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On the moduli of convexity and smoothness

by
T. FIGIEL* (Gdadsk)

Abstract. In the paper the moduli of convexity and smoothness of general Banach
gpaces and products thercof are discussed. An attempt is made to give precise estimates
where only qualitative results have been known. (E.g. it is proved that the moduli
of I, (X) are equivalent to the corresponding ones of X.) The problem how far the modu-
lus of convexity can be improved by a suitable renorming is studied for spaces with
local unconditional structure.

In this paper we are concerned with general properties of the moduli
of convexity and smoothness of Banach spaces and certain products
thereof. Our purpose was to obtain some estimates, useful in the isomorphic
theory of Banach spaces, in a precise form and with no redundant assump-
tions ‘on the spaces involved. Renorming problems are considered only
in the case of the existence of local unconditional structure, which may be
regarded as elementary (cf. [5], [24]). Our terminology tends to be con-
sistent with [16].

Section I is of an infroductory nature. The main results are Prop-
ositions 3 and 10 and Corollary 11. The first two of them seem to have
been implicit in the literature, but their role has not been recognized.
For the sake of completeness, short proofs of some known results are
also given.

The main result of Section IT is that the moduli of convexity and
smoothness of I,(X) are essentially the same as those of X. This completes
the results of [7]. The method used to estimate 01, can easily be adapted
to the case of Orlicz spaces of vector valued functions, Ly, (X). The formulae
obtained are analogous to those found in [18], where the case X = R is
discussed. The results of Seetion I allow us to show that the latter formulae
are the best possible. The corresponding results for the moduli of convexity
are obtained by duality, with the use of some formulae for the Legendre
transform.

In Section III we investigate the uniform convexifiability of a space
£ with an unconditional basis. The dual results are not formulated, their

* Supported in part by NSF GP-30798.
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deduction being straightforward. We present some improved methods of
estimating dz and then discuss how the norm can be modified so as to
satisfy the conditions needed for those methods to work. We do not know
whether the converse of Kadec’s theorem (which would state “if B is
uniformly convexifiable and a function f yields a lower estimate for un-
conditionally convergent series in Z, then ¥ admits an equivalent norm
50 that f < 08y for some ¢ < oo”) is true, but our renorming of ¥ is rather
close to that.

I. Auxiliary results. Let (X, || ||) be a real Banach space with dim X > 2
and let 8y = {#<X: ||| =1} be the unit sphere. The modulus of convewmity
(vesp. of smoothness) of X is defined by the formula

dx(e) =inf{l—lw+yll/2: ¢, ye8x, lo—yl = ¢}

(resp. ox(v) = sup {}(lz+wyli+ lo—wyll—2): »,yeSx}).
Lindenstrauss observed in [15] that
20x:(7) = S {f+zgll+11f =l —2}
= sup sup {(f+vg)(@)+(f—79)(¥) -2}

X,geS g @, yeSx
= sup {|z+yll+rlz—yl—2}
3”5 X
= sup sup  {re—(2— oy}

20 x,ye8 xllo—vll=e

= sup{ve —20x(¢)},
820

but it seems that there is no simple inverse relationship. The function
3X defined by the dual formula

dx(e) = sup{ 4re—ox:(7)}, -

=0
which, by Lindenstrauss’ formula, satisfies 5X< dx, iy convex, being
the supremum of a family of convex functions. (In fact, it is sioply the
maximal convex function minorizing dy; observe that if for some 4, b
with @ > 0 one has 6X(s) as-+b for all £ > 0, then for all s >0

X(s)/as———gx‘(%,) as-+b.)

= inf{as —ae+ 0x (&)} =
e=0

Hence the relation “5;: = 85" implies (in fact, is equivalent to) the con-

vexity of 6x. The example due to Liokoumovich [17] shows that the latter

is not always the case. ‘
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The possibility of expressing oy in terms of dx. allows one to deduce
in a simple way many properties of moduli of smoothness from known
facts about moduli of convexity. For instance, as noticed in [15], the
result of Nordlander [23] stating that 6. (e) < O, (e) for all & > 0, yields
0x(7) 2 g, (7) for all > 0. (Let us recall, for future use, that g, (v)
=Vi+2-1.) ’

Since we would like to be able to proceed in the other direction as well,
it is important for us to know that 6y and 6X are in a sense equlvalent
Namely, one has

ProrosITIoN 1. Let 0 <y <1, 6= 0. Then

dx(e) = (y™*

This suggests the natural notion of equivalence. Given two non-
negative functions f, g, each defined on a segment [0, a], let us write
J -3 ¢ if there exist positive constants 4, B, C such that Af(Bt)< g(z)
for te[0, C]; we shall consider f and ¢ as equivalent iff f 3¢ 3 f.

The estimates which we obtain in the sequel are usually of that form.
We have made some effort, when it does not lead to complications, to
get reasonable numerical bounds for the constants involved. This explains
our frequent use of Nordlander’s estimate in this section.

Proof of Proposition 1. It is a direct consequence of the fol-
lowing two facts.

Levya 2 (cf. [19]). Let ¢ be a non-negative function defined on [0, al
such that, for some K =1, 0<o<y<a implies ¢(z)<Kap(y)ly. If
7 @: [0, a]->[0 o) i the mawimal convex function minorizing ¢, and y (0, 1),
then

—1)dx(ve).

1—
o(z) = _fyl @(ys)  for

<< a.

ProrosirioN 3. The function & dx(e)/e is non-decreasing.

Proof of Lemma 2. We shall prove that, whenever 0 <y <o <2<a

and 2—y > 0, one has
=29 ( H_m——y >1—y
() == ——— 1l e =
ey T, p(e) = e p(ys) = ().

This will show that the convex envelope of the graph of ¢ lies “above”
the graph of the function p, whence ¢ () > v(») as requested. Consider
two cases. If y > ya, then

z2—a Yy

¢ (ya) +—

I>—""% 0 9 plyg) .
T e—y Kyo 22—
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If y < yz, then

—_ — 0 k-4
1327 o0 > gl = ().

2=y Ky
This completes the proof of the lemmz?.
5IT, ispconvenient for us to assume in the proofs through the rest of
+this section that dimX < co. The extension of the results to the general
case is immediate, depending only on formulae like

bx(e) = inf{dx(e): X' s X, Aim X’ < oo}.

LEMMA 4 (cf. [16], the proof of I1.3.6). Let 4, yeBxy = {2eX: |2l < 1}
Then |w+yll <2 (1 —dx(le—yl)- ‘ .

Proof. Assume dim X < oco. Fix an e¢[0, 2] and p¥ck vectors u, v in
Bgx s0 that |lu -] be maximal subject to flu—o] =& It is enough to prove'
that |jull = o] = 1. The case & = 0 being trivial, assume & 0. Let
e X* satisty |lo¥|| =1, 2" (u-+2) = [u-+oll. '

Tt would suffice to prove that if, say, [v| <1, then 'af' (v w:“u) =g
and [u| < 1. Indeed, an analogous reasoning would then yield z(u—v)
= ¢, and hence ¢ = —e¢ a contradiction. . : .

"l‘o this end let A = {weX: |w—ul| = ). If we AN By, then, by the
maximality of [u+ 2l

o (u+w) < fhe+wl < fu+ol| = &*(w-+v).

Hence, if we had [v]| <1, then #* would attain at v a loc.al ma;ximum
on A. Consequently, #* would norm the vector v—u, i.e., & (v—u)
= |lv—u| = ¢ and also

fell < & (o) -+ e — o) = 3[a* (ut0)+a"(v—w)] =" (v) <1,
as promised. This completes the proof. )

COROLLARY 5. dx is a mon-decreasing function on [0, 2].

Proof. Let 0< e <8, <2 and let 2,yeSx satisfy [z—yll =&,
l#+yl = 2 (L—6x(es)). Then, lething ¢ = (8,—51){2es, =.a;—[—0(y—m)v,
4y = y—c(y —a), we have @y, y,e By, |6y —¥:ll = &;. It remains to apply
Lemma 4 to get

Ox(e) <1 — 3w 4yl =1 -}z +yl = 0x(e).

Proof of Proposition 3. It follows from Corollary 5 and the
next lemma.

LemMmA 6. Let 6,(s) =

inf max{|ju+sol, [u—svl}—1 and let, for
u,ve8x .
§> 0, f(s) = 8,(8)/s. Then the function f is non-decreasing on (0, oo) and

satisfies the identity
ox(e) _1 f( : )
e 27 \2{1—6x(e)
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Proof. For any fixed u, veSx the function Gu,p(8) = max{ [lu -+ sofl,
flw — sv|l} —1 is convex and vanishes at 0; hence g,,,(s)/s is non-decreasing
on (0, o). Taking the infimum over all u, veSx, we obtain the first
statement.
Now let £<[0, 2) be fixed. Assuming again dim X < oo, choose @, ¥ e Sy
80 that |z —yll =&, lw+yll =2 (L—6x(z)), and let

v =@ty)/letyl, v =@=yflot+yl, s =l =s[2{t—sx(e)]
Then, since |ju|| = 1, and |u+o| = 1/{1—6X(s)}, we have

() 0 (8) < |lw o) -1 = 8x(e)/(L— 8x(2)).

On the other hand, pick u', v'eX with |ju'|] = 1, || =s, max{|ju 4’|,

' —v'[} = 1+0(s) = o™". Writing &' = a('+v'), ¢’ = a(w —v'), we
bave |’ —y'l| = 2as, @', y'eBx (in fact %', 4’ «Sx); hence, by Lemma 4,

Ox(208) ST — 10" +9'll =1—a = 8,(s) /(L + 5,(s)).

