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(i) Let A be a semisimple regular commutative Banach algebra, and
et @, y Y1y Yoy ... tn A satisfy @ = ay, for n =1,2,... If |y does
not tend to imfinity as n tends to infinity, then there is an f in A such that
fo =2

For let F be the support of @ in the carrier space @ of 4. The remark
will follow if we show that the closure F~ of F is compact ([10], Corollary
3.7.3; Theorem 3.6.13).

If ¢ is in F, then

1 = limint |y ()" < |p(a)|-limint |y, "

Thus there is a d > 0 such that {¢(a)| > 6 for all p in F, and so for all ¢
in '~ . Therefore F'~ iz compact, completing the proof of (iii).

(iv) Corollary 1 and Remark (iii) lead to the following question.
If # in a (commutative) Banach algebra A may be written as o = a"y,

for all n and if [, "™ does not tend to infinity is there an fin A such
that fo = x?
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On the minimum time control problem and continuous
families of convex sets

by
8, ROLEWICZ (Warszawa)

Abstract. Lot a linear systom with time variable he given
A By
(X —mer [ Y ),

where X, [, ¥ are Banach spaces, 4 and By, 0 < ¢ < T, are continuous linear ?perators.
Let U be a convex closed set in X containing 0 in. its interior. Let ||w|| = inf{f > 0:
©/te U} be the Minkowski norm generated by U. By ¢(f) we denote

p(t) = inf{|{wl|: BrdweX (0)},
where T (f) is a given continnous family of closed sets.

‘We prove that if 13,4 (U) is & continuous family of setis ati #, and the set 15'50/1 (o)
has an interior, the @(f) is & continunous function at %;.

By a time control linear system we shall understand a system of three
Banach spaces over reals, X being called the space of input, 01 the space
of trajectories, and Y the space of output, of a continuous linear operator 4 :
X[, called the operator of input, and of a family of continuous linear
operators B;: [1—Y, ¢ being real, 0 <4< 1.

Let U be a convex closed bounded set in X. Let ¥ (1), 0 <t < T,
be a family of sets in ¥. In the minimum time control problem we are
looking for

) T,y =int{t > 0: BA(U)NY(t) + 0}
and we ask when
(2) B,,OA(U)'nY(TO) %0,

The problem has been investigated in papers [2], [8], [4], where
the respective sutficient conditions for (2) were given. Those condifions
were only of the existence type.

In many problems which appear in the theory of control another,
morve effective, approach to the problem iy used. . ‘

Namely, we assume that the set U has an interior. Of course, W1thoub:
loss of generality, we may assume that 0« Int U. Let | | be the Minkowski
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norm induced by U:

®) el =ini{s> 0: gsu}.

Let

(4) @(t) = inf{{lw|: B,Awe¥ (1)}
and let

(5) T =intft > 0: @(t) <1}.

Of course, 7> T,. If we assume that B, A(U) are closed, then T =T,
(131, [41). A )

The continuity of ¢(¢) is important for the caleculation of T.

In order to formulate the theorem giving sufficient conditions for
the continuity of ¢ (?) it is necessary to introduce the notion of continuous

" families of sets.

Let B be a linear topological space. Let H (1), 0 <t < T, be a family
of subsets of B. We say that the family H () is continuous at a point t,
if for an arbitrary neighbourhood of zero V there is a positive number ¢
such that for all t, [t —1%,| <-J, we have

(6) H()) = H(t)+V
and
(M H(i) = H()+ 7V,

If only (6) holds, we say that the family H(¢) is upper semicontinuous.

TeEOREM. Let Y (1) and B, A(U) be families of sets comlinuous at
a point &y If B; A(U) has an interior, then ¢(1) is continuous at the point 1.

The theorem has been proved in [4] (Theorem V.5.1) under the
additional assumption that there is an open interval (¢,— 6, ¢, - 6) such
that B; A(U) has an interior for each ¢ belonging to the interval.

In [3] I asked about the necessity of this hypothesis. The present
note shows that it is not necessary.

The proof is based on the following lemmas:

Leyvma 1. Let X be a Banach space over reals. Let I' = X be a closed
convex set without interior. If 0e I', then for an arbitrary M > 0, there is
a continuous linear functional f** such that

®) I > M
and
(9) I'e {m: M(x) <1}

Proof. Let #, be an arbitrary point of I'. Since I" does not have an
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interior, there is a sequence of points {z,}, #,¢ [, tending to @, and such
that [, —@oll < 1/n. ) ) )

By separation theorems there are continuous linear functionals f,
separating @, and I, i.e., such that

(10) ' Jalwn) 21
and
(11) ‘ fa@y <1 for sel.

