146

[31
[4]
(51
[6]
7]

(8l

{9l
(10]

J. Chmielowski

J. Chmielowski, Ensembles déterminants pour les fonctions analytiques, C. R.
Acad. Sei. Paris 279 (1974), Sér. A, pp. 639-641.

F. Leja, Sur les points eéros des fonctions analytiques de plusieurs variables, Ann.
Soe. Polon. Math. 17 (1939), pp. 227-230.

— Funlcje zespolone, Watszawa 1967 (J. Siciak, Wstep do teorii funkcji anali-
tycenych wielu

B. Levi, Sul teorema d wdenmd per le funzioni analitiche di pid variabili, Boll.
Un. Mat. Ttal. 13 (1934), pp. 1-5.

— Sur les ensembles des poinis qui me peuvent pas élre ensembles de zéros d'une
fonction analytique de plusieurs variables, C. R. Acad. Sci. Paris 198 (1934),
pp. 1734-1736. '

P. Montel, Legons sur les familles des fonctions analytiques et lewrs applications,
Paris 1927.

W.E. Osgo od, Lehrbuch der Funktionentheorie 11, 1929,

M. T. Viola, Sur le théoréme d’identité pour les fonctions holomorphes de plu-
sieurs variables, C. R. Acad. Sci. Paris 198 (1934), pp. 705-707,

INSTYTUT MATEMATYKI UNIWERSYTETU SLASKIEGO
KATOWICE

Received Joanwary 21, 1975 (938)

icm°®

STUDIA MATHEMATICA, T. LVIL, (1976))

Differentiability of Lipschitzian mappings
between Banach spaces
by
N, ARONSZAJIN (Lawrence, Kan.)

Table of contents

Introduetion + « v v v v b e e e e e e e e e e e e e e

“C]mpi.or I. Tun ExoperioNar (rass

1. Definition and elementary propertics of the class ilt .
2. Complete biorthogonal systems and generalized bases. . . .
3. Class 2 and supports of meagures.
4. Clage % . . .. ., .. .°

Chaptor LI, DirrnrnNuraLs on LIpSOrrrzia¥ MAPPINGS
1. Different notions of differentials. Elemontary properties. . . . .
2. The main theorem. . . . . . . , . . . ..
3. Somo countor oxamples.. . . . . . . .

Chapter IIL. ArprroArioNs
1. Compositions of Tipschitzian mappings with linear compact operators
2. Convex funotions. e e e,
3. Convox mappings and generalizations. . . . , .
4. Digtance from a point to a subset.

Chapter IV, Borut, MuASURES ABSOLUTELY CONTINUOUTS Ruk. U

1. Structure of measures absolutely continuous rel. 9
2. Cylindrical measures. . . . . . . . . . . . e
3. Moasuves absolutely continuous rel. Afe,}. . . . .

Roforoncos . . v v v v v v v v e e e e e,

INTRODUCTION

150
152
154
156

158
165
167

170
171
174
178

183
184
188

In 1919 11, Radlemacher [9] proved the theorem that for any Lip-
schitzian mapping of an open set @ < R™ into R™ the differential (Stoltz-
dlﬂerentmvl) oxists w.e. in ¢, This theorem became a standard tool in analy-
sis and it was obviously of interest to extend it to Lipschitzian mappings
between Banach spaces. There were, however, two difficulties in obtaining
such extension, The moxt basic and immediately obvious difficulty was the
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non-existence in Banach spaces (of infinite dimension) of any measure
analogous to the Lebesgue measure. Hence the notion of “Almost every-
where” cannot be defined in the usual manner by a measure. The second
difficulty refers to the notion of differential. The most commonly used
notion of differential is the Fréchet differential. But this notion of differ-
ential cannot be used to extend Rademacher’s theorem since there exist
Lipschitzian mappings (even in Hilbert spaces) without a Fréchet dif-
ferential anywhere(%). It was only in 1967 that the author was led to define
the class 9 of exceptional sets in a separable Banach space which could
take the place of sets of Lebesgue measure 0 in finite dimensional spaces.