Using this and (x), we get dx(2as) < x(e) ; hence by Corollary 5 and
the definitions

83(s) = 0™ =1 > 2567 ~1 = 8x(s) /(L — O (e)).

This together with () completes the proof of the lemma.

Remark. The identity stated in Lemma 6 can be recognized as
Lemma 1.4 of Milman’s [22]. We have given a complete proof since Milman’s
reasoning seems to yield only the inequality we denoted by (*). It is
unfortunate that we must not replace our proofs of Lemmas 8 and 12
below by simple deductions of much stronger estimates from the next
lemma (Lemma 1.5) of [22] (as we did with our original proof of Prop-
osition 3). A simple counterexample to (a very weak form of) Lemma 1.5
has been given by Professor Ebbe T. Poulsen and is reproduced here
with his kind permission. .

- BxAmpLE, There is o norm || on X = R? such that if @, yeSx and
ox(1) = }(lw+yl+ o —yl)—1 then min{lo+yl, lo—yl} <1. For let
t=(1,0), j =(0,1), u = (}+e) (1, —1), v = (1—3¢) (1,1), where & is
a small positive number. Define By to be the absolute convex hull of the
set {i,],u,v}. Let

0 ={{#,y} < Bx: lo+yll+ o —y] =2 +20x(1)).

If a pair {®,, ¥} ¢ 0 consists of extreme points of By and ¢ i small enough,
then {2, yo} < {4, —¢, v, —v}. Consequently, ¢ = {{i, v}, {1, —},{—i, v},
{—%, —v}}. It remains to check that [li—o] < L. :

As an application of the previous results we modify a proof given
in [16] so as to obtain quantitative versions (i.e., ones with uniform bounds

3 ~ Studia Mathematica LVIL2
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for the constants) of the well-known results of [12] and [15]. Both facts
will be needed in the sequel. We prove also a result on monotone basis
sequences related to that of [8] (cf. also [24]).

If ®yyeeey@,eX and ma,xHZsim|
fo——

THEOREM (Kadec). 2, then

Zn Ox (el < 1

Proof. We may assume x; = 0. Let S,

and, for k =2,...,m, g =1 if |84y + @l > 181 — 2l and 5 = —1
otherwise. Using Lemma 4 (with @ = 8,/I8ul, ¥ = (8 —2¢&,2;)/(18]]) and
Proposition 3, we get

18l — 185—1ll = 11851l 8 (2 Nyl /1S3 11) 2 2% (Hazgll) -
The assertion follows by adding up all these inequalities.

n
s BpeX and Y ox(llall) = 1, then
L gl

%
= Yew;, where & =1,
i==l

THEOREM (Lindenstrauss). If oy, ...
!

min ngw | <1+V3 S .

8{*11

Proof. Now the &’s must be defined so that, for & =2,...,n,
one, will have [18;_1 + &l < 181 — & @yll- IE 18,1 > 1, let m be the least
index such that [|S,)|>1 for k> m. By the convexity of gox, if k> m,
then

I8kl — I8ill < $ (1854 Bpga |+ 185 — @y | — 21184 11)
l

1830 0 (1@ /1S3 < 0 (g o)

Lot A = @yl Since 13> ox(lw,l) > o (4) = VI+4°—1, we have A
gl/-S-. Hence, using the triangle inequality and elementary algebrs
we get

<
<

n-—1
18all < WS mmsllF Il D) (1S5sll — 151
. k=m B
<1+ A+[A—(V14A7—1)]<1+V3.

PRrOPOSITION 7. Let (24);, be a monotone basic sequence in X. Then
n

8) || Y| <
=1

(b) kZ ox(llwl) <
=]

1 implies 3 dx () < 1

k=1
1 implies || 3 # || < 5—V3.

k=1

k .

Proof. Write, for & =1,...,7n, 8 = > =, If ||S,I< 1, then, by

=1
monotonicity and the friangle inequality, one has, for k =1,..
2 I8l = 1851 + 3@l = 185 _ill;

PR
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hence, by Lemma 4 (w1th % = 8;/I8l, ¥ = 8p_1/IISxl) and Proposition
3, we get

1Sl — 18511t = 18ll- S (llar I/ 1S511) = % (llosgll)«

These estimates yield (a). To get (b) assume 2 ox(llzl) <

let m be the smallest index such that 18, It = 1 Using the monotonicity
of the basic sequence and the convexity of px, we obtain, for %
=m,m+1,...,n—1,

18kl — 1841l < 185+ @l 4 18 — g2 | — 2 118l
< 218l ex(1g41ll/I8x]) < 20x (H254111) -

lle,ll, we get as before A < 1/3—, and
IS <L+A+2(2—V1+AD)<b5~V3.

<L H|S)N>1,

Letting again 4 =

This completes the proof of the proposition.

The next lemma appears in [15], however, the constant, which is
now #, has been improved.

LeMMA 8. For all = >0, one has ox(27) <

Proof. Let > 0 be fixed. Pick vectors x, yeX so that |z =1,
Iyl =7, llw+2yll+ o —2y] = 2 +20x(27). Assume @ = |o-+yi> lo—yl
= b. Clearly, b ## 0. Following [15], we write

4(1+ 37)ex()-

20x(27) = llo+2y|+ 2 —29)l -2

= (le+2yl -+ lzll —2a) + (lz — 29 + lloll — 28) + 2 {@+b —2)

< 2[agx(v/a)+box(z/b) +a+b—2].

Since 2 < a+b < 20x(7) +2, we have in particular a > 1, and f = 2¢x(7)+
+2—a > b. By the convexity of ox, we have apx(z/a)< gx(z). On the
other hand,

box(7/b)+b < fox (/) + 5.

(For the function f(s) = 1-+ px(s) is convex and satisfies f(s)=s
lim(f(s)/s) =1, whence f(s)/s is non-increasing.on (0, oo).) Using those
8400

estimates, we get
(%) 0x(27) < 3ex (v) + Box (/).

We may agsume f§ < 1, since otherwise the right-hand side is
We also need the estimate B = max{$,1/(1+7)}. Since

B =2+20x(7)—

< 40x(7)-

a> 20,(x) +1—7;
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this reduces to checking thait

oy(v) = V14t —1> 31—,

oy (7) = /(1+V1+7) > 177/(1+).
Now, by the convexity of ox,

Bex (/) < (28 —1) ex(7) + (1 —B) ex(27),
which together with () yields
Beox(27) < 2+2B0x(7) < B(2+267") ex(v).
Since 0 < B~'<< 1+7, it is equivalent to the statement of the lemma.
LevMA 9. If u> 1, v > 4/3, then ox(uv) < 4*ox(v).

Proof. Observe that

v)[v = Qx( /a>42912(%)=§~

Hence, using the mean value theorem, we obtain the required estimate
ex(uv) — ox(v) S wv—o < (w—1)(u+1) ex(v).
PROPOSITION 10. If 0 < 7 < o, then ox(0)[o® < Lox(r)[v*, where L is
a comstant < 2 [](14-27"/3).

Nn=0
Proof. By the previous lemma we may assume 7 < JEoe>w
then, by the same lemma,

:alix

7 0x(0)[0" 0x(7) < T 0x(v)/" 0x(7);
hence we may further assume o < ;. Write o, = 27", wheren = 0,1, 2, ...
There is an m such that ¢, < 7 < 0,,_;. Since, by the convexity of gy,
0x(0) < (0m[7) 0x(7) < 2(0n/7) 0x(7),

the desired inequality follows by. applying Lemma 8

0x(0) = ex(v) [ex(ow)/ox(®]* [ ] (ex(dnmi)lox(on)

< ox(v):2(0u/0)2 4™ [ | (140,/2)

oo

<2 [ @+2"/3)(o/x)20x(v)

n=1
Remark. More careful computations show that I < 3.18.

OorOLLARY 11. If 0<s<7y, then éx s)/a’<1)6x (M) [n?, Ox(s)/e?
< 4L 8x(n)[n? where L vis that of Proposition 10.
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Proof. Let ¢ = ¢/yn. If ¢L > 1, then, by the convexity of SX,

3x(e) < 0bx(n) < Lo B (m);
hence we may assume that m = (¢L)™' > 1. Then we have
Sx(e) = sup{%rang.(r)}
‘; p{ron —L7 m™® oz (mv)}
=L 8;1;13 {#(mr) (enLm) — exx(m7)}
= Le?Sx(enlm) = Lc2dg(7).

The proof in the case of dx is similar. If ¢ > }, we can use Proposition 3;
if 0 < o< %, then, by Proposition 1 and the previous part,

8x(e) < 9x(26) < L(20)2 i (n) < 4L 8x(n).
This completes the proof.
The last lemma in this section shows that gy is essentially determined
by pairs (z,y) such that y is “orthogonal”’ to x. More precisely, define
8(7) = sup{}(lw+ryl+le—=yl—2): o, yeSx
and there exists an a*e8xs 80 that «*(v) = 1, a*(y) = 0}.
Then we have the following

Levma 12. There evists a K < 16 such that ex(r) < Kg(z), for t >0

Proof. Let we[0, 1), and let #, ye X be such that || = 1, llyll = w,
le+yll+ o —y|| = 20x(w) +2. Let o*<X* satisfy [o*|| = o*(2) =1. We
may assume, perhaps replacing ¥y by —y, that ¢ =a*(y)> 0. Let
2 =y —aw; clearly, || < 2w and z*(2) = 0. Define, for veX,

fo) = 3l +ol+ o —v]—2).
The functions g and f being convex, we have
ex(w) = f(y) = fav+2) < of @)+ (1—a)f (1 —a)"2)
< (- a)glf2w/(1—a)) < (1—w)e (20/(1 —w)).

