N1
and, therefore, since for j=> 0, t,,;b, < a,b,,
=] B
Z Gy b < .
N1

Now there is a J(g) such that

N N
Dby <050 D by<e i j>J(0).
1 1
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Writing j = N, we see that
oo
Va3 [0, Y]) < )ty bn < 2
1
if % is sufficiently large. Hence
Af5 [o, )0 as koo

implying that
Valfs o, )0 a8 yxa

since V 4(f; [@, ¥]) is & monotone function of y.

4. Proof of Theorem 1. Clearly S[f]is (C,1) summable everywhere
and is uniformly (0, 1) summable on each closed interval of continuity.
Hence if we show that S[f] is (¢, f) bounded at a point, —1L < <0, it
follows from & well-known convexity theorem ([1],p. 127), that S[f] is
(C, a) summable at that point for a > f. The result on umiform (0, «)
summability follows from uniform (C, f) boundedness in the same way.

From the statement of the summability test we see that we need only
verify condition (iii) or (iii’).

Let us consider, for n<d<m,n == / (/r» ‘I-—E-g:«t),

Itn,z, ) = f le(t) «.«_I_—_w)l at.

‘We have
d
I(n, @, 8) < [If(@-+1)—flo+t+n)t~*+ dt+
7
+ f @ —t) ~fla—t—m) =D @t = I, +1,.
7

Now if m = [d/x], letting V([a, b]) denote the {n *'}-variation of f on
[a, b], we have
m (T+1)n
41,“”11<%“ﬂ2 f |F (@ - 1) — fla - ) o~ @
d=l dn
m
<~y Yose(f; [w+in, @ --i-2n )i

f==]

L2 PV([m 40, 2+ 5+201).
Applying the lemma of § 3 we see that

I (m,®, 0) =o(l)  as  8-0,n->co.
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If we suppose that @,—,, a point of continuity of f, then
—p , oo
" /11(“: @y, 0) < 2m ﬁV([“n""’/ ) B+ 0+29]).

Adopting the convention that the variation of f on the empty interval
is zero, we have

0Ty @, ) < 2n PV (@, -+ 1, @, 4+ 6+2910( — o0, @ 1)+
+ V{[@, +n, 8,4 42110 [@, o))}
=o0(l) as 6—0,n—>00
by the lemma. Similar results hold for #n~"I,. Thus we see that
nPI(n,®, 0) =0(1) as 6->0,n—po0

for each #, and the convergence is uniform at each point of continuity.
Let us now consider

Tinyw, 0) = [ PO IEED gy 3 (g, 40),
]

where J, and J, are obtained in the same manner as I, and Z,. Then if
m = [d[n],
n—1

Y I Z ose(f; [@+in, o+ (3+2)7)) i"H < 2770V,

T=m
where V,, denotes the {n”™'}"-variation of f on [0, 27]. The same inequality
holds for J,.
Thus, if f is continuous in {n’+*}-variation,
n " T(n, %, 0) =0(l) as wmé>oco

uniformly in @. If our hypothesis is that f is of {#’+'} BV, then V,, is domi-
nated by the {n*'}-variation of f and so

wlJ (n, ®, 80) = O(L) ay md—>oco

uniformly in @.
Now choose 8, 0 80 that nd,~-oo. Tt fis of {n**} BV, then for each z

w Ly @, 8y) - (0, @, 6)) = o(1)+0(1) ='0(1) as n->oo.
If w,->@,, & point of continuity of f, we see that

ALy 5 8,) A (0, By 4) =o(L)+0(1) =0(1) as n—>co.
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Thus S[f] is everywhere (C, §) bounded, uniformly (C, ) bounded at
#, and, therefore, on each closed interval of continuity. If f is continuous
in {n®*'}-variation, then for each =

w (I (ny @, 8,) + T (0, 3, (5,;)) =o0(l) ay #->o0,

implying that S[f] is (€, ) summable to f(z) for cach #. If in addition
@, a point of continuity of f, then

WL (0 @y 8,)+T (0 @y, 8,)) = 0(1) a8 n->oo0,
Thus S[f] is uniformly (€, f) summable at @, and, therefore, on cuch

closed - interval of continuity.

5. Some remarks on Harmonic Bounded Variation. In our previous
paper [3], we discussed the Fourier series of functions of class HBV,
ie., of ABV with 4 = {n}. We showed there that functions of that class
satisfy the Lebesgue convergemce test. Using the lemma of § 3, & more
direet proof of this fact may be furnished.

We are required to show that

kg

1= fifeﬂ:fa@ftzm it = o(1)

as  n-»o0,

]

where = w/n. Suppose I; and I, are defined in the same fashion as in
§ 4. Then

m (i-+1)y

7
L<),
t=1

[f(@+1) —f(@+t+9)[ 47 @ < 2V ([m 41, 5+ 6 +29])
in
and, by the lemma, I, = o(1) as §—0, n—oo. I, is treated similarly.
Now consider

ki

/

¢

J

3

() — (47|

(1) — (¢ - n) | dt.

The last integral is o(1) as n—-co uniformly in #. Now choose daN 0 KO
slowly that %6,/ oo and

™

[0 —pt+mias =o) s nerco.

8
oy

We see at once that f satisfies the Lebesgue test at each point. That I
satisfies the test for uniform convergence on a closed interval of continu-
ity may be shown by considering T, (n, ,, d,) and Iy(n, ®,, 8,) as in § 4.
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