Furthermore, by considering the differentials (or 7-differentials) slightly .

weaker than the Fréchet differentials, it was possible to extend the Rade-
macher’s theorem to Lipschitzian mappings between two Banach spaces
X, Y with some restrictions on the image space Y.

This work has not. been.published until now. Besides short talks
on different oceasions, the subject was developed more fully in a series
of talks at the Conference on Evolution Equations and Functional Analysis,
University of Kansas, June 28-July 18, 1970; and also at Queen’s Univer-
sity, Kingston, Ontario, January 5-8, 1971; and lastly in Paris, Univer-
sité VI, February—-April, 1974. i

During 1974 the author became acquainted with the recent work
of B. Zarantonello [12] which led him to define, in a way similar to the
one used to define %, a much smaller exceptional class 20 which for convex
functions or their generalizations give differentiability theorems much
stronger than the one for Lipschitzian mappings. These congiderations
are also included in this paper.

The final topic of the present paper arises naturally if one asks under
what conditions can we apply a partial integration f DI (x5 uw)du(s) =

— [ T (2) d»,, (%) to obtain a kind of Stokes-formula(2). We are far, at present,

from being able to answer this question in general, even though in many
conecrete cases we know what the meaning of dv,(«) should be. However,
a preliminary requirement to attack this problem is to clarify what the
Borel meagures y are for which the integral [ DT (@ ; ) du(w) is well defined
for every Lipschitzian mapping 7T. It is clear that they should be finite
measures absolutely continuous rel. % (i.e. such that every set 4%,
where DT (; u) may not exist, be of u-measure 0). The investigation of
such measures u is done in the last chapter of the paper.

In 1972 and 1973 two papers appeared by P. Mankiewicz [6] and [7].
The main purpose of these papers was to obtain theorems to the effect
that if there exists a Lipschitzian homeomorphism from X into ¥, then

(*) See, for instance, Example 1, Section 3, Chapter II. i
(2) DT (»;u) is the differential of ' a,t:w (linearin u) and v, (%) should have the mean-
ing of the differential of x4 in direction u.
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there exists a linear isomorphism transforming X into ¥. For this purpose
it was sufficient to show in the first paper that the differential exists on
a dense set. The second paper goes a little further towards extending
Rademacher’s theorem. On ‘the other hand the work is concerned with.
mappings between Fréchet spaces requiring an extension of the mnotion
of Lipschitzian mappings to these spaces. .

We should mention also a recent work by J. P. R. Christensen [3]
wibh which we became acquainted through a preprint. Ohristensen doeé"
define a class of exceptional sety which he cally zero-sets and by uaiugt
which he is able to extend Rademacher’s theorem. However, these zero-
sets form a congiderably larger class than our class 9. Hence his resulh
is weaker (%). ‘

We would like to mention here that in February, 1974, F. Mignot,
gave us a manuseript of his paper (unpublished as yet) where he obtains,
the result of Mankiewicz in the special case of Hilbert spaces. The interest
of his paper lies essentially in the fact that he applies this result to investi;
gate properties of the differential of the projection operator on convex
sets in a Hilbert space and applies these properties to the study of-
variational inequalities.

In Chapter I we define in Section 1 the class 9 and its most elementary
properties. In Section 2 we give a review of known facts concerning bior-
thogonal systems and generalized bases in a form needed for our develop- .
ments. In Section 3 we give some more intricate properties of the class U
and in Section 4 we use the construction leading to the class 9 to define.
other exceptional classes of sets. Among these the smallest non-trivial is
the class A?, and we show that the theorem of B. Zarantonello, menﬁioned‘
before, gets a much stronger content by using the class .

Chapter IT deals with differentiability. In Section 1 we start by defin-.
ing different notions of differentials, give some theorems about differen-
tiability before assuming the Lipschitzian character of the mapping and-
only at the end of this section do we introduce the Lipschitzian mappings
and give some of their elementary properties. In Section 2 we give the.
main theorem which ix based on a lemma due essentially to I. M. Gelfand
[41(*). In Section 3 we give a few concrete counter examples in which
the differentials are explicitly determined and thus allow an easy con-
frontation with results of different theovems from the preceding sections.

