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Multivalued monotone mappings are almost everywhere single-~valued

by
P. KENDEROV (Sofia)

Abstract. Let B be a Banach space and let B’ be its conjugate space. If T': B—~F'
is a maximal monotone (multivalued) mapping from # to its conjugate space B’ with
domain D(T) = B, then T is an upper semi-continuous multivalued mapping from
B to I’ endowed with the weak* topology. If in addition B’ has an equivalent strongly
convex norm, then the set {#e<H: T'(x) has more than one element} is of the first
category, i.e., it iy a countable union of nowhere dense subsets. Thus “almost every-
where” in the title of the note means “except for a first category set’’. As an appli-
cation another proof is given of the theorem of Asplund [2] that every continuous
convex function defined on B is differentiable in the sense of Géteaux almost every-
where.

Monotone mappings have been the subject of much research in the
last few years. They were studied by many authors in different directions
{for information see Browder [3], [4] and [5]). Our aim here is to prove
the results announced in [7].

Let E be a Banach space and let B be its conjugate (the set of all
bounded linear functionals on E). The value of the functional ye B’ at
the point #¢ B will be denoted by (@, ¥>. The subset G of E x F' is said
to be a monotone set if, for each pair (z;,y,) and (@,, ¥,) in G, we have
{0y — @y, Yy — Yoy = 0. Such a set is said to be a mazimal monoione one
if it is not properly contained in any other monotone subset of B x E'.
The multivalued mapping T: E—>E' is said to be monotone (mawimal
monotone) if its graph @G(T) = {(#, ¥)e Fx B : yeT' ()} is a monotone
{mazximal monotone) subset of B x H'.

By using Zorn’s lerma, it is not difficult to prove that every mon.ot-
one set is contained in a maximal one. Thus, for every monotone mapping
T: H—>F', there existy a maximal monotone one, I': F—F', such that
T(o) = f’(w) whenever we H.

In what follows we shall consider that 7'(x) # @ for all we H.

The following theorem will play an important role in our arguments.

TarorEM 1 (Rockafellar [117). Every mazimal monotone mapping T':
BB with T(x) % @ for all w< B is locally bounded, i.e., for every wyec B,
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there emists am open Vam, such that T(V) = U (T (x): ©V) ds o bounded
subset of H'. _

By o(®', B) we will denote as usual the weakest topology in E’ with
respect to which all elements of E are continuous (sometimes this top-
ology is called wealk* topology).

PRrOPOSITION 1. The graph G(T) = {(z, y) sExL” yeT(»)} of every
mamimal monotone mapping is @ closed subset of B x (B', o(E', B)).
Proof. Let (x,,7.)<G(T) be a convergent net in B x (&', o(¥, E)}

with im (@, ¥.) = (%, ¥o).- By Theorem 1 we can assume ¢ = sup lyoll < oo.
Then ;or (#,y)e B x B' we get ‘
— > —<Bo— %, Yo — Y|

< [y — Boy Yo—YD] -+ <o — 2y Ya—Yod |

|<{6a—-.’1}, Yo

< [[wa— ol (e +ylf) + K& — 265 Yo — Yo | >0

Therefore (@, —, Yo —¥) = im{w,—», y,—¥> = 0 for (x,y)<G(T), and

(@), Yo) €@ (T) by the maximality of T.

COROLLARY 1 (Browder [4]). Let T: BE—~H' be a maximal monotone
mapping with T(x) = @ whenever we B. Then, for every e B, the set T'(v)
is o(B', B)-compact and conves.

Proof. T(x)is o(E', B)-closed (Proposition 1) and bounded (Theort?m
1). Thus it is o(B', B)-compact (Kelley and Namioka [6]). The convexity
of T(x) is a result of the maximality of T.

THEOREM 2. Every mamimal monotone mapping T: E—(B', o(¥, B)
with T(x) +@ is upper semi-continuous, i.e., for every m,e B and every
open U = T(w,), there ewists an open neighbourhood Vozy such that T(z) = U
for all zeV.