Since w could be an arbitrary number in [0, 1), substituting w = =/(v+2),
we obtain for all 7= 0

ox [z/(z+2)) < 2(2+7)" (7).
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Hence, if v< 2, then using the convexity of ox and Lemma 8, we get

0x(37) < (L= 37) ex (v/(v +2)) + F7ex (27/(v +2))
< ox(r/(z+2) [1—37+4 1+ 37/(v+2)) 4]
<2(2+7)78(v) [L+ir+7%/(r+2)]
Since, by Lemma 8, gx(7) <
ex(?)/a(v) < (4+7)2(24+7) 7 [L+iv+72/(r+2)] = g(v),
for 7e[0,2]. We need an estimate -for the ratio which would work for
large 7. Since gy (7) < v and g(v) > v —1 (both estimates follow from the
triangle . inequality) we get, for = > 1, 7)[6(7) < t/(v—1). Hence,
having checked that g(z) < 15, for = < 16/15, we obtain K < 16.
One gets a better bound for K using for all v > .56 the estimate

o(z) > 912(1/1/5). The latter follows if we introduce on a 2-dimensional
subspace ¥ = X the norm |-| defined by an inner product on ¥ such that

1] < el < V2 o], and |@g| = 1 for some w,eSy (cf. [9], Th. 3). Tf yeeSyp
is |-] orthogonal to x,, then, for = > 0,

4(14 %47)ox(47), we see that

8(7) = 3 (1o + vyl + llrg — wyoll —2) = 0, (¢/V/2),

s0 that gx(r)/g(r)gr/(l/l—l—r?—l). Combining this' bound with that
yielded by g, we infer that K may be taken to be < 8.

II. The moduli of Orlicz sums. It was shown in [7] that dx 3 Jyx)
and o,z -3 0x, Where 3 x is the maximal function minorizing dx and such
that the funection f({) = 5 x( l/t is convex, and 9y is the minimal function
majorizing ¢x and such that g ( l/t ) is concave. The results of the previous
seotionv (viz. Lemma 2, Proposition 10 and Corollary 11) imply that

' 8x 3 0x and gx -3 0x, thus establishing the equivalence of the moduli
of 1,(X) to those of X. The latter result is obtained again in the present
section, when the moduli of more general products are dealt with. We
find it more convenient to work mostly with the moduli of smoothness
and use duality to obtain the corresponding results for the moduli of
convexity. Let us remark that Proposition 17 is a consequence of Prop-
osition 19. Also the equivalence of g, (xy and ox, for p > 2, can be proved
directly, by using the estimate

e —1? < pllel? (e +yll + e — gl — 2 lll) +
+ 2 [(llell 4+ 1)? + o) — lly® — [lel?],

o+ 1P+

valid for each x, y<X and p > 2, instead of Lemma 16.
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Let p be a fixed number greater than 1. In the next lemma we shall
use the following notation, ¥ being a Banach space:

= {(le—ylI*, le+yI"): @, 9¢¥, ol = lyl =1},
= {(le—9I”, le+9"): @, 9, |2i”+ WI° = 2},
conv S will denote the convex hull of a subset § of R
Lemma 13. (1) 0x(e) = inf{l—}»:(e?, ") e Ax}.
(2) AZP(X) = Olp(X) = conv0yx.

Proof. (1) is a direct consequence of the definitions. The second
agsertion will follow if we know that: (i) A,p (x) 18 convex, (il) Ox = Azf,(xn
(iii) Glp(l’) < conv Ox.

For (i), let # = (2,), ¥ = (4n), 2 = (2,), w = (w,) be arbitrary el-
ements of the unit sphere of 1,(X), and let 0 <t < 1. 'Then one can write
the identity

e —yIP, llo+yIP) + (1 —2) (e —wl®, le+wl®) = (I§ =", 1§ +21"),
where & = (&,), 7 = (4,) are defined by the formulae

§‘7n~1 =1 Ip L,y Han—1 = tllpyn’
Sa = (1—1) ”pzn? Mo = (l—t)llpwnﬁ
for m =1, 2, ... Since £, 5 belong to the unit sphere of 7,(X), and the
left-hand side of the identity can represent any convex combination of any
two elements of A, x), (i) has been established.

To get (ii), observe that any element (jz—y|”, llz+yl”)c0x can be
represented as (€ —yl?, I€+9lP), with & =27Y2(2, ), 4 =27 (y, %)
belonging to the unit sphere of I (X).

Finally, (iii) depends on the possﬂ)lhty of writing any (llz —y|/%, lz-+yII")
e 4%) in the form

2 T (1=l 1En+7lP),
n=1
where ® = (2.}, Y = (Yn), T = %(ll%ll” + ”f’/nup)’ and &, = "‘;”pwm N = /"lepym
provided that 7, 7 0; in the latter case £,, n, may be arbitrary elements
of Sy. (Actually, any element of () x, is a convex combination of <3
elements of Cy.) This completes the proof.
COROLLARY 14. The fumction f(1) = (1—5,p(X)(t1’P))1’ is concave, and
hence g(s) = dyx)(e") is conves.
Proof. The first statement is now obvious; the second follows from
the first one, since g(t) = 1 —F(t)'".

COROLLARY 15. %(X)(E) < inft™? o ¢ (te), g2 0;
i1

for

O (7) = S]‘U-Pt_'J ox(te), for v=0.
>1
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Proof. The first inequality is a consequence of the previous corollary;
for the second one observe that, if ¢ > 1, then

1P ox(tr) = tPsup{}tve — Oxs (6)} = sup{}t' Pre— 1P S (s)}
1 e=0 ’
< SHP{%(tl—pb‘) T— Oy (177 8)} = 04 (x) ().
Lemma 16. If 1 <p < 2, then, for any », yeX, one has
le—+gl? + llo —yiP —2 21 ~2 1y IF < 2 lel® = (Nl + g il + llo = y || 2 [fo]) -
Proof. The elementary inequality
aP + (p —1) b — pab?~' <
valid whenever a, b > 0, 1 < p < 2, yields, for any &, 2¢X
lle +2l? +(p —1) @l —p 2+ 2] lol?~" < [lle 42l — |2)® < Jle)?.

Substituting for # the vectors y and —y, and adding up the inequalities
obtained, one gets the desired estimate.

ProrosrrroN 17. Let L be that of Proposition 10. Then

E'lz(X)(r (1+VIL2-1) ex(v
More generally, if 1 < p <2 and r(z) = sup t’”gx(t-r), then
=31

la —b}?,

(7)) < grx) (7) < 3r (7).

Proof. The first estimate has already been established in Corollary

15. Let ® = (#,), ¥ = (¥,) be arbitrary norm one vectors in I, (X). Tt
follows from Lemma 16 that, for any =30,

e+ 7yl? + e — zy II” — 2 |l — 2 =y P < 29 2 l2all” 0 (7 lnll/ I1n ) -

n=1

Now, for » such that |ly,/l < [#,l, by the convexity of ox,

QY(’ ”Jn”/“mﬂ.”) QX(T) lyn"/”wn”

Ffor the remaining n’s one has [y,]| > |l«,, and hence, by the definition
of r(z),

ex(Tlyall/l2al) < 7(2) (yal] )
Using Hoélder’s inequality, we obtain (letting q =p/(p-—-1))
2 3l ox (gl leal) < Y [gallmax {ox () o, 12,

=1 n=1

<( Zuynl}”"( 2 Lo (vl + (Dl = fox (1 +r(x))*,

ne=l

7(7)lyalP '}
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which, combined with our previous estimate and the mean value theorem,
yields
o+ yll+ o — 2y 1) < (3 (Il + oyl + e — oy ) T2
< L+ 42 (ex(@ +r (@) < (L) + (ox () + ().
Hence, taking the supremum over all pairs @, ¥ in the unit sphere, we get
0 (%) < (L4 —1+ [ox (7) -+ (7)1,

Now, if p == 2, then the result follows readily from the definition of Z and
Nordlander’s estimate. From this moment we assume p < 2. Let 7,
=Vp(2—p)/(p—1). We shall consider three cages: (i) =>3/4, (i) =
< min{3/4, v,}, (iil) 7, < v < 3/4.

In case (i) we have

7(7) 2 0x(7) = ¢, (z) = /(L +V1+7%) 2 37 > boyx)(7).
In case (ii)
P =P
7(7) = 10757 g, (7)) = P (V1+P —1) 7,7 —

hence, using our estimate for Q1(x)r We geb

o1, (®) () < {(p —1)'[p (2 —p) 1?7V 1 217} = 9(p)
< sup p(p) < 2.8.
1<p<2

The last step involves some computations. Simply by estimating each
term in the expression for ¢ separately, one gets g(p) < €'¢-1-¢/@9 4012
< 3.15, which is slightly weaker than the fact stated in the proposition.

