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On an infinite linear combination
of partial sums of Fourier series

by
RATJENDRA SINHA (West Lafaystte, Ind.)

Abstract. Given a TFourier series, we consider an infinite linear combination
of its partial sums which converges almost everywhere to an integrable function.

Introduction. For feL, let Z A, (f, #) be its Fourier series, where
A, (f, 2) = an(f)cosnwﬁ-b (f)sm'nm. We write

= > 4,1, )

J=0
In [3] it was shown that for feL logZ and ¢ of bounded variation,

lim 2 a"j-}-l Sj f, .'1})

1L—>OO]
exists for a.e.x. The limit function is integrable and its Fourier series can
Dbe obtained via certain multipliers. The purpose of this paper is to extend
the results in [3] and answer the questions~raised therein.
In the first section we show that if f, feL, then for a.e. z,

51 [Sn(fi m) —f(w)]-An((P: t)

na=l
converges umfounly in t, for all ¢ of bounded variation. We also show

that f,(2) = 2‘ a; () 8;(f, ») is in L7 whenever feI? (1< p< o).
j“l . -
In the second section we show that for feL and ¢ of bounded variation

0 (p) 8, (f, %) =f,(x) exists for a.e.  but now the convergence set
nm

may depend upon ¢. Further we show thai Jo(@) is still in L. In the last
section we give some examples Bhowmg the necessity of the hypotheses

in the above theorems.

Notation. All functions considered in this pa,per are, defined on
[—w, =], real integrable and periodic with period 2. Wlthoub loss -of

¥
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generality it is also assumed that the constant term in the Fourier expan-
sion of each function is zero. If a notation is not explained, it coinecides
with the notation of [5]. We define 8, f(z) = S,(f, ) and ¢, f(#) = o, (f, z)
By BV we mean the space of all functions of bounded variation with
lellgy = l@lle—+ Var(p). By AC we mean the space of all abgolutely con-
tinunous funetion with |lpllac = lloll -+ llp’ll,. By H we mean the space of

all functions whose conjugates are also integrable.
It ZIA,,,(]‘, %) ~ feB, then we also write > A4,(f, #)eB. By g(,1)

ne— e

E(dt) we mean g(z,-)eH.

1. THEOREM 1. Let feH. Then IE < [—r, n] with |[B| = 2% such

that for all weB, 3 (8,(f, #)— f(w)) A, (@, 1) converges umiformly in t for
ne=1

all ¢ «BV.
Proof. From [5], I, p. 50, 5.5,

(11) S (f, @) __f — cosnu) -i%i,gu_"“_du
For 7t >1> 0, define
(1.2) hw, 1) = &H_:)—M
; taniw

Then

]
™ M, u)du.

Integrating by parts and using that the limit of h(x,1) as {—0- exists
for a.e. # ([6], I, p. 1381), we get

.1
Su(f, 2) = —lim -f (1~ cosnu)
t—>0+ T:.t

(1.3) Su(f, o) = —:%j (sinnu)h(z, wydu for a.e. a.
0

Now defining

(0, 1) =<%[h(m, t)—(r—8)f(x)] for ==t>0,
for ¢=0,
and extending it as an odd periodic function, we see that for a.e. o,
' Salf, ) —f(@) . ,
(1.4) Zﬁ——— sinnt ~H*(z, 1) 0 (df).

=]

Since 2 ”(f’ 2) sin née AC(dt), we have

n=1

icm
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(1.5)" ngi(fi%:@ sinnt~H (o, ) e0(df) for a.e. @.

=1
Thus,

(1.6) ISyH(z, ") —H (@) )l
< 8yH (2, ) —oyH (@, ) +oyH (@, ) —H(@, )le

N
1 n
< N+1 nZI 18 (fy @) = Fl@)l+ llowH (2, -) — H(#, )l = 0(1) for a.e. »

by strong convergence of partial sums ([8], IT, p. 184) and uniform con-
vergence of Cesaro sums.