Proof. Let V be such an open neighbourhood_of_wer‘that (V) iz
bounded (Theorem 1). Then the o(F', H)-closure T(V) of the set T(V)
is ¢(E', E)-compact. On the other hand (after Proposition 1), the graph
of the mapping I': V- W Y, o (B, E)}is o(B', B)-closed. Such a mapping
has to be upper semi-continuous at every point zeV. This shows that
the mapping 7T is upper semi-continuous. The proof is finished.

Let. us now return to the Banach space (X, |-|). Denote by [¥lz

the max |{z, ¥>|, where y is an arbitrary element of B’. When there is
flzll<1

no danger of ambigunity we will use [jy| instead of |lylz--

Let T: E—~E' be a maximal monotone mapping with T'(z) # @
for all we B. Put f(z) = inf(lyl: yeT(w) = min(lyl: yeT(w)) (the last
equality is due to-the o(H', E)-compactness of T'(x)).

icm
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Leyma 1. For every real number o, the set {xe B: f(x) > a} is open.

Proof. The set 4 = {ye B': |y| <a} is o(F', B)-closed and B'\A
is o(E', E)-open. Let us choose m[,s F go that f(x,) > a; then T(z,)nA =&
and hence T'(z,) = B'\A.

According to Theorem 2 an open Vsw, exists such that T'(z) = B'\NA
for every z<V. Then for z¢V, T'(s)n4A =@ and f(») > a. The lemma
is proved.

Let us now set H, = {x< E: in every neighbourhood V of x; there

exists ayeV such that f(y) > f(w) +1/n},n =1, 2,3, ...,and D = B\ H,,
n=1

Lemwma 2. The function f(x) is continuous ot every point we D.
LemmA 8. The set H, is nowhere dense.

The proof of Lemma 2 is a trivial consequence of Lemma 1 and

the definition of the set D. In order to prove Lemma 3 we will

suppose the. contrary: H,, is dense in an open V s @. Fix an w,¢ H,nV.
By induction we will now construct a sequence {,}, = B such that it
satisfies the following three conditions for ¢ =1,2,38,...: 1) 2;¢ H,NV;
2) f(®g11) > fla) +1/m; 3) gy — ol < 1/2°H. Suppose that Byy By Dy - oo
«+y @y, satisfying 1), 2) and 3) have already been chosen. In particular,
wpe H,NV. Then, as follows from the definitions of the set H, and the
function f(x), there exists a point z*<V with {]w"~02;‘,|[<1/2"+2 such
that f(z*) > f o) +1/n. Because of Lemma 1 the last inequality holds
for every « from some open V*»2*, V* = V. As the set H, is dense in V
the intersection V*nH, is not empty Let us choose @,,eV*nH,
such a way that (@, —a*|<1/2%% Then =, ,,V*nH,cV n H,,;
F(@ey1) > f@) +1/n (@0eV") and o, — 2]l < 0 ‘w*” + [lo* — @)
< 1/2FF241/2%+2 — 1/2%+1 The required sequence is constructed. Con-
dition 3) shows that it is a Cauchy sequence and hence it is convergent.
Moreover, it follows from the construction that the sets U T(=),

izn
n =1,2,3,..., are all unbounded, which contradicts Theorem 1.

THBOREM 3. Let (B, |-|) be o Banach space with a strongly convew (L)
dual norm |- |z and suppose thai T': B—~H' is a monotone set-valued mapping
with T(x) @ for every we B. Then the set {xve B: T(x) has more than one
element} is of the first category, i.e., it is a countable union of nowhere dense
subsets.