If (iii) occurs, then v, < 3/4, whence p > 9/5. Observe that

P — 1 5

(V1+2? —1))(Y1 472 —1) <-;1:P(1+1/1+1=)/12< ry P2+ 327).
The right-hand side is increasing for = > >V4(2—p)/p, and the latter

number is < z,, since p < 2. Therefore the ratio g x)(z) [r(¥) can now be
estimated by

5[4\ 1 {3\
2= Bl 21/2
ols) [+ale) <

This eompletes the proof of the proposition.

Tt is rather simple, especially in view of Corollary 14, to dualize
the result of Proposition 17. We shall postpone that, however, until
the general case has been setitled; its application in the next proof could
be avoided (cf. [7], Lemma 1).

7 2
—i 4212 < 28.
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PROPOSITION 18. Given any sequence (|- |l,) of norms on X equivalent
to || ||, there ewists amother equivalent norm |||-||| such that, for n =1, 2, ...,

Sx iy =3 dxnenn

Proof. We may assume, by multiplying the ||-|,,’s by suitable con-
stants, that |z],, < 27 |z, for <X, n =1, 2, ... A norm with the required
property can then be defined by the formula

il = ; Nl

n=1

Tia, y< X, then [0+ Y12 < (1], + Iyll,)* < 2 (w2 + lyI2), for each m, whence
it |llzlll = lllylll =1, then

2 (llelln + ly ) — e+l < 2 (el 1+ il ) ~ e -+ 911

<
<42 —lle+ylD.

Writing for brevity [+ lyly =247 ¥ =1L((X;|*l,)}, and using
Corollary 14, Lemma 13 and the last estimate we get

6y(1|m-—yn,.,) ‘Zéy(nww ayll,) < a7 (L— (a2 + ay) [2]l,)
— e +y)/215 < 2 —lllo+yl].

Since there is a ¢ > 0, dependmg only on n, and such that [ull, = ¢|||lull|
for weX, we infer that

S (€) = % Op(ce),

whence, n being arbitrary, the result follows from the relation d, )
-3 0p.

Let us pass to the discussion of general Orlicz sums. To avoid measure-
theoretic problems we shall concentrate on the case of spaces In(X).
This is only for convenience: the spaces Iy, (S, X, x4, X) could be treated
entirely analogously, the resulting formulae being similar. The reader
may consult paper [18], from which the formulae for §; o 30d g, originate,
where the estimates are made over general measure spaces (§, %, u).
Our approach. is more direct than that in [18] and allows us to congider
Banach space valued funections.

Let M be a monotone, convex, continuous function satisfying M (0)
=0, M(1) > 0, which we shall refer to as an Orlice function. M is said
to satisfy the A4, condition (at 0) with constant y if M(2t) << y M (t) for
te[0, 1. Given a sequence (f,) of non-negative numbers, let

() llar = int{t > 0: 3! M (1,/1) < M(L)}.
If (X,) is & sequence of Banach spaces, we define
Lar((Xn) = {(#0): #ue Xy & (@)l = |(I@alln) |2z < o0}
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The formula inside the braces defines a norm, since M is convex, and
(X)) is a Banach space (cf. [16]). The spaces I,(X) which we have
considered are a special case, where M (1) = t*, and X, = X for each .

PRroOPOSITION 19. Assume that M is an Orlicz function (defined on
(0, 2]) suech that M (1) =1 and, for each te(0,1], se(—%,1),
M@)<yM@), M@)<BM@/f,
M(E+8) = M) +sM (1) +ds?, where d = d(t,s)<BM(t)[t.

Let(X,)be a sequence of Banach spaces and let o(r) = max {g, (7), sup ex,, ()}
w
Writing ¥ = Ly ((X,)) and, for ve(0,1],
G () = sup g(z/w)M (uv) M (v)
v T<U<sl

<<l

one has oy () < Ko@ (), where K, -depends only on y, B and B.

Piroof. Let 7<(0, 1] be fixed, and let & = (z,), ¥ = (¥,) be, for the
time being, elements of ¥ such that |z =1, |y} = v. We shall prove
that

N M+ Yall) + M (0, —Yall) =2 ([2nl) < 2K, 6(7),

where K, = K, (y, 8, B). For n such that [g,l, > llz,ll,, we have

M (21Ynlln) < v M ([Ynlln)

< ye (1) T M ([Yulla/v) G (7),

and so (recall that ¢(1) = 1/5—1) v
'M-( ”xn +yn”n) +M(”mn _yn”n) "“ZJI( “wn”n} < 2‘)!(1/5—}—1)]”(”?/”““/’6)6(1) .

For the remaining values of # we can estimate §

D ([, + Yolh) - (2, — Yrll) — 2 M ([0 ]1)
< I (15 l) (1 Yl 100, — Yol — 2 128 ]1) -+ (& @)Yl
< 28 (l12,) @ (1Wnlba/12alln) + 2B (al1a) (1Yl 10 )
< [28+2(V2 +1) BIM (|0,lln) 0 (1Yl 1201)
(we have used the estimate /(1) < EHYIHE—1) = VI+2R+41< 1/5—{—1,

for +<<1). o
It ”ynH’n < ||%Hn < Hyn”n/TJ t’heni by the d.efmltlon of G7

0 (1Yl 1%ll) ML ([lle) < GH(7) M (1Yl /) -
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In the remaining case we have |l,l, < 7 [2,ll,, and hence
0 (Yl 121l ) M (Nl 1) < G (7) I (I|2 1) -
Since Y M (wylly) = 3M(|4,ll/v) =1, adding up the estimates obtained
for all 7;@, we see tha’: (+) holds with
K, = y(V2+1)+28+2(V2 +1)B.

In the special case where M (t) = t* for some p>1
us to complete the proof as in Proposition 17.

If M is arbitrary, let us assume that |24 y| > 1. Then, using the
convexity of M and the assumption that (|| =1, we get

D) M (£ ll) =

(%) is sufficient for

leyl, Y M(lw,la) =1,

whence, by (%), |l -+yl+ lw —yll—2 lzll < 2K,6G(r), and we arein a position
to apply Lemma 12, which yields K,< KK,.

The following well-known lemma shows that the conditions we
have imposed on M are not too restrictive.

Levma 20. Every Orlicz function satisfying the A, condition at 0 is
equivalent to an Orlicz function satisfying the assumptions of Proposition 19.

Proof. Assume first that N is convex on [0, oo), N(0) = 0, N (1) > 0
and N (2#) < N (») for « > 0. Consider the function M defined for > 0
by the formula

M(z) = f N(t)tdt.
0

It is plain that M is convex and, for each 2 > 0,
M (22) < y M (2),

M(x) < N(z) < (y—-1)M (@),

M (5) < (M(23) — M (@) [z < (

Observe that if 0 < < 22 then

w) fu— N () o] <

y—1)M () [2.

(r—1) lu— | N (2) /o’

Indeed, the latter mequallty is obvious if either = @ or (y —1) (& —u)
= x; otherwise, by the convexity of N, one has

N (u) — N ()
U —&

< N(22)— N (z)
22—

< (y—1)N(a)/x,
and after simple transformations we get

IV (u) Ju— N () o] < (y—2) [u—a| N (@) fou < (y—1) |u—z| N() .
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Therefore, if 0 < |y| < #, we can estimate

@+y
= f (V7 () ju — N (@) ) du

< Iy L)V (@)p2)0* < 3y —1)" M (2)y? [2*.

Hence the function M fulfils, after dividing By M (1), the assumptions
of Propogition 19.

Since every Orlicz function satisfying the A, condition at 0 is equiv-
alent to an N described above, the proof is complete.

Tt is a well-known and easy fact that the equivalence of M and
N implies the equivalence of the norms || ||, and |- |ly. Thus, whenever
N satisfies the 4, condition, Lemma 20 provides an equivalent renorming
of ZN((Xn)), after which the modulus of smoothness can be estimated by
applying Proposition 19. (Incidentally, replacing in the definition of G the
function M by an equivalent function M, leads to a function @, equiv-
alent to @.) One may ask whether the modulus obtained after such
renorming is in a sense the best possible and how precise is the estimate.
So far we have discussed one special case (viz. that of Proposition 17),
where the function G is the best possible estimate, up to equivalence,
for the actual modulus of smoothness. The case of 1,{(X,), p > 2, is
even easier, since @ is readily seen (use Proposition 10) to be equivalent
to ¢. Another case, where an even stronger assertion can be made, is given
in the following

PRrOPOSITION 21. Let M be an Orlicz function satisfying the A, condition,
let || be an equivalent norm on the space 1y = Ly (R) and let o = ggyy,1.p-
Then there is a K > 0 such that

1M (uv)
=K s —_—
o(®) ts&% u? M (v)

M(z+y)—M () —y M ()

for O0<t<1.

Proof. We may assume M (1) = 1. Let ||| = || |l5s; there are a, b > 0
such that a2 < |2 < blwl for wely,. Observe that, if #y, ..., #,¢l;, and

Ze(mll <1, then Ze(l%‘[
there is a choice (g;) of mgns such that |Esia,w <

(%) HZ &%

Let [s] denotie the greatest integer not exceeding s. Given ¢, u, ve(0, 1]
such that ¢ u, lot m = [M(v)™"], n = [o(u)™"], ¢ =uM~*(1/m). Let
Ly, ...y By ely be disjointly supported vectors, each having exactly m non-
zero coordinates, all of them equal to ¢. Then'|lz;| = %, for each %, whence

<1 hence, by Lindenstrauss’ theorem,

1+4V3, whence

<@L+V8)ba™ =d.
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Z o(lll) = no(w) < 1. Using () and the definition of || |y, we obtain
mnM (e/d) < 1, so that )

(%) mM(c/d) < 1[n<2[/(n+1) < 20(u).