(*) Whoroas onr elags U is the intersection of all classes 9 {a,} (see Detinition 2,
Section 1, Chaptor I) cach of the classes % {a,} is a pavt of tho class of Christensen’s
zero-sels,

. (1) By using recent work on spaces with Radon-Nikodym property (see, for-
instance, L. B. Maynard [8]) we could somehow weaken our requirémehts (conoerning -
the range spaco as far as concerns the strong differential. ’
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~In Chapter III we give some applications of the preceding theorems.
In Section 1 we consider mappings formed by composition of a Lipschitzian
mapping with a compact linear mapping. We show that for such mappings
‘we can skip restrictions on the image-space Y or obtain that actually the
-differential is a Fréchet differential. Section 2 deals with convex func-
tions G—R*, @ open in X. Such functions have everywhere a Gateaux
differential. Our main theorem is that they have a differential (i.e. linear)
except in a set of A(%). In Section 3 we extend the last theorem to more
general mappings than the convex functions. This is done in stages. We de-
fine first relatively convex mappings G— X (relative to a convex conein Y),
then variably convex mappings, convexoid mappings, and finally locally
-convexoid mappings which are the largest class to which we are able
to extend suitably the theorem of Section 2. We give several examples of
mappings of the different classes. Tn Section 4 we illustrate different re-
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sults of the paper in the example of the function Fg(x) = distance from v

.a point @ to a closed subset § contained in X.

In Chapter IV we are investigating the class of measures which are
absolutely continuous relative to our exceptional class 2. In Section 1
we describe the structure of such measures. This allows us to reduce the
problem of constructing such measures to the problem of constructing
a suitable compatible sequence of cylindrical measures {u,} defined.in
the consecutive finite dimensional spaces [é,, ..., 6,] determined by
@ generalized basis {¢,} in X. In Section 2 we review and restate, conform-
ing to our needs, different properties of cylindrical measures which are
-essentially known. In Section 3 we construct by means of cylindrical
.measures a large class of Borel measures a.c. rel. .

Before finishing this introduction we would like to express all our
thanks to F. Mignot whose careful notes of our lectures in Paris, Université
VI, were very instrumental in the preparation. of the present paper.

CHAPTER I
THE EXCEPTIONAL CLASS %

1. Definition and elementary propierties of the class 9. 'We consider
2 real separable Banach space X and, unless otherwise indicated, we con-
gider only Borel subsets of X.

DrrINITION 1. A class B of Borel subsets of X is called ewceptional
(or & class of exceptional subsets) if it has the following properties:

(%) It is of interest to compare our results with those of E. Agplund [1] who uses
methods completely different from ours. It seems that our methods have no bearing
-on his results concerning Fréchet differentiability. As concerns differentiability (which
he calls — as do many other mathematicians — the Gateaux differentiability) our
Tesult complements very essentially his and is new even in finite dimensional spaces.
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a) B iy c-additive.

b) B is hereditary; ie. if B, = B, Be B, then B¢ B.

c) B does not contain any open subsets of X (%).

DurrNinzoN 2. 1° For 0 s aeX let W(a) = {4 = X: VoeX, An(e+
+Rla) is of Lebesgue meagure 0 on the line o --Ra}. :

2° For every sequence {a,}c X with a, # 0, %{a,} = {4 = X:
4 = U-Am Ane%(a’n)}'

n

3% = Wy = () A{a,}, the intersection being taken over all sequences
{a,} complete in X.

It is clear that properties a), b) of exceptional classes are satisfied
for classes (a), A{a,} and A. Property ¢) will be proved in Section 3.
It is also immediate that {a,} = {a,} implies A{a,} = A{a,}.

We will use the following notations: for 4 = X, [4] denotes the linear
span of 4 ; thiy makes evident the meaning of symbols [{a,}], [, @5, -..],
(@1 ..y 4] In particular, a sequence {a,} in X is complete if and only
it [{a,}] = X.