Let B = [—x, =] be the set of all those & for which (1.6) is true.
Let peBV. Then

BoeH = I]Vim”SNH(”o; ) —H (@0, e = 0

= lim Sy H (2, ) *dp —H (@, -) *dplls = 0

N-—+o00

= )“ 18, (fs @g) —f (o) 14, 0, t) converges uniformly in #.

n—l

Remark 1. The set F in Theorem 1 is independent of ¢<BV, and
this, as we shall see, will no longer be true if we only assume f eL.

The following result shows how Theorem 3 of [3] becomes a particular
case of the above theorem. '

CorROLLARY 1.1. Let feH. Then for a.c. w, Z’A,m )8, (f, @) and
Z Apn (@) 8u(f, #) converge for all k=1 and <peZBV
Proof. We have

o

D A, (p)cosnt~lp(t)+p(—H)]1BY.

Pl

By [1], I, p. 287, Ex. 16, 2, Ay, (@) cosnt~ @, e BY. Using the theorem,’
we get the first part of the corollmy
Now

(L7) @BV = ZAZ,,(qo)cowmeBV = EAMH (¢)cos(2n +1)teBV.

ne=l N0
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96 R. Sinha
Let

Fl@)~ 2 (¢, c08n® +d,sinne), and

n==1

Mz =f2) ~ Z (¢, c082n2 + d,,8in 2nx) .

=]l

Then Sy (f*; ) = 8,(f, 20).

By (1.7) zmd the theorem, for a.e. z, Z’ a1 (9) Senpn (', @) converges,

i.e. for a.e. m, Z%n+1(¢ 8, (f, @) converges
Replacmg @ by Py W get the second part of the corollary.
THEEOREM 2. Let feH, _S_jaj(qa cosjt~peBV cmd 3’ aj((p)Sj (f, @)

(which exists a.e. from Theorem 1); then
@) el < Alflpliplsy for 1<p <
where A is an absolute constant. Moreover,

(3) £,(@) ~ 3 4u(9) An(f, @) where In(g) = 3 ay(p).
=1 F=n

Proof. (i) It is sufficient to prove the result for Jo(w) where

fo(®) = S ()8} (f, @) for a.e. .
“
Define '

(1.8) 8y(@) = D a,(¢) [83(f, ) —F(@)]

ne=l

From Theorem 1,

SA(f, 0 —
Zigiﬂsimwﬂ*m,neoww for ae. 2.
=1

Now

D, [Sn(f, @) —F(@)1a,(p) cosmt ~H* (@, -)xdg (1) <0(dt).

=1

= fy(®)

Since the series on the left-hand side converges for § = 0, by Theorem 1,

(1.9) 8y () = H*(x, ) xdp(0) = _"'17? fH*(w,t)dw(t)-
Since ([5], I, p. 295, Bx. 3(b)) O
IH*(; 0l < 2mlifl, for 0 <t<w and 1<p < oo,

icm
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and clearly |H"(-,0)|l, = 0, we see that

(1.10) 18,1, < f NE* (-, )l d g ] < 1l Il
Hence from (1.8)
15l < 2101, gty | > aule) |1l < 3 151, liplksy -

fu==]
(ii) The argument is standard. First we take geI” and find the Fou-
rier expansion of g,(z).
By partial summation,

N
D an(9)8ulg, 0) = Z 7 (@) A9, ©) + A (9) Bx (9, @).-

Since Ay (¢)8x (g, *)lla—+0 as N—oo,

@)~ D ()4
n=1
Now find {g,} = I* such that |jg, —fll,—~0 as k-oo.
Since the operator 7' mapping f to f, is continuous on H, for all n and »,

