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Geometric characterizations of the Radon-Nikodym property
in Banach spaces

by

R, B, HUFTF and P, D. MORRIS (University Park, Ia.)

Abstract, It is shown that a Banach space X has the Radon-Nikodym property
(RNP) if and only if every cloged bounded (not necessarily convex) subset of X has
an extreme point. Other related characterizations of the RN are also proved.

Introduction. A Banach space X is said to have the Radon—Nikodym
Property (RNP) provided for every measure wpace (£, X, 1) with A(R2)
< oo, and every A-continuous measure u: T-X of finite variation, there
exists a Bochner infegrable funection f: @-»X such that w(Z) = [ufda
(B eZ) (see the survey paper [5]). The space X is said to have the Krein—
Milman Property (KMP) provided every closed bounded conves set in
X has an extreme point

In the early 1940’s, R. S. Phillips [13] showed that reflexive spaces
have the RNP, and N. Dunford and B. J. Pettis [6] showed that separable
dual spaces have the RNP. It is well known that ¢, and L' fail to bhave
the RNP. Also, ¢, and L* fail to have KMP. Obviously reflexive spaces
have the KMP, and in 1966 (. Bessaga and A. Pelezyniski [1], extending
work of J. Lindenstrauss [107, showed that separable dual spaces bave
the KMP. Based on these and other results, J. Diestel [4] in January
1973 posed the question. of the relationship between the RN and the KMP.

Recently, geometric characterizations of the RNP have been found
(Theorems 2 and 3 below) which show that the RNP implies the KMP.
In [9] it is shown that for dual spaces the KMP implies the RNF. In
this paper we give further georetric characterizations of the RNT (Theorem
4). 8pecifically, if one detines X to have the Sirong Krein—Milman Property
(SKMP) provided every closed bounded (not necessarily convex) set
in X has an extreme point (i.e., & point which is not a convex combination
of other points in the set), then the SKMP and the RNP are equivalent.
Tt remains an open question whether or not there exists a space with the
KMP but not the SKMP. '
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1. A preliminary theorem on dentable sets. Throughout, let (X, ||-|)
denote a Banach space with continuous dual X*. Let co(4) and co(4)
denote the convex hull and closed convex hull, respectively, for sets
A = X. Let B,(x) denote the closed ball of radius » > 0 and center x<X;
let B,(4) = J{B,(#): wed} if 4 = X.

A subset 4 of X is said to be dentable if for every » > 0 there exists
@ point # in A such that @ ¢co(ANB,(v)). M. A. Rieffel [14] introduced
the notion of dentability and observed that A is dentable if co(d) is
dentable ([14], Prop. 2). An easy argument (see [3], Lemma 1) shows
that a closed convex bounded set K is not dentable if and only if there
exists # > 0 such that K = ¢o(K\B,()) for every # in K. The separation
theorem gives the following equivalent formulation [12]: K is not dentable
if and only if there exists » > 0 such that for every continuous linear
functional f and for every o< supf(K) the set

8(f, @, K) = {weK: f(2) > o}

has diameter at least r. A set of the type S8(f, a, K) (with feX* and «
< supf(K)) is called a slice of K.

An r-net for a set A is a set N < A such that 4 = B.(N).

TurorEM 1. If K is a closed bounded convex set in a Banach space X,
then the following three statements are equivalent.

(1) K 48 not dentable.

(2) There exists r > 0 such that no slice of K has a finite r-net.

(8) There ewists v > 0 such that K = Go(E\B,(,...,x,)) for every
finite set {wy, ..., s} = K.

Proof. An application of the separation theorem easily shows that
(2) implies (3); and it is clear that (3) implies (1). We prove that (1)
implies (2).

Suppose that K is not dentable, and assume without loss of generality
that K is contained in the unit ball of X. There exists é > 0 such that
every slice of K has diameter larger than 4. Let r = }4.

Let f be in X* let « < supf(K), let 8§ = 8(f, a, K), and let

= {xeK: f(z) = a} = 8.

Suppose there exists a finite r-net for 9; i.e., suppose there exist points
@1y...y @, in 8 such that 8 = B.(xy, ..., a,). Since 8 # H = co(H), we
may assume without loss of generality that for some m < n

8 =CO(HU(SNB,(a, ..., 1,)))

but
8 K, = EG(HU(SnB,(mz, ey w,,,))).
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(If m =1, take K,
X* such that

= H.) Let y, be in [SNB,(x,)]NK, and choose g in

¢ = supg(8) = g(yo) > supg(K,) = a.