DuriNirioN 3. For § — a finite dimensional subspace of X — we let
A(S) = {4 = X: Ve X, An(w+8) is of Lebesgue measure zero in the
hyperplane ®--8}.

ProrosiroN 1. If 8 is a finite dimensional subspace of X, 8 = [{a}],
then A(S) = W{a,}.

Proof. It is clear from Definition 2, 2° that A(S) = W{a,}. To
prove the opposite inclugion let dimS = n; if n =1, then A(S) = A(a,).
Assume that A(S') = A{ay} has been proved for every 8’ of dimension
<n—1. Choose ay , ..., a;, — abasis in 8, § = (g ooy oy, ] TE A AN,
then the characteristic function y, of 4 is a-Borel function on § and
X (2 éay,) is a Borel function of (@, &), Let

0 N
N{oed: [ galo+ éa)as=o}.

Nasl -

A== {w: we A, j?xfl(m-[u Eay, )A€ = 0}=

A, is 0 Borel subset of 4, Aye W(ay,) and 4’ = A4, has the property thab
A’n(m—-ldtta,ﬂl) s @ inplies that 4’0 (@--Rlay) is of positive measure.
Bince 4’eW (), it follows that A'eW(S) with 8 = [Bys +-vs O, ] 8D
by induction hypothesis A'eW{ay,, ..., ty,} Tlence 4 = 4,04 N{ay,
feny “lcn} < W{a,}. }

DureNrrion 4. We say that two sequences {a,}, {b,} = X are equiv-
alent, {a,,} ~{b,}, if each clement of any one of them is a linear combination
of elements of the other.

OOROLLARY L. If {ay,} ~{by}, then Wf{ay} = WU{D,}.

4~ Studla Mathematica LVIL2
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It is sufficient to show that, for every m, A(a,) < A{b,}. Since a,
= b Gy KIS = [y B] WO gt A(a,) = A(S)
=U{bpy --) by, } < %[{bn}

Remark 1. The corollary will be applied to complete sequences {a,}
in two extreme cases: 1° Removing consecutively from the sequence
{a,} the elements which are linear combinations of the preceding ones,
one arrives at a complete linearly independent sequence {a,}, {a,} ~{a,}.
2° By arranging into a sequence all linear combinations with rational
coefficients of elements of {a,} one obtains a sequence {a,} dense in X
such that {a,}~{a,}.

Remark 2. If X is finite dimensional, then for every complcte se-
quence {a,} < X we have X = [{a,}] hence by Proposition 1 A(X) = A{a,}
and Ay = (X). = class of sets of Liebesgue measure zero.

Remark 3. Classes A{a,} are invariant under translations and homo-
theties. The. class U is, in addition, invariant under linear continuous
automorphisms of X.

Remark 4. If B is an exceptional class then we say that a pointwise
property holds exc. B (except B) if it holds everywhere outside of a set of
class B. By analogy with finite dimensional vector spaces we say that a
property holds a.e. (almost everywhere) if it holds exc. .

2. Complete biorthogonal systems and generalized bases. The consider-
ations of this section are well known; since we could not find a suitable
reference, we found it convenient to give here a short outline.

Two real vector spaces 7, W form a (real) pairing <V, W) if we
are given a bilinear real form (v, w)e V' x W—(w,w). We consider on
V and W the topologies o(V, W), (W, V) (induced by the pairing).
‘We only consider proper pairings, i.e. those giving rise to Hausdorff top-
ologies.

We assume that V is separable in the topology o(V, W); it follows
then that W is also separable (in the topology ¢(W, V)).

Two complete sequences {¢,} = V, {f,} = W form a complete biorthog-
onal system in the pairing if

(1) <6myfn> = ‘5mn'

If this is the case, {e,} is a generalized basis in V and {fn} its dual basis
in W.

The next proposition is based on an easy extension of the idea of
Gram-Schmidt orthogonalization.