Ay (TS, w) = hm'-A-'n(Tgk: €) = 1im/1n(¢)11 (G5 @) = 2 (@) Ay (S, @). W

COROLLARY 1.2. Let quZa, cosnteBY and let 1, = Zaj Then

ne=l

21 cosnt is o Fourier—Stieltjes series.
n=1

Proof. From Theorem 2, for any feL*,
fore X 2 dy(fy0)  and [fplle < A flls-
n=1

Hence by [5], I, p. 176, Th. 11.4, Y 1, cosnt is a Fourier—Stieltjes series.

n=1

Remark 2. An unpublished result of G. Goes asserts that with the

hypotheses of Corollary 1.2, 3 A, eosm is a Fourier series.
Nl
2. TrmoreM 3. Let feL and Va cosnthoeBV Then there ewists
114==1

B, < [~=, n] with || = 2w such that Za,zS (f, #) = fal w) éwists for
all zel,. Moram)m, Fol) t8 integrable and us I'omm series is Z‘ A An(fy @)
=1
where Ay, Z ;.
J=n

Proof. Let 4, ~—Zw Then from Corollary 1.2, Z‘Z A,(f,2) 1

N1

a Foqmer series of a func’olon fieL. We will show that f; = f,. Let
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N
i) = D) (1= nda(s, 0
and "
N

wf (@) 52(1 N+1) 4,8, (f, ).

n=1

Using summation by parts,

N+41
L onfilo) = syadyo) ¢ 2D DT i )

Hence
lty—1fp (@) —fi(2)]
8, (f,8)+ ... + Ay Sy (f, %)

N+1
<’ = onful@) —la) |+

N
Since 4,—~0 and 8,(f, #)->f(x) strongly for a.e. =,
n1f(@)~>fi(2)  for ae. .
Therefore,
N » o
> (- T ) 418407, 00— (@100~ 12) Z o for mo. o
But’

N

ity sl o 311 i lants, 0 —st0)

1 n=1

Mz

n

[

N+1 2 |8, (f,y @) —f(®)| (where 4 is a constant) = o(l) for a.e. 2.

n=I1
Hence,
x N
D (8l 0) = F(@) 6>, () —f(2) Y ap  for ae.w

n=1 Py}

or

.
2D Sulfs ®a,>fi(2)  for ae.o. m

n=1

Remark 3. If feH, then from Theorem 1, H, can be chosen inde-

pendent of . In the next theorem we show that ’uhele exists fe.L for which
this is not possible.

Similar to Corollary 1.1 ‘we have

A combination of partial swms of Fourier series 99

CoROLLARY 2.1. If feL and peBV then for all k=1, > (@) S,(f, x)
n=1l
and 5’ Oanr1i(9) 8u(f, @) converge for a.e. m.

I‘or the remaining cases we have following counterexample. -
ExaMprE. Let k> 2, 1 <d<k—1 and 4 5= k/2. Then there exists

@BV and feO such that Z Oioya(9) 8u(f, @) diverges for all .

Constructlon Take f(z) =1 and y(f 2—smm Take

n=1

p(t) =y ( -H) (————t) 2—sm——~cosm

Then ¢eBV. Now

©0

g i 2nd '{?T 2
2 Ongora(P) 8p(fy ) = sin % n/:g nk+d’

n=0

S 1 27ed . .
But 2 — = — coand sin —— % 0. Hence the given series diverges
& nk+-d ks

for all x.

3. LeMMa 3.1. Let fel such that for a.e. z, 3 S,(f, #)an(p) converges
n=1
for all 9eAC. Then for a.e. u, there ewists M, (independent of qo)»suoh that

| 3 8u(f, @) aule)| < Mylplac  for all geAOC.

A==l

Proof, Fix an @ such that ZS (f, %) a, (p) converges for all peAC.

Define Ty AC->R as Ty ( qo)-—Z'S (f, ®) ). Then | Tyl < M(N,m)llqvllwy

where M(N,») is & constant dependlng upon N and z only. Since the
limit of Ty, as N->oco, exists in R, by the uniform boundedness principle
we get the resulf.

Remark 4. Using Oorollary 1.1 and the above lemma we get a
generalization of [3], p. 139, Th. 2.