Proof. Without loss of generality we can consider that T: H—B’
is a maximal monotone mapping. The proof will be finished if we prove
that T'(z) is a single point set for all ve D = E”\(U H,). Let wpe D and

=]

() Le., if yy,y,eE’,
< llyllz = llysllmr-

lgulle = llysller and g3 # yp, then |i(y;+9a)/2llm


GUEST


202 P. Kenderov

suppose that y, e T (%) ¥y # 7; we can-assume that (@) = lyll. Asy 7,
there is an ¢e B such that & = (e, y —F> > 0. The sequence {1, =z
+(1/n) e} @ye D and hence (Lemma 2) f(x,)—f(%,). Let us note that
fl@,) = [y, for some y, T (z,). As follows from the upper semi-contin-
uity of T: B~ (¥, o(H, I)) and the o(F', H)-compactness of the images
T'(x), there is a y,eT(w,) such that every o(E', E)-open neighbourhood
of ¥, contains infinitely many members of the sequence {y,}sw; (this is
a common property of upper semi-continuous mappings with compact
images). Let 6 > 0; the set Ay = {§ ¢ B': |§ll < lyll+ 8} is o(Z', B)-closed
and it contains ¥, when n is sufficiently large for |ly,[ = f(@,)—f(z,) = lyll.
This shows that yyed;, i.e., [yl < llyll+4. The last inequality is true
for each &> 0; hence [yl <yl = f(#,) = min{llyli: y<T(2,)}. On the
other hand, the norm |-z is a strongly convex function and it attains
its minimum on the convex set T'(2,) at only one element. Thus 4, = 4.
Farther we will make use of the monotonicity of T':
For alln =1, 2, 3, ... wehave 0 = n (@, — &y, T—Yp) = (e, T—Yop +
446, Yo—Yn> = &+ Yo—Yuy. This is a contradiction, since &> 0 and
{yn ~Yolnsy has 0 as its (', B)-cluster point.

A Banach space B is called weakly compactly generated if it has a o(E, E’)
compact subset A = B such that the linear span L(4) is dense in .
For example, every reflexive Banach space, as well as every separable
Banach space, is weakly compactly generated.

TrroREM 4 (Amir and Lindenstrauss [1]). Let B be a weakly compactly
generated Banach space. Then it has an equivalent norm ||-|| such that ||*||z
is strongly convem.

COROLLARY 2. Let B be o weakly compactly generated Bamach space
and let T+ E—E' be a monotone multivalued mapping with non-empty images
T (»). Then the set {msE T(x) has more than one element} is of the first
category. '

Let us now discuss the connection between monotone mappings and
convex functions.

Suppose that #: B—R (where R is the usual real line) is a convex
continuous function. It is well known that, for every z,¢ B, there exists
at least one y,¢ B’ such that the inequality h(m)—h(2e) = <@ —®y, Yop
holds for each ze F. Assigning to each zy¢ B the non-empty set 9(x)
={ye B': h(m)—h(z,) > {(x—my,y> whenever weH}, we get a multi-
valued mapping 8: B~~E'. This mapping is monotone. Indeed, if v,¢d (),
i =1, 2, wehave h(z,) —h(2,) = {0y — @y, ¥o) and h(x,)—h(2,) = {w,— 2y,
Yy = <a;1 — 1y, —¥;». Adding these two inequalities, we obtain 0 > (&, —
— %, Yo —Y1. R. T. Rockafellar has shown [10] that 0 is a maximal
monotone mapping. This, combined with Theorem 2, enables us to state
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COROLLARY 3 (Moreau [9]). The set-valued mapping 0: B— (&, o(B, E))
18 upper Semi-continuous.

Furthermore, we would like to point out that the continuous convex
function #: #—R is differentiable at the point 2, E in the sense of Giteaux
if the set 0d(w,) consists of only one element. Thus Theorem 3 implies.

THEOREM 5 (Asplund [2]). Let B be as defined in Theorem 3 and sup-
pose that h: BE—~E is a real continuous convexw function. Then the set {xe F:
I is not differentiable at @ in the sense of Gdteaux} is a set of the first category.

In the case of ¥ being a separable Banach space we obtain the fol-
lowing result of Mazuxr:

COROLLARY B (Mazur [8]). Lei B be a separable Banach space and
let h: B—ER be a continuous conves: function defined on the whole of . Then
the function h(xz) is differentiable in the sense of Gdteauw at every point of B
except for the joomts of a first category set.
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