PrOPOSITION 1. Let {v,} be complete in V and {w,} be complete in W.
There is a canonigcal way of constructing a biorthogonal system {e,}, {fu}
Jor the pairing (V, W) such that {6,}~{v,} and {f,}~{w,}.
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‘We list now some of the properties of complete biorthogonal systems;
the proofs are immediate.

L. Xf {e,} is a generalized basis in V (relative to the pairing <V, W),
then for every n we have the direct decomposition

V= [617 "';en]'l'“[gn%-l: Cptgy "']1

defining a linear

continuous projection P,, P,(V) = [e,...,e,],
([e,,HH Cna ::]) = 0. The adjoint projection in W satisfies P}(W)
= [fl)"'7fn])l):;([fn+1’fn+2;-~-]) = 0. .

IL. The dual sequence {f,} is unique and can be obtained by consider-
ing the omne dimensional subspace ([ey, ..., €,11+ [€pe1s €ppey---1)> Of
W and choosing from it the unique element f, satisfying e,, f,> = 1.

IITa. To every veV there corresponds a formal Fourier geries v~
X <0, fu> €y, the mapping v {{v, f,>} defines an injection of V into the
vector space of all real sequences.

The formal Fourier series of veV econverges to v in o(V, [{f,}]) but

in general not in o(V, W). In order that 2 £ne, be a formal Fourier series

of some ve V it is necessary and sufficient that the series be convergent
to v in o(V, [{fn}l)

IIb. If veV and we[{f,}], then (v, w) = 3 v, f,> {6, w), the
Series containing only a finite number of non-zero terms.

It {w,} < [{f,}]is a net convergent to we W in the topology o (W, V),
then tor every ve V <{w, w) = hmg(v T {lyy Wo.

A generalized basis {e,} is a wm/r Schauder basis if for every ve V the
Fourier series }<v, f,>e, is convergent to v in the topology o(V, W).

IV. The basis {¢,} is a weak Schauder basis if and only if for every
oV and we W the series Y '<v, f,> <e,, w)> converges to (v, w). It follows
that if {e,} is a weak Schauder basis in V, then {f,} is a weak Schauder
basis in W.

For a separable Banach space X we consider the canonical paiving
X, X* with <@, 2*})> = o*(»).

V. If {e,} is a generalized hasis in a Banach space X, then the projec-
tions P, are bounded (but not in general uniformly). If {e,} is a weak
Schauder basis, then /2, ave uniformly bounded and converge weakly
to I.

Remark 1. The considerations of this section remain valid for com-
plex vector spaces V and W when the pairing <v, w) is hermitian bilinear
(more commonly called nowadays sesquilinear).
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8. Class U and supporis of measures,

TemoREM 1. Let {a,} be a complete sequence in the Banach space X.
Then Wia,} does not contain non-empty open sets.

Proof. Since A{a,} is translation invariant, it is enough to prove that
no closed ball Bp(0), R > 0, is in A{a,}.

By Proposition 1, Section 2, there is a biorthogonal complete system
{ey, f,} for the pairing (X, X*} such that {e,} ~{a,}, hence {e,} = A{a,}.
Choose a sequence {y,}, y, > 0, such that Yy, le,| = R. Put

={MEX: i =2'}’n£n6n:0<§n\<\1}'
1

1t is clear that C is compact and € = Bg(0). Since the series 4 = Yy, &6,
1

converges in norm, it converges also in the weaker topology o(X, [{f,}]1)
hence by property ITla, Section 2, it is the Fourier series of # and the cor-
respondence #—{£,} is a bijection of (' onto the space of all sequences
{&,} with 0 < §, < 1, which becomes a homeomorphism if in the last space
we take the topology of pointwise convergence.
Denote by [0; y,¢,] the straight segment of all points &,y,¢é,, 0< &,
<1 and by O™ the set of all e ¢ with &, = 0. We can write then the
obwom 1dent1flcat10ns

0= H [0} 7aeal,
1

On the segment [0; y,6,] we take the unit measure du, = d&,. On
O we consider the product meagure x of all the measures u,, on 0 the
product measure 4™ of all the u, with n % k. Cleaxly #(C0) = 1. For any
bounded Borel measurable function ¢ on ¢ we get then by Fubini’s
theorem