TrROREM 4. There ewists a function feL for which there is no B satisfying
the following properties:

(i) B = [—mn, ] and |B| = 2m;

N
(i) im 3 8,(f, ®) a,(¢) ewists for all weB and peAC.

N-+oo fe=1
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Proof. From Lusin’s Theorem ([1], IT, p. 95) there exists an absol-
utely continuous function F(z) such that

(3.1)  the Fourier series of its derivative f(w) and its conjugate converge almost
everywhere,

(8.2) the funciion f’(m), conjugate to F (), is essentiolly unbounded in any
interval [a,b] < [0, 27].

So from (3.1) we have feL and §n(f, x) = O(1) for a.e. x.
Suppose for this f that there exists an ' satisfying (i) and (ii) in the
theorem, i.e., for a.e. #, 3 S,(f, #)a,(p) converges for all peAQ.
n=1
Then similar to Corollary 1.1 we would get that for a.e. x,

]j Ban1(0) 8 (f, W)] < oo for all peAC.

n=0

Hence from Lemma 3.1, for a.e. ®, IM, such that

(3.3)

(3:4) | 3 tansa(0) 80(f, 0)| < M lplao  for all geAO.
n=0

el

1 ~

Hence from [4], p. 133, Th. 3, -S-‘E A (f, £)~—F () is equivalent
nm=] .

to a function differentiable a.e. which contradicts (3.2). m

Acknowledgement. T am very grateful to Professor C. J. Neugebauer
for his valuable suggestions and constant encouragement in the preparation
of this paper.
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Best order conditions in linear spaces,
with applications to limitation, inchision, and high indices theorems
for ordinary and absolute Riesz means

by
A. JAKIMO-VBKI (Tel-Aviv) and D. C. RUSSELL (T'oronto)

Abstract. It is the first purpose of this paper to obtain simple order conditions.
which hold for certain sequences of continuous linear functionals on a Fréchet space
with a Schander basis, and to investigate best-possible order conditions. We then
specialize the results to Banach spaces and to summability fields of matrices. By using
results on summability fields and absolute summability fields of Riesz typical means
and generalized Cesdro means, some of them new, we are able to obtain some best-
possible order conditions in these fields; in particular, we can specify the best-possible:
limitation theorems for a sequence (or series) which. is limitable, or absolutely limitable,
by the Riesz method. We then apply our limitation theorems to obtain two
equivalence theorems, of ‘high-indjces’ type, for ordinary and absolute Riesz
summability. Finally, we can obtain improved forms of two inclusion theorems.
which specify necessary and sufficient conditions for an arbitrary matrix method
to include the ordinary or absolute Riesz methods.

1. Introduction. A locally convex linear topological (Hausdorff) space
(over the complex number field) which is complete and metrizable has
a topology generated by a countable set of seminorms p = {p;}, and such
a space (X, p) is a Fréchet space (F-space). We may assume without
loss of generality that no seminorm p; is identically zero. An F-space
with a norm topology, (X, | |lx), is & Banach space (B-space). A. sequence
space is a vector yubspace of o, the space of all complex-valued sequences.
An TK-space (X, p) is a (locally convex) Fréchet sequence space for which.
the coordinate functionals (i.e., the maps P,(x) =, » =0,1,...) are
continuous; an FK-space has a unique FR-topology. A BK-space is o
Banach sequence space with continuous coordinates. Examples of BK-
spaces are the spaces m, ¢, ¢ of bounded, convergent, null sequences,
respectively, all with

= {o: ol = Yol < ool

liell = wup Jae |5
ke k=0

o
P = {:1;: ]l === Tim Jagy) - 2|mk~m,ﬂ_,‘1[ < oo}; P =c'No.
¥ Ji=0

A countable collection of points, {a*}, of an F-space (X, p), i¥
a (Schauder) basis for (X, p) if there are unique functionals f (k = 0,1, ...)
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