Now there arve two possibilities:

1) the sequence {f,} i8 unbounded. Then, for each 1 > 0, there is an f,
such that [f,, | > M. Putiting f = fuy,, we get (9) from (11).

2) the sequence {f,} is bounded, i.e., there is a constant K > 0 guch
that |If,)l < K, n =1, 2,... In the second case, by the Alaoglu theorem
there is a cluster point f, of the sequence {f,} in the weak-*~topolo_gy.
Obviously, [|f,] < XK. By the definition of weak-#-topology we can find
a subsequence {f,} such that }aﬂﬂ Fog (%) = Fol@a)-

Since f, is & cluster point of the sequence f, in the weak-#-topology,
folw) < lim gup f, () for all weX. Therefore
n

(12) folw) 1 for wel.
On the other hand (compare [5]),
(13) 1 fo(@0) =y, (W)} < | Fo(omg) — oy (Bo)] - | fag, (0) = Fag, ()]
< 1Fo(@6) = Foy, (W) -+ K |1, — Boll > 0.«
Thus :
(14) Jolwo) = limint f,. (@) > 1.
k~ro0

Since mye I, by (13) and (14) we get

(18) fol®y) = 1.

Suppose now that for each wye I'there iy & continuous linear functional
fop votistying (12) and (15).
If

(16) 5:}];_1 Ifgll = +o0,

then it is easy to choose a linear continuous functional f™, 1) > M,
guch that (9) holds. ‘
If (18) does not hold, then there is a constant ¢ > 0 such that

17 1fepll < € for all aye I

*
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Formula (17) implies

(18) | fiag) (®o)] < Ol

and we get a contradiction of formula (15) because Oe I'
In the case where X ig finite dimensional, Lemma 1 can be formulated

in a stronger way. Namely, if I' is a convex set without interior, then
there is a continuous linear functional f such that

(19) I'c {o: f(z) = 0}.

For infinite-dimensional spaces, there are .I" such that there is no
linear continuous functional satistying (19). What iz more, there are
bounded convex sets I' without interior such that for every continuous
linear functional f we have

(20) i‘g’f (@) —Inff(z) > ifi,

as follows from the following example:
Exavere. Let X = I*[0,1]. Let

I'={weI*[0,1]: || <1, () > 0}.

Let f be an arbitrary continuous linear functional defined on X. Let
f(t) be the function belonging to I?[0, 1] corresponding to f. Let
F() 4151 J@) —1f ()

fu(t) = ‘——‘2—; fo(@) = —-—»_2——.

icm

The linear continuous functional corresponding to f,(f) and f_(t) will --

be denoted by f, and f_, respectively.
It is easy to verify that

(21) f=f+f

(22) f+@=0, f(H<0,

(23) IFIE = NI+ IF P

Let

(24) 2 = lf+/”f+” {f fe #0,
0 it f. =0,

(25) 5 = If_/nf_u ff fo#0,
0 it f_=0.

Of course, #,, #_e I This implies

(26) i?}?f(@?f(%) =Ffloy) = lIfel
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and
(@) int f(0) < f(@.) =7-(0) = ~ /-
Hence
(28) Kup J(#) ~-ir};f fl@) = If - 1f- = 0

TavmA 2. Let X be a Banach space over reals. Let I, = {x: |lo|l <}
be the ball of radius r with the centre at 0. Let I' be & closed convex sel withowt
interior. Thon

(29) K, o I Ky

Proof. We shall consider two cases:

Oase L. inf{jel: we I} =r[3.

Tn this case, of course, 0¢ I'+-K,, and (29) triviaily holds.

Case TL. inf{|wll: we I} < #/8. '
Let @, be an arbitrary point of I' such that [lw.ll < /3. We ghall write

-

I a= I'= 1y,
fjr = I, .

Since llw,l < /3, Ifr o Kyyy. The set I containg 0 and doe-s not
have an interior, Thus by Lemma 1 there is a continuous linear functional f
guch that

(32) If1 > 8/r

and (9) holds. Since (32),

(38) Koy & {22 f(0) K1} Ky
Therefore

(34) K, & I'+Ey,.

pormule (34) trivially implies (29).