Choose f such that o < g < ¢ and

B—a ]
a1
Let
8 =3(g,8,8) = {weS: glw) = }.

We show that the diameter of 8§ iy at most 6. Let

= {weB,(2)08: g(0) > a}
and )
= {wel: g(x) < a}.

Note that K; < K, and y,eL. Algo,

LUK, > HU(SO(B,(2y, -, #n))),
go that .

8 =0 (LUK,).
Note that

[eco(LUEK,)]NS

is denge in §'. (For, {weS: g(v) > p} is dense in 8’ and is & relatwely open
subset of S. Smee co(LUK,) is dense in S, it is dense in this relatively
open. subset.) Let Az (L—A)y be in [eo(Lqu)}nS', where 0 <A1,
vel and yeK,. (Any element of co(LUK,) must be of this form since
L and K, are convex.) Then

< g+ @L—2)y) <le+(L—Aa = Ao—a)--a,

=(B—~a /(a-- )> 18,10, (1—2) < 0. Let A'a’~+(1—1)y" be
another point in [eo(LVWE,) NS wnh @' el y' e XK,y and 0 A’ < 1. Again,
(1—4) < &, and we have
LA+ (L—A)y]—[4' @ + (1 — 291l < Ao — ' ' + (1L — Dyl + 1L — )yl
<lo—(L—Ao—a +1—2)0 |+5+5
< lw—a' [+ 5+
L2456 =
since K is in the unit ball of X and @, ' are in B,(s,). Thus the diameter
of 8 is at most 4.

o
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By the choice of 4, 8" cannot be a slice of K. Clearly, 8’ = 8(g,.8, 8)
= 8(yg, B, K), and so there must exist some 2 in S(g¢, 8, K)\S". Then
g(?) > p and z¢8’. Thus 2¢8 and s0 f(2) < a Let w be in &', Then f(w)
> a since H < K, and K,nS = @. Hence there exists 0 < u < 1 such
that we+(1—p)w is in H. Bub g(ue+ (L —p)w) = f 50 uet(L—p)w is
also in &, contradieting the fact that §'NH is empty. This contradiction
completes the proof.
The proof of the following corollary is only a slight modification of
the proof of Lemma 2 in [3]. Let .A° denote the interior of a set 4 <= X.
COROLLARY. Suppose that I is a closed convex non-dentable set with
K° = @. Then there ewists > 0 such that

E° =co(K°B,\ gml, )

for every finite set {z, ..., x,) in K.

Proof. Choose r > 0 to satisfy (3) in Theorem 1. Let {w,..
be a finite set in K, and let J = K\B,(2,, ...
J° = E°\B, (%1, ..., %,).

Note that J = J°. For, let y be any point in J. Then y <K and y is
not in the closed set B,(®;, ..., #,). Let 2 beany point in K°. Then the
half-open line segment [z, y) is contained in K°, and for points w of [z, y)
sufficiently close to ¥, w is outside the closed set B.(2y,...,»,). Hence
y is the limit of points in E°\B.(x,...,s,) = J°.

It now follows that coJ < ¢o(J°), and since the interior of a convex
set (when non-empty) coincides with the interior of its closure,

K° = (cod)°

By ..y B}
, %y). Then K = co(J) and

= (c0d)® = (c0J°)° = coJ°.

2. Geometric, characterizations of the RNP. In 1967, M. A. Rieffel
[14] showed that if every closed bounded subset of X is dentable, then
X has the RNP. In 1972, H. Maynard gave a characterization of the
RNP in terms of a modified version of dentability {11]. In 1973, W. J. Davis
and R. R. Phelps [3]showed that Maynard’s condition was actually equiv-
alent to dentability, and independently R. Hutf [8] showed that Maynard’s
proof could be modified so as to prove directly the converse of Rieffel’s
result. The papers above combine to give the following. (The equivalence
of (3) with the others is in [3].)

THEOREM 2 ([14], [11], [3], [8]). For a Banach space X, the following
three statements are equivalent. :

(1) X does not have the RNP.
(2) There exists a bounded non-dentadle subset of X.