Since ¢ > ww, there is an &, depending only on d and the 4, constant for

M, and such that M(wo) < oM (c/d). Hence, by (xx),
M (ww) [ M (v) < 2omM (¢]d) < dap(u),

so that, applying Proposition 10, we get the desired estimate with
K = (4al)!

Remark. It is easy to modity the proof of Proposition 21 to get
analogous assertions for Orlicz function spaces and also for their moduli
of convexity. (Of course, to deal with the moduli of convexity one uses
the theorem of Kadec and Corollary 11.) The formulae obtained are the
counterparts of those found in [18]. In each case the modulus of convexity
or smoothness of a suitable (described in [18]) renorming of the Orlicz
space happens to be the best possible modulus, up to equivalence, for any
equivalent. renorming of that space.

Another special class of Banach spaces, for which the best moduli
of convexity have been found, is that of Lorentz sequence spaces d(a, p),
p =2, (et [L1]). It was noticed by Z. Altshuler that functions f known to
be eqmva,lent to the best modulus of convexity of a Banach space have
a special property. Namely, such an f is equivalent to a funetion M which:
(i) is supermultiplicative (i.e., M(ay) > M (a)M (y), for @,y <1), (i) is
of the form MM () = g(t?), where g is convex. Conversely, for any such
M, (vanishing at 0) he constructed a space d(a, p) whose best modulus
of convexity was equivalent to 3 ,. Now we see that a simpler example is
furnished by the space Iy, .

‘We know (by 001011&1y 11 and Lemma 2) that property (ii) is satisfied
by any function dx. It is not the case with (i) (dx may even fail the 4,
condition) but it may be so provided that dx is the best possible modulus
for X (if such exists).

Since the dual to the space Iy, where M satisfies the 4, condition,
iy isomorphic to0 Iy, where

(*) M* () = supau—M (v),

u=0

©=0,

is the complementary function, the duality of the moduli yields two
ways of writing the formulae for the best moduli of 7,,. Their equivalence
suggests that the Legendre transform () should commute with such
operations on functions as those used to define the function G of Prop-
osition 19. In fact, we shall prove that, if d(s) = min{d,(e), mfd a)},

icm®
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then
(#%).  the function G* is equivalent to the function F, where
F(s) = asué'lmiv_lé(s/u)M*(zw)/M*(v).
Since M < N implies M* > N* and M (u) = ¢N (du), for « > 0, implies

M*(z) = eN*(z/cd), for = 0, we conclude that (oy)* is equlvalent to
dp+. Moreover, using Proposition 19 and Lemma 20, we get

CorOLLARY 22. Let N be an Orlicz function whose complemeniary
function N* satisfies the 4, condition. Let (¥,) be a sequence of Bamach
spaces. Then the space lN((Yn)) admits am equivalent remorming such that
the modulus of convexity is & F, where I is defined as in (x*) with M* = N
and X, = Y.

Remark. In the case of I, sums, ie., where N(f) =t?, p > 1, no
renorming is necessary. Also the proof of (*#) is much easier in that case.

In the next lemma the following notation will be used, f, g being
non-negative functions defined on [0, 1], t¢(0, 1], 2 > 0:

(%) f*(@) = sup (ou—f(w),
o<u<1

(feg) () = int 1f(t/%)5?(u),
(f%g) (t) = sup f(t/u)g(w),
t<u<l

T (®) =05f<1f () /g (v),
F ) =Ogg£1f(?v)/g(v)-

The formulae (+) and (%) look different; however, if f(w)/u =¢> 0,
for u > 1 (which will be satisfied in our.case), then the functions f* resulting:
from both formulae coincide for # < ¢, whence they are equivalent, which
is all that we need in the sequel.

LeMMA 23. Let f be a non-negative function on [0,1] and let N be an
Orlicz function such that NV (1) =1 and N*(2w) << oN*(w), for w = 0. Then.

a) N* (N (v)[v) < N () < oN*(N(0)[v), for ve(0, 1],
b) if flu) < w for some w, then

FEN*<(feN)* < (off* (L) (%),

(fan)* < (P, if NS, then (FN < o(fm)™
Let us first deduce (#+) from Lemma 23 and known facts. Since F'
= 8x(Npy)), using (b), (c¢) we get (~ denoting the equivalence of fune-
tions), '

LI 8 (Npy) ~ SR (N s M = @,
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Consequently, F**~@G"*. On the other hand, using Proposition 3, we see
that é(e)/e is a non-decreasing function; hence so is F(e)/e. It follows,
as in the case of dx, that F* is equivalent to F. Since F™~@G*, (wx)
has been established.

Proof of Lemma 23. (a) We may assume N(v)> 0. Then we
have

N* (N (v) /) [N (v) = sup {u/v — N ()N (v)}.
Let uy = 2v/c (clearly ¢ > 2, so that u,<< 1); then
N (1) = sup{w 2oje) — N*(w)} < ¢ ‘sup {(2w)v — N*(2w)} = ¢~ N (v),

which yields the upper estimate. The lower one is immediate, the expression
on the right-hand side being < 0 for « > v, and < 1 for u < ».
(b) Fix an # <1 and notice that

(F2N)"(w) =3}u1p{mw— FEN) (w)} ﬁQS:PSI{“W“N(M)f(w/“)}
=sEpN(u) 5;15) {(ww) (2w N (w) —f(w[u))

= sup N () f*(wu |V (w)).

Since, by (a), N(u)> N*(N(u)/u), the lower estimate is trivial. To get
the upper one we use the other part of (a), which gives

(f2N)* (v) < o sup N* (N (w) [u) f* (wu]N (u))
< emax {(f'5N*) (») 50 *(0)f" (0/v)}
< emax{(f**N*) (), Sup (v/2) N* (@) f*(w/v)}
< (eff" (W) (f*5N*) (). -
(c) The first estimate follows after simple transformations:
(fim)* (@) = sup {ow — fix; (w)} = sup {ou —f (w0) [ (0)}
= sup (N(v))“lsup(ué) (wN (0) Jo) —f (uw)
supf (wN(v)/'u)/N(v supf (@ (v) [v) | N* (7 (v) Jo)

= (/"™ (@).

Now observe that, if f> W, then the first inequality above becomes an
-equality (the maximized expression being negative, if we(1, v~1]) and the
second one can, by (a), be replaced by the estimate

=0t Sup FH@N (v) o) |N* (N (v) Jo) = o (f") ().
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This completes the proof of the lemma.
We conclude this section with the following
ExaverE. Define, for >0, n =1, 2,

o) = lm/n, if  (n —1)n2<m<n2(n+2),
n(n+1) (n+2)— it wi(n4+2)<< o< nint+1)2.
Clearly, the function f(z /m is non-increasing, whence f(z+y)

< flz +fy for x,y>0. Notice also that f(z+y)>f()—y, and
sup{f flo+y)} = ool

e

Now let p>2, 0 <c<p—2. Define M(0) =0, and for ¢ =277,
let M (1) = 27P°~9@), It is readily verified that, for t, se(0, 1],
M@y <, Ms)> M@EM(s), Ms)/M(s) <,
whence M and M* satisfy the 4, condition and M is equivalent to an
Orlicz function M. Let X = Iy, .
By Corollary 22, the remark following Proposition 21 and Lemma 23,
the best modulus of convexity for X satisfies

Ox~F = 0,*(M|p) = 6,2 M ~M.
On the other hand, the modulus of convexity of the space ¥ = 1,(X)
satisties, by Proposition 17 and Lemma 23,
Op & Ox*(1P) ~M*(1*) = inf M(s) (t/s)’ = N
I<s<1
In fact, an argument similar to that of Proposition 21 shows that N is
equivalent to the best modulus of convexity for the space Y.

It is no longer true, however, in contradistinetion to the case of the
moduli of convexity of the I, sums with pe(1, 2], that Sy~ 0x, even
though dx -3 6, (recall that M () < t?). Indeed, M satisfying the 4,
condition, the non-eqmvalence of M and N will follow if we know that

inf N(s)/M(e) = 0. The latter is, however, an immediate consequence
0<s<1
of the relation sup {f(®)—f(z+y)} =

Y>>0

II. Uniform convexifiability in spaces with unconditional bases.
In thiy section B will denote a Banach space with an unconditionally
monotone basis, realized as a gpace of numerical sequences z = (,)
(i.e., we assume that, if » = (z,)eF and y = (y,) satisty |y,| < |, for
each m, then yeZ and |y < |#l). The extension of the results obtained
here to the case of Banach lattices or, more generally, spaces with local
unconditional structure (Lw.st.) is straightforward (ef. [5], [6], [10]).
The corresponding facts for the moduli of smoothness can either be
treated directly, or simply deduced by duality. We leave that to the
reader.

4 — Studia Mathematica LVL2
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Given a positive number p and a sequence # = (#,) such that
(lz,[7) e B, we write ‘

oy = ll(len ).