Jotn= [ [ ¢@®+&y,e,)dEau® @)
c o) Ovper]

0" = n[oy Vi €] ¢ = o X[05 v,

m#Ek

forany k =1,2,...,

where 2 is a variable point on 0@,

In particular if ¢ is the characteristic function of a set 4, we get

w(Ad) = [ pip = (0 + £,,6,) A, u ()

¢ o) [0;vpex]
It follows that if AeW(e,), u(4) = 0 and, if AdeUAfe,}, ie A ={Jd,,
ApeWley), p(4) < Yu(4y) = 0. Sinee u(0) =1, 0¢UA{e,} and By(0) > C
is not in A{e} = A{a,}.

Remark 1. Theorem 1 shows that all the classes %(a), %{a,} and A

have property. ¢) of exceptional classes (see Section 1), henee they are
exceptional classes.
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TunorsM 2. Let X be an infinite dimensional Banach space and u
be a o-finite Bowl measure on X. Then there is a complete sequence {e,} in
X such that p is concentrated on a set in Wde,}.

A Borel measure u is said to be concentrated on A it p(B) = u(BNA)
for every Borel set B. .

Proof of Theorem 2 depends on two lemmas, the second one is of
some interest by itself.

LuMMA 1. Let X be separable infinitely dimensional. There is a sequence
{un} = X%, |l == 1 such that {u,} comverges to 0 in the weak*-topology.

Proof. For a separable infinite dimensional space X the weak*-clos-
ure of the unit sphere {uwe X*; [lul| =1} in X* is the closed unit ball.
Furthermore the latiter is metrizable in the weak*-topology. Hence the
aggertion follows.

The weak*-convergence in X* is denoted by -,

LeMma 2. Let {u,} = X, llu,l =1, u,—0. If A is a bounded subset
of X such that {w, u,»>—>0 uniformly on A, then there exists ae X such that
for every e X, An(w-+Ra) consists of at most one point.

Proof. We can assume that 4 < {#: |#|<< 1}. There is a subse-
quence {u,} < {u,} with the following properties:

«) for all » there iy an aje X, |, = 1, such that (m;” Uy = 5 [6,

B) for every we A, Kw,u <27, n=1,2,...

y) for k=1,..., 01, (o, u| <274,

The @equence in qucmon is construeted by 111cluct10n we choose for
uy the first w, such that [<w, u,»| <2~ for all < 4; by Hahn—Banach
theorem. there is an wjeX llwyll = 1, such that <{w;, u;> > 5/6. To construct
Uy, With glven wy and @y, k < n, we uhe the uniform convergence of {u,} on
Aufs,, .. ,wn 1}; there is ¢ > n such that with u, =u, B) and ) are
satisfied, ®, is then chosen using the Hahn~Banach theorem again. Define

a=>2"%g: then a 0 or else 1/4=2""2]|< 22“"“”%"—1/12
Assume that there is an-we X such that (o +Ra)nA (0, y),y—y’
= na, n > 0, Then .
(1) - Ky' =95 > | <Yy ) |+ Ky, ) < 27404

and on the other hand

)
1Y =y, w1 = i, wupy| = | ) 27, |

LIRS

n=1 . LS
.’y oy 3 ot \ 1 -3k ’
(2) 2 iy =y 3 87 g, iy |~ 3 27 (al, uldl,
Kesl Fimapa 1~1
n=1 9-in

Z Zw%Kml‘,: un)l .._.__..’ 2 Z—MK”M u‘7a>l

Jowm 1 kun +1

\
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(2) implies

2—2n

(3) Ky —y, Up)l = (32 5

—2n Ez—ln) =17

Comparing (1) and (3) we get

g—in+l g~
6

showing that #» = 0.

Remark 1. With the same hypotheses one has the following result.
There is a complete sequence {a,} = X such that for every #¢ X and every
#y, B4[ay, ..., @, ]NA consists of at most one point.

Proof of Theorem 2. Since y iy o-finite, we can assume that X
= UB,, B