(3): There ezisis an equivalent norm for X such that the. corresponding
'wm,f, ball is mot dentable.
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Using this characterization of the RNP, J. Lindenstrauss (see [12])
gave a simple, elegant proof that the RNP implies the KMP. (G. A. Edgar
[7] has given an independent proof for separable spaces, actually establish-
ing a Choquet theorem for separable closed, bounded convex subsets
of spaces with the RNP.) In order to state a powerful extension of Linden-
strauss’ result due to R. R. Phelps [12], we need a definition. If K is
a closed convex set in X, a point m in K is said to be strongly exposed if
there exists f in X* such that f(#) = supf(K) and such that

w,el, lim f(m,,) = f(x) = limw, =
M=

N0

Ag Rieffel obgerved, if @ is a strongly exposed point of XK, then @ is a
denting point of K, i.e., @ ¢Go (K\B,(x)) for all r > 0. Trivially a strongly
exposed point i3 an extreme point. Thus the following theorem extends
the result that the RNP implies the KMP.

TamorEM 3 (R. R. Phelps [12]). A Banach space X has the RNP
if and only if every closed bounded convem subset of X is the closed convew
Till of its strongly emposed poinis.

We remark that if 4 is a closed subset of X, then any strongly exposed
point of ¢o (4) must be in 4 since for any fin X"‘, supf(Co(4)) = supf(4).

The main results of this paper are contained in the following.

THEOREM 4. For a Banach space X, the following four statements are
equivalent.

(1) X does not have the RNP.

(2) There exwists a closed bounded set A in X which does not have an
extreme point.

(3) There exist an equivalent norm |||-]|] for X amd o closed set A
such that
Ao {peX: ||l <1} and co(d) = {zeX: ||ln)]| <1}

(4) There ewists a olosed bounded set A < X such that no non-lrivial
fin X* attains its supremum on A.

Proof. Trivially (3) implies (4). That (2) implies (1) and (4) implies
(1) follows from. the fact that if X hos the RNP, then 4 must contain
an exposed point for ¢o(4). It remaing to prove that (1) implies (2) and
(3), andl these two implications will be proved simultaneously.

Suppose that X does not have the RNI. Then there exists a separable
subspace Y which, fails to have the RNY ([15], [11], and [8]). By Theorem
2 1"h(,10 exigts an equivalent morm |||]||y for ¥ such that K = {yeX¥:
[ligllly =< L} is not dentable. By the corollary to Proposition 1, there exists
>0 MJ('h that

K° = co (KONB,(#y, ..., %))
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for every finite set {®y,...,®,} in K° Let {y,}n., be a dense sequence
in XK°. Define a sequence of finite sets F, F,,... = K° by letting F,
= {y,}, and if Py, ..., F,_, have been defined, let F, be any finite subset
0t E°\B,(FyuU ... UF,_;)suchthat F U ... UF,U{yy, ..., Y,} = co(F,). Let
F = {J F,. Note that if ¢ < j, then F,; = co(Fy) (so I has no extreme

=1

points). Clearly, if ¢ 54 j then
vely, yelfy = lw—yll>r,
and therefore F'is closed and (2) is proved. Also, (3) is proved in the separ-

able case since co(F) contains {y,};*> which is dense in K.
For each n =1,2,..., let

@, = Fn-i-{weX: ol < (1—;313) %}

and let
o
A =UG,.
n=1
Note that if 7 < j, then
G,,; < CO(Gj)

and
wel;, yel = lw—yll>3r.

(Clearly, A also has no extreme points.)
We next show that 4 is closed. Suppose that {z,}o2., is in 4 and
lim#, == . Then we must have that

N0

(Br(@)n4

3

is entirely contained in some @,. Since every @, is closed, # must be in
G, < A. ‘
Next, we claim that co(A4) is dense in the set

B =K+ {weX: |z <r/6}.
For, let k be in K, let # be in X with [lz{| < /6, and let &> 0 be given.

Choose an element y in co( U Fn) such that [k —y|l < s. Choose » so large
N=1

1 r
that (1_ﬂ-_]_—)€> llw]l and yeco(F,). Then (y-+a) is in co(@,) and

(k+ao)—(y+2)l = k—yll <e.

icm®

Geomelric characterizations of the Radon-Nikodym properly 163

Finally, let |||-||| be the gage of the set B.

Remarks. (i) Note that statement (2) in the theorem may be re-
placed bye

(2') There ewists a closed bounded set A. in 8 such that A next(éT) (A)) = @.
(Here ext(XK) denotes the seti of extreme points of a set K.) The exactly
opposite situation occurs in spaces with the RNP. For if X has the RNP,
then for every closed bounded set A4,

@0 (A next(E6(4)) = Go (strongly exposed points of ¢6(4)) = o (4).