Luvma 3. Let X be a Banach space over reals. Let A be am arbitrary
subset of X with a mon-empty interior. Then there is & navmber v > 0 such
that for am arbitrary closed convew set I' without interior, the set A is not
contained in the set 1"y,

Proof. Since the set A has an interior, 4 contains .a ball K, (@)
of radius r with centre at @y, Let & = 4 —o,. Then I, = A. Now applying
Lemma 2, we trivially get Lemma 3.

TuMmA 4. Lot X be o Banach space over reals. Let Iy, 0 <t < T, be
a family of closed convew sels continuous ol the point t,. Suppose that I,
has am interior. Then there is a positive number & such that for 1, [t.—1o| < 0,
the set Iy, has an interior.
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Proof. Since the set I, has an interior, by Lemma 3 there is an
r> 0 such that I is not contained in I'+K,, for any closed convex
set I without interior.

On the other hand, the family I} is continuous. Thus there is a posi-
tive number ¢ such that for 7, |t —&,| < 4,

(35) I, e I+Ky,.

Formula (35) implies that I, has an interior.

Lemma 5. Let X be a Banach space over reals. Let Iy, 0 <t << T, be
a family of convew sets continuous at the point ty. If the set 1_}‘,, has an interior,
then there is o 6 > 0 such that for t, |t —1t,| < 8, the sets I', have an interior.

Proof. It is an obvious consequence of the application of Lemma 4
to the family T;.

Of course, in the general case it is impossible to replace Xemma 5
by the assertion that I have an interior. As a counterexample we take
as Iy the ball of radius » and ag IY, ¢ =% ,, an arbitrary convex dense
set without interior fixed for all ¢ = 4,.

Fortunately, in the minimum fime control problem we consider
the family I = B,A(U) and for this family we have

Lmvora 6 ([1]). The set Iy = B, A (U) either has an interior or is nowhere
dense.

Proof. Without loss of generality we may assume that 0eInt U.
Using the second part of the proof of the Banach theorem on open maps,
we get Lemma 6.

Of course, without the asswmption that U is bounded Lemma .6
is not true. In fact, let X = ¥ =¢;. Let U = X and let B4 ({z,})
= {n~'w,}. It is easy to verify that, for ¢ > 0, B,AX is a dense subset of X
different from the whole X and, for ¢ = 0, B,4(U) = X.

Proof of the theorem. By Lemma 6 and Lemma 5 there is a 6 > 0
such that for ¢, |t—1t| < 6, the set I} = B,A(U) has an interior. Thus
for arbitrary s> 0

(36) B,A(U) < Int(1-+¢)BA(T).

We fix now an arbitrary positive e. Since the family B, 4.( U) is continuous,
there is & d;, 0 < &, < 6, such that for 1, [f—1,| < 1y

(37) B, A(U) = Tnt(1+ &) B,A(T).
The definition of ¢(f) implies

(88) y(to)“‘P(to)Bto-A(U) %0,
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Hence by (36)
(39) Y (o) " Int (L + ) p (L) BLA(U) % 0.

Sinde Y (¢) is a continuous family of sets, there is & ds, 0 < 8y < &y, such
that for &, [E—1o] < d,

(40) Y (#) N Tnb (L +8) @ (o) BeA (U) # 0.
Thus by the definition of ¢(i) we get
{41) P(t) < (L+8)q(ty)-

Exchanging the roles of ¢ and ty, we find that there is & 6> 0 such that,
for ¢, [t—1| < &,

(42) @ (k) < (L+2)p(h).

1) and (42) imply the continuity of ¢(?).
Formvl\lflewh(aﬁr? prgve(d )Lemlloni;s 1-5 for Banach spaces over .reals, but
the proofs can easily be extended to locally convex topological spaces
i als or over complexes. .
el‘vhegvgvgz rzot know whethc];r Lemmas 2-4 are valid for non-locally
1? )

conv{(;‘iei?ics%also another interesting question. Without_ t.he qssumptxoli
of the convexity of I, Lemma 4 does not hold even in the finite-dimensiona.
case. The examples ave trivial . ) -1

We say that a set A contained in a linear space 18 p—oom(z‘w, 0m<_p1\ I é
it w, yeA implies tw+syed for each s, t> 0 such that ¢ —l—t. —ag— .
Temma 4 true if we replace the convexity of I3 by p-convexity?

It is so for finite-dimensional gpaces.
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