Following [5], we shall say that (&, ||-]|) is p-convew if ||} is of the form
1111z for some unconditionally monotone norm |||-{|| on a space F' of
sequences, or equivalently, if |||, is & norm, ie., whenever z,ycH,
one has

(Clnl? + lyn Y 2) P < Dol + iy 1P

Observe that the |-|| is automatically 1-convex and it is p-convex for
some p > 1 iff the canonical basis of the space H(l,) is block p-Hilbertian
with constant 1 (cf. [10]); in particular, B is then p’-convex for every
p'e[1, p]. The dual notion is that of g-concavity; ¥ is said to be g-concave,
1< g< oo, if B* is ¢*-convex, where g* = ¢/(¢—1). The interpretation
using the spaces B(l,) and B*(l,,) makes it clear that ¥ is g-concave iff,
for each a,yeH,

(1217 + 11292 = flmli + iy e,

Let us start with a very simple result to illustrate these notions.
Even in the case of B =1,, 1 < p < oo, the proof seems to be simpler
than the existing ones and, if Lemma 25 is used, the constant obtained is
the best possible one.

PRrOPOSITION 24. Suppose E is p-convex and g-concave, where 1 < p
<¢< oo. Let v =max{2, g} and let K =max{2,2/Vp—1}. Then dx(e)
Zr KT, for 0<<e<2.

Proof. Let ?, scR and assume, for the sake of normalization, that
[£[” + [s[” = 2. There exists (cf. [5]) a K = K(p) such that

(t—sf < E*{1—((t+s5)[2)?).
(Llemma 25, to be proved below, asserts that K> < 4/(p—1), for pe(L, 2];
if p > 2, one can use 2 instead of p in every place.) Therefore
t+s
2

r 7

t—s
KX

t—s
K
Let z = (2,), where #f = $(|»,|”+|y,/*). By the p-convexity,

el < F(ll2l® + ly?) = 1.

Using the g-concavity and the previous estimates, we obtain.

"

-+

=

d

Ty i
< " < 15

K

2ty
p)

hence
r(l— l@+9)2l) = 1— e +y) /2] = K e~y

r 2\ 1/
o () < = v .

e ©
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which is exactly what was to be proved.
Proof of Lemma 25 (formulated above). Let v > 1; then »
< ((v+1)/2)2, whence

o7 E =P (91 1) [2)7EF = 0.
Let w3>1; integrating from 1 to w and then multiplying by
2(2 —p)p~*w™*¥P one gets successively

2]7 w1 —14+2/p P2
—pw VP T — >0
A ( ) -5

(4/p)((w-+1) /2747 — 20742 — (2 p) (2 —p) w7 > 0.
Now we let % > 1 and integrate from 1 to % to obtain

4((u+1) 2] —pu? —2(2 —p)u? —p > 0.

2w

Let ¢, s be such that ¢ > s > 0, 1#+s7 = 2. We may substitute v = (¢/s)".
After multiplying the resulting expression by s% we get

4—pt2—2(2—p)is—ps2>= 0.

Tt is not hard to see that all other pairs (¢, s) of reals, with |¢? + |s|” = 2,
satisty the latter inequality. This completes the proof of the lemma.

Remark. The notions of p-convexity and g-concavity have also
been. introduced (independently of [5], under other names and in the
context of Banach lattices) in [13]. The existence of such renormings will
be discussed later (cf. Corollary 28).

We shall need the following lemma.

LEeMMA 26. Lot 0 < r < g2 and let M be a non-negative funciion on
[0, 1] such that M(0) = O amd M(¢)[t* is non-decreasing on (0, 1]. Then,

k3

for any t;, ¢;e[0, 1] such that 'Z;ti =1, one has

k3

([ Zn] te)") < i’t%”M(oi-”) (D tho-a=nalr,
i=1 =1 1

Proof. Let ¢(s) = M (s, for se[0,1]. Using Lemma 2 and
Holder’s inequality, we obtain

(4 (% ;tici) <@ (é:tici) < éti(p(ci)

< (g’”: w2re( c{)gl})r/g (é tsq—Z)l(q_r))(q—r)]q,

which is equivalent to the statement of the lemma.
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In the sequel, given an we# and a set § of the indices of the basis,
we shall denote by Sz the vector which agrees with # in coordinates in
8 and is zero in the other coordinates. The complement of the set § will
be denoted by ~S.

PROPOSITION 27. Assume that B is p-convex, p > 1, and M is a non-
negative function on [0, 1] such that, for every weSy and every subset S of
indices,

M([182]l) < L~I(~8)al.
Suppose that, for some q=2, the function M (1)[t% is non-decreasing on
(0, 1]. Then
(i) if p=2 orqg>2, one has M 3 dg;
(i) if ¢ =2 and p < 2, one has M -3 y,005, where

pp(0) =0, (1) =tllogt®™”  for 0<i<I.

The constants imvolved in “-=3" depend only on p and g.

Proof. Let © = (x,), ¥ = (y,) be vectors in S5 such that 0 < |lw+yll
< 2. Oonsider the sequences u = (u,), ¥ = (v,), W = (w,), where
Uy = 300+ Ynly 0 = (3(10al” + 19,/)"2, w, = |7, —y,|. Tt is clear that
u, v, w belong to H; in fact, [ull = 4lz+yl, {wl = lw—y|l and, by the
p-convexity of H, || <1.

Let t =1 —[lull. We are to estimate ¢ in terms of |iw|. Since ¢ =0,
m = [logt™'] is a well-defined integer. Define the sets

8y = {n: 4, < 4.},

= {n: ol‘iu,,> Vp— Uy > € tu,}, for 1 =1,2,..., m,
Sy = {m: 6™ Uy 2 v —wy}.
Pick an z*<E* such that 0% =1 and *(w) =1-—1, and write, for
i=0,1,...,m,
a; = " (8 u) = 2 T
nes;
Clearly,

(@) 10 ) =0 = 3o}

(0 — ) > 2 ”’Zm Uy = Ze"iaﬂ

1==0 neS; G=0
Since {(1—2)" u| = 1, we obtain, for ¢ =1,2,...,m,
(2) BEIS ) < (L — 0|8 (L — 1)~ )]
<@ =f1—a*((~8) (1 -1 u)))
< — 2" ((~8;)w) = o (8u) = a;.
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By Lemma 25, there is a K = K(p) such that, for each =,
(3) Wy, < KtV (0, ]t65)* —1.

It follows from (3), the definition of the §;s and the monotonicity of the

norm that, for ¢ =1,2,..., m-1,

(4) I8s0]) < KV +1)F—1 |18, u]l < 3Ke™2 |8l

The following estimates need no comments:

(5) 1Sy 0]l < BEgm+02 < BT

(6) M(PR) < (PR (L) < 1< 8,

() Sewl < 2{1Sy0ll,

(8) M (18e2l) < L—1(~So)oll < L—a*((~8p)u) = t-+ay.

Let r =min{2, p} (if ¢> 2, then one can simply take » = 1). Since

F is r-convex, using (7), (b) and (4), we get
w1 m

ol << 3 185l << 27 ISowlF + (BKY 72+ (BE) 3 e™% |8, ulf’

(=) qea]

‘Write, for any 22 0,
n
O, = 2+ (BKf+(3K) D e~"",
b=t
Unless p = 2 = ¢, using Lemma 26 with suitable numbers #;, ¢; (easily
identifiable from (9)), we can now obtain

(9)  M((20,)7* jwl) < O 0= [220 (1,0]) + (S M (£) +

. .
+(BE) 3 H(ISul],
dusl
where we have put ¢ = r(g~--2)/(¢~r). In the previously excluded case
P22 =q the estimate (9) is true with ¢ replaced by 1. (Check what
would be yielded by the proof of Lemma 26 it Holder’s inequality were
not used.) Clearly, ¢, can be estimated from above and from below by
positive constants depending only on p and ¢. The same is true aboub
O, provided that p =2 or ¢ > 2. Otherwise § == 0 and 0y = 0y = m+2
< |loge™1]. The expression in brackets (in (9)) can, by (8), (8), (2) and (L),
be estimated by

m "
4 (04 ) + 9K+ 9K Do " < (44 9K+ 0K? D'o~la; < (4+18K?)1.

qow] fen
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Thus we have proved that, if (@] = gyl =1, 0 < flz-+yl <2 and ¢ = 1—
—}llm+yl, then

(10) M0 w—yl) <

where (' and ¢ are positive constants depending only on p and ¢, a =0,
if ¢> 2 orp > 2 and a= (2 — p)/p otherwise. The assumption that |l +y|| =0
is not essential for the final result. We would like to make sure that |lw -yl
=92 'is possible only if |w—yl| = 0, which would complete the proof.
-This need not be true if M(c) = 0, for zome ¢ > 0, but in that case the
proposition is trivial.
Suppose, therefore, that M vanishes only at zero and yet, for some
@, yeSy with |z —y|| # 0, one has ||z-+y| = 2. The metric space Sy N\{w}
being connected, there exists a ze8\ {s} with [¢+2| =2 for which there
is a sequence z;, &,, ... in Sz\{z} such that [¢;+ 2l <2 and [& —=2]—0.
Since [+l <2, it follows from (10) thatb M(C' o —2|)—0, whence
[lz — 2|0, so that @ =z, which is the desired eontradiction.
" Remark. Consider the following modification of the modulus of
eonvexity

dg(e) = inf {1 —

0" et loge™%4|°,

Iwll: u, vel, lull =& fu-t+of =1,

w, v arve disjointly supported}.
Clearly, 85(2¢) < dg(s) for e <1, while, e.g., &, (2s) =0 = ¢—dy () fo r
£< 1. Assume again that B is p-convex, p > 1, and define, f01 q =
0<sex],
’ My(e) = inf dp(te)t™2.

1<t<s—l

It follows from Corollary 11 and Proposition 27 (i) that, for any ¢ > 2,
M, 3 0g -3 M,, but, in general, it is not true that M, -3 dz. Lebt us
discuss briefly an example (suggested by G. Pisier).

Exavere. Let pe(l, 2) be fixed and let E be the Lorentz sequence
space d(a, p), where a, = #~ " n =1,2,..., ie, if (v,)eB and (y,)
is the non-increasing rearrangement of the sequence (|u,|), then

@)l = D) nt+eey2

Clearly, E is p-convex. It is readily checked that if », y<H are disjointly
supported, then ||®+|yl*< lo+y[? whence we have My(e)=> }e
It follows from Proposition 27 (ii) that there is a ¢ > 0 such that

8z () > Oe?(log efe)P—27,
On the other hand, we can show that (for any equivalent renorming of X)
(%) ' dp(2) < 0,82 (loge/s)®—27 |
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for some Oy < co. The latter estimate can be obtained by consldenng
integraly of the form

= ((f “ g 2,7,(%) szt)m,

where (@, ..., ¥,) are suitable systems of vectors in F and Tiyeees T
are the Rademacher functions. One can show, using some results of [20]
and of [3], that

Oy I <5

=] ((5] (((Dt)n)g)”z) ”E < OaI’

ws |

where C,, Uy are positive constants depending only on B.

Another inequality, yielded by a result of [7] and Proposition 17,
states that if d is the modulus of convexity corresponding to an equivalent
norm, |||+ (||, on M, then, for some ¢, > 0 depending only on that renorming,
one hag ’

= Oyl 11)1l5-

Let us indicate a suitable choice of the x,’s. For each positive integer

m we consider the m-tuple (24, ..., ®,), where the nth coordinate of the
vector @, is equal to

(Fn—1)~Y%, i oa<g
(i+n—m—1)~2, i

0, it

m—4-1;
m—i+l<n<m

n=>m,

The proof of () is now reduced to simple computations; hence, the result
not being completely satisfactory, we omit further details.

Remark. Now let & be an arbitrary space d(a, p) with p > 1, and
let yy be the upper estimate for 8, obtained by using Kadec’s theorem
in the same way as we did in the proof of Proposition 21 (without using
Proposition 10), It way shown in [1] (without using the assumption that
P = 2, which was needed for other purposes) that dy > oy, where ¢ = ¢(H)
> 0. Hence, if p = 2, then the main result of 1] can be deduced from this
fact and Proposition 27 (i). To get an extension, let us remark that pp is
equivalent to a supermulbiplicative function. It iy a well-known. and easy
fact that a bounded supermultiplicative function f on [0, 1] which is
not identically zero on (0,1) can be written as #%g (), where 0 < g(z) < 1
and lili’n g(@)»~" = oo, for each & > 0. The (uniquely determined) number

L-+0of . . .

¢ will be referred to as the characteristic exponent of f (and of any function
equivalent to it).
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Let g, be the characteristic exponent of yz. If p <2 and ¢, 2,
then we can estimate 8z only up to a power of [loge|. If, however, ¢, < 2,
then it follows from the facts just mentioned that for any ge(g,, 2) there
is & ¢ =c(q, B) > 0 such that dy(e)> ce? whence the basis is bloek
g-Besselian. Using Corollary 28 below and Proposition 24, we see that I
can be equivalently renormed to have the modulus of convexity > ¢'s?
for some ¢’ > 0.

Corollary 28 is at least partially known (cf. [5], [21]). Our proof
depends on the following renorming result (used already in [57):

If dz(e) = K&% K > 0, then, for any ¢ > ¢, the formula

() = sup { f twas)19)" s 3 gl =1, for Va, m =1,2,...]

i=1 i=1

defines on B a q'-concave norm equivalent to the original ome.
It is easy to see that if ||- || iy p-convex for some p > 1, then so is ||| ||}

CorovrLARY 28. If the basis of E is block g-Besselian, then, for any
¢ > q, B admits an equivalent ¢'-concave norm. The dual statement for block
p-Hilbertian bases and the one involving both properties are also true.

Proof. Assume that the basis of # is block g-Besselian. Fix an r
> max {1, 2/¢} and consider the space B, consisting of numerical sequences
(#,) such that [(@,)llp) < co. By, is r-convex and the natural bagis is block
gr-Besselian. A renorming result uged in [10] (proved again in a more
general setting in Proposition 29 below) yields an equivalent r-convex
norm, say |-|, for which one can take in Proposition 27 M (1) = ¢t%, ¢ > 0,
whence, using that proposition and the renorming result mentioned before,
we get another equivalent norm on By, say |[|-||l, which is r-convex
and ¢'r-concave. The norm ||| Hlym on B has the required property.

If the basis of I is block p-Hilbertian and 1 < p’ < p, then the
natural basis of B* is block p*-Besselian, whence B* admits an equivalent
(p")*-concave renorming, say |||-]|. Moreover, tracing the formulae used
to define |||« ][], we see that {||-||| is lower w*-continuous, and hence dual
to a p'-convex norm on F.

If the basis is both block p-Hilbertian and block g-Besselian, then
we can first renorm ¥ to be p’-convex and then make it ¢'-concave, while
preserving the p'-convexity. This completes the proof.

Remark. One could modify the reasoning in Proposition 27 (mainly
be using, instead of (3), an analogue of Lemme 1 of [7], with the exponent
2 replaced by p) to get estimates for dpx), X being an arbitrary Banach
space. In particular, if dx(s) > ce? for some ¢ > 0, then it can be found
in [4] or deduced from the results of Section IT that there is a 6, = ¢;(p, ¢)
> 0 such that if 2, y X, [w|” +ly|P = 2, then [(@+y)/2] < 1— 00—yl
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* After some transformations we get the estimate replacing (3)

e —y I < oo (£l + IyI?))™? — (% s+ 1))

Since dy(e) = 05(26) and 84(s)/s? is equivalent to an increasing function,
we can now repeat the proof of Proposition 27 and find that g is not
much worse than dx (the exact formulation is left to the reader). The
Jatter result shows that the modulus of convexity of the space ¥ constructed
in [27], which has & symmetric basis and contains a complemented subspace
igomorphic to J, is almowt as good as that of Z.

In the next proposition we show, starting from some isomorphic
properties of H, that K admits an equivalent norm, which satisfies the
assamptions of Proposition 27 with a function M essentially equivalent
to that involved in the isomorphic property.

We shall denote by & the set of mon-negative functions on [0, 1]
and by «, the subset of = consisting of non-decreasing functions. Given
fes and a norm [||-]|| on & equivalent to I ll, e(lli-111,f) will denote

the least upper bound of the nﬁmbers {2 FU8;2ll), where weB and
& = (81, ..., 8,) i8 a collection of finite and mutually disjoint sets of
indices such that m‘ig‘eiﬂiwm < 1 for each choice of signs (g;). Let us
remark that if f s/ and g(@) = 0232% fu), thenge sy, g = f and w(]]- 1], f)

=w(l|l*|ll, 9). Furthermore, if |||-]||; is another equivalent norm on:

By N -1, and (Il 11, f) < oo, then o([ll* 1[Iy, f) < co. I fe &
satisties the 4, condition and ¢> 1, then w(l||*|l},f) < oo implies

w(ell]* ||, f) < oo. These facts together with Lemma 31 and some remarks
below imply that the set {fe o: w(|||*]|l,f) < oo} is the same for all
norms |||-]]] on B equivalent to |-|, i.e.; it depends only on the given
unconditional basis. In the sequel we shall write o (f) instead of w (|-, f).
Obgerve that if 6 is the modulus of convexity of I equipped with an equiv-
alent normn, then o(d) < oo. We shall study & converse problem.
PROPOSIEION 29. Assume that B i8 p-convew and let gest be a function
such that g(1M) s convem, w(g) < oo, (L) == 1 and g () [ is non-increasing,
for some v > 0. Then T admits an equivalent p-convew remorming, ||1* 111, so
that, whenever a, y<ll are disjoinlty supported and |||@ 4-9l|| =1, one has

gyl < ra(gf™(L - |ll]l).
Proof. Define, for wel,

"

lloll| = it {8 > 0: Y g(ISsall) < g (1), tor V).

Gl



GUEST


150 T. Figiel

Clearly, |||z]|| = |lwl| (consider & = (8,), where |z—8,2[<¢) and, if
K = o(g)"?, then, for any & and = +# 0,

D (ISl Elizl) <K Y g(I8;0l/l2l) < 9(1),
i=1 Fe=1
so that |||z]]] < X flll
It is obvious that [||-]|] is unconditionally monotone. Now suppose

M <1, )l <1,y 2 = (2,), where 2 = $(l#,[" + y,/"). Then, for

cany & = (84, ..., 8u)
D) 918l < )j g{ (3185217 + 18;y1P))) < 2 Ho(18:@)) +g(1Sey ) <
=1 dm=]
This proves that the unit ball of (H, [{|-{[|)yyis convex, whence (H, |[{-|])

is p-convex.

Finally, let »,y<E be disjointly supported vectors with [{|o--v|||
=1; we may assume @ % 0 s y. Given any & = (8;,..., 8p), one hag
m

2. 9(8l) +g(lyl) < 1; hence ]
> g (ISl (L —g(ly 1)) < (L —g(lyl)) ™ X‘gu!&mu
=1 7.=-1

Consequently, ||l»}]] < (L—g(lyl)*" <1
r>>1), so that (recall the definition of K)

gy D < gyl Uy Nyl <
which completes the proof.
Let us write, for t<[0, 1],

¢(t) = pp(l) =sup{f(?): fesdl, o(f)<1}.
The function ¢z is closely related to some numerical characteristics of
X considered already in [14). Indeed, since in order to compute guy(t)
it is enough to consider those fe. which vanish off {t}, we see that pg(t)
=0 iff there exist arbitrarily long sequences of vectors ay, ..., #,ecH,

—r~lg(lyl) (it is clear that

ro(g)™(L~]ljall]),

m
with finite and mutually disjoint supports, such that |la) =1, || 3 o
e ]

< 1. Moreover, if m < oo is the maximal length of such a sequence, then
@g(t) = 1/m. It is well known that the functions defined as cpﬂ; are (equiv-
alent to) supermultlpllcamve functions. For, if t, s¢(0, 1], ¢(2) = 1/(m —1),
@(s) =1/(n—1), then, given any mn vectors @y, . ,wmneE with ilmte,
in
disjoint supports and |lz;)| = s, onehas| > w¢/s|| >1,forj =1,...,mn,
(i 1)

whence HZ ;|| > 1. This proves that ¢(is) > 1/mn, 8o that

e (Bp(s) = 1[(m~1) (n—1) < 3/( mn-—-l)
The latter inequality is obvious it p(t)ep(s) =0.

3p(ts).
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Since ¢y iy non-decreasing, we infer that two cases are possible:
either ¢z (t) > 0 for each ¢ > 0, or gg(¥) = 0 for each ¢ < 1. The second
case oceurs iff # containg subspaces arbitrarily close to If for m =1, 2, ...
(the non-trivial implication follows from results of Maurey’s [20]).

From now on we shall be assuming that p(f) % 0, for ¢ > 0. (Let us
mention that under this assumption F admits a p-convex norm, p > 1,
iff it does not contain subspaces clogse to I} for large m; cf. [10].) Let
q denote the characteristic exponent of gy, i.e., ¢ (¢) = O (%) and ‘lllol’—l! @ (612

== 0o whenever p < g¢.

In comwmon exatnples, like Lorentz and Orlicz spaces, one simply
has o(py) < oo. It can be shown that the latter property implies that
on(t?) is equivalent to a convex function, provided that the basis is block
p-Hilbertian and « < 1/p. On the other hand, W. B. Johnson has con-
strueted in [11] a veflexive X for which tlim op(1)t™! = 1. If it were true

0

that w(py) < oo, then ¥ would be isomorphie to I,, which is absurd. Conse-
quently, if # > 1 and B = X,, then limgy(#)#™ =1 and w(pg) =
>0

Let us give examples of funciions f such that o (f) < co.

LmymA 30. If wesdy, then w(pog) < )‘ p(L]k).
o

Proof. Let wel, o<1, & = (8,..., 8n). Using the definitions
and Abel’s transform, we get
o0 e
S ulpiSeol) = D) v/l Cardfi: p(ISol) = 1/%}
fe=] Towm 1
= D' (w(/l) =y {1/ +1)) Oard {i: g(|S;al) > 1/k}
foml
L o0
< D (w /)= (L/T41)b = N wfn)
Jorm), Jowm 1

o0
Remark. We do not know whether for every pes, with kZ’l p(L/[T)

== oo here iy an H such that w(yo ¢g) = oo. It iy so' if, for instance, y(t)
= (tloglog (1/t))/(log (1/t)) for small 4.
Algo, it is not ¢lear whether Lhere is always an fe.s such that o (f) < oo

and po gy -3 f Lor each yesr, with >’1p( [k) < oo

At this moment we can oonclude that, if ¢ < 2 and the basis of # is
block p-Hilbertian for some p > 1, then, by Lemma 30, Corollary 28 and
Propogition 24, J admits an equivalent norm such that dg(e) > Oe® for
some O > 0. If ¢ 3 2, then the conclusion is not so satisfactory. Assuming
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again the basis to be block p-Hilbertian, we can infer in a similar manner,

using now also Proposition 18, that B can be renormed so that lim 65(s) /"
&—+0-

= oo for each 7 > ¢. The results of this section yield of course more specific
estimates for the moduli that can be realized by a suitable renorming
described above. They do not coincide with the upper estimates for possible
moduli (even those estimates obtained by considering I, (E) or # (I,) instead
of H), the ratio being, roughly, a power of [logs|; we shall therefore with-
hold an explicit formulation of either of them.

We close this section with an example, where ¢z is far from Deing
convex. Then we give two lemmas, which allow one to replace an fes’
such that o(f) < co by a greater function, which is closer to satisfying
the assumptions of Proposition 29.

Exampre. There is a space & such that for some sequence (?;) tending
to zero one has 11mq:13(t,0/ )pg(t) = 1. Indeed, let 4 be a fixed number

greater than 1 and let, for # =1, 2,
2(log A /)=, if

M, (t) =
Ic() 0, it

0<t<1,
t=0.

We shall prove that the space B =1 ((lm” )), where m, is a suitably chosen
sequence of positive integers, has the required property.
It can be deduced from the results of Section IT and Kadec’s theorem
hd
that there is a € > 0 such that if By = (g,}Mf)lz then g > OM; for
k=1,2,... Hence, writing #, = (M)~ (1/my), we can estimate
o (te) < Lfmy, = My(ty),

7 D) e < O My (]8) o D) mg
i<k =37
Let the sequence m; be chosen so that

= my" 2 M- 0,

i<k

z (bl %)™ (4%

< PBgyy

B = M (b} | My (e )~

Then we easily obtain

1< et o (bfk) < 07 i +14-a;.

This concludes the proof.

LevMA 31. Let fe o, o(f) < oo and r > q. Then there exists an Fe o7,
such that w(F) < oo, F = f, and the function F (1) [t" is non-increasing.
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Proof. We may assume fe 7, and write f(1)
for x<[0,1],
3
fil@) = Y 2 ™f(@ ),  F(a) = sup f(1) (@/e)'.

Pyl <t
Clearly, ' = f and fy(2®) = 2'(f,(2) —f (@) < 2"fy (%), for z¢[0, }]; hence
the argument used in Proposition 10 yields a ¢ < co such that F << Of,.
‘We shall prove that, if 4 > 1 and g(x) = f(Az), then
(%) o(g) < 3p(L/A) o f).

This will yield the desired estimate, since, if ¢ < s < », then 11m£”/<p( )
= 0; hence there is a 0, < co wuch that

Z Z—'mm 27» <8 2’ 27 (27 oo (f)

[DE=T} N=0

= f(1), for t = 1. Define,

o(f1)

e
<3 D270, 2% (f) < co.

o)

To prove (x) consider an arbitrary sequence of vectoxs Byy oney Byl
with finite and mutually disjoint supports and HZ | < :3 Let ky =0
and let iy, j =1,2,..., be the first index such. tham H w,” > 1/4.
I % is the last index to be defined by this procedure, then [] Z wt[] 174

and, by the detinition of <p, Ip(1/4) < 1. Therefore

Zg(nmiu>= Zf(nAmin) 2 D fllda) + gf(uAmk,u )+ D) f(lAay)

il LTS Jel Ty <i<le J=1 1>k
S+ o(f) <3p(1/4) o (f).

This completes the proof of the lemma.

The restriction imposed on M in the next lemma is not unnatural
in view of the lawt example. Namely, we shall say that I satisfies the
reproducibility condition with exponent p if there exists a sequence (4,)
guch., that

(i) Ay = O(k"),

(il) given any positive integer & and an abritrary sequence of vectors
Dyy ooey e B with Linite and l‘nlmmllv digjoint supports, there is a similar
systeul (Weg)y LS a2 my LS J =5 B, wueh that gl = lloglf for i =1, ..., m,

and.
|3 eul<n]| S al-

(In fact, a weaker version of this property would be sufficient for our
purposes.)
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For instance, B may be an arbitrary space with a subsymmetric,
block p-Hilbertian bagis, or ' may be an arbitrary space with an uncon-
ditionally monotone basis and B = 1, (¥) or B = F(l,). Let us remark that
in our discussion of uniform convexifiability we might have replaced
E by 1,(E) or K(l,), which admit the same moduli of convexity; hence
the reproducibility with exponent 2 is not a restrictive condition.

The proof of the following lemma is now a simple exercise left to
the patient reader. (It ix analogous to the previous one and besides the
listed ingredients it involves Lemma 2.)

Lemma 32. Assume that B satisfies the reproducibilily condition with
exponent po. Then, given any fe o, with o(f) < oo, and numbers p (0, py),
7 > g, there is @ ges? such that g > f, w(g) < oo, g(t'%) is a convew function
and g(t)/t" is decreasing.

Added in proof. Some problems discussed in Section IIT have been solved after
this paper was submitted. Two facts should be mentioned.

If B is superreflexive and has local unconditional structure, then the converse
of Kadec’s theorem (stated for the Rademacher averages as in [7]) holds. It is no
longer true for general superreflexive spaces.

The renorming result appears in the author’s Exposé N© XXIV of the Séminaire
Maurey-Schwartz 1974-1975; the corresponding example is due to G. Pisier and can
be found in Annexe 2 (to the same publication). Let us remark that the techniques
used in that exposé are based on final lemmas of the present paper (modified to allow
vectors with not necessarily disjoint supports). The proofs will appear elsewhere.
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