(i) Similarly, the exactly opposite situation from (4) occurs if X has
the RNP. It is implicit in the proofs of Lemmas 6 and 7 of [12] that if
X has the RNP and if K is a closed bounded convex subget of X, then
the set

H(K) = {feX": f strongly exposes some point of K}

is dense in X*. [We remark also that the sets U, = {feX": there exists
a slice 8(f, a, K) with diameter < 1/n} are open in X*, and thus #(XK)
= (U, is & Gysubset of X*.]If X hag the RNP and if 4 is a closed
bounded subset of X, then the set {feX*: sup f(K) is atbained} contains
the dense set B(G0(4)). This should be compared with the Bishop-Phelps
theorem [27]: for any Banach space X, if K is a closed bounded convew
sot, then the set {feX™: sup f(K) is attained} is dense in X

(iii) Detining the Strong Krein-Milman Property (SKMP) as in the
introduction, we have shown that the SKMP is equivalent to the RNP.
Tt is well known [15] that the RNP is separably determined; i.e., X has
the RNP if and only if every separable subspace of X has the RNP. Thus
the SKMP is separably determined. It is an open guestion whether or not
the KMP is separably determined.

(iv) In conneetion with property (3), note that if X is separable and
it the unit ball of X is already non-dentable, then we do not have to
renorin X. As is well known and easily proved, the unit bell in the space
¢ of all convergent sequences (with norm || == sup |@,l) is not dentable

n
and yet has many extreme points (in fact, it is the closed convex hull
of itis extreme points). Thus, in particular, there do exist closed bounded
sets without extreme points, but whose closed convex hulls have extreme
pointy, This indicates that if indeed the KMP and the SKMP are equivalent,
the proof may be somewhat delicate.

(v) Finally, & concrete example of a set satisfying (3) may be of
interest. The following example appears in [18], p. 9. Let the space ¢,
of all sequences which converge to zero have it§ usnal norm |of = sup |y,

T
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For every positive integer n, and every n-tuple ¢ = (e, ...y 8,), where
& = =1, let ™) denote the sequence whose ith term is given by

Lo i 1<i< ’
mg""’)z—. %+18i SIS N,

0 otherwise.

The norm of the difference of any two different such sequences is at least
§, and thus the collection A of all such sequences is a closed set in the
open unit ball. Since supf(4) = |f|l for every fin ¢, co (4) is the closed
unit ball of ¢,.
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The distribution of energy in the Brownian motion
in the Gaussian field and analytic-hypoellipticity
of certain subelliptic operators on the Heisenberg group

by
A, HULANICKI* (Wroclaw)

Absteact. Lot a particle perform a Brownian motion X (¢) in R and ¥ (¢) be anothex
Brownian motion in R* independent of X (f) interpreted as a random constant
field of forces in A™. The joint distribution of X, ¥, and the energy B produced
by the motion is ealeulatod by interpreting (X (f), ¥ (1), B(f)) as a process on the
Heisenberg group ¢ connectod with a subelliptic operator on @.

In [4] and [2] a construction of a semigroup of functions p,, &> 0,
associated with, a subelliptic operator on a Lie group was given. The aim
of this note is to point out the role of the functions p; in random walks
on & Lie group which in turn may arise in a very elementary physical
problem, The link of the p/s to a subelliptic operator on the general
Heisenberg group enables us to compute the p, explicitly. This apart
from an apparvent physical interest shows that certain subelliptic operator
on R*"! iy analytic-hypoelliptic.

The author iy grateful to Professor H. McKean for a conversation
in which he convinced the author that the explicit formula for the p/s
can be obtained though by a different method than the one applied here,
as well as to Professor Palle Jorgensen. for illuminating remarks concerning
analytic-hypoecllipticity.

L. Introduction. Lot G be a connected Lie group, U = U~ an open
neighbourhood of the identity in @ such that the exponential map exp:
L@@ is wlocal diffeomorphism onto U. Let gy, ..., g, be a seb of generators
of G, i.e,, the smallest analytic subgroup containing ¢y, ..., ¢, is ¢4 or, in

containing A, ..., ), s LG Suppose that u is & symmetrie probability

meagure equally distributed on gy, .oy gy g7y ooy g5t anfi let for ¢> 0
and n =1, 2, ... the probability measure g, of & be defined by

Wt
(M) = 8(20)~%, it s of exp[;l:'l/-ﬁ- xj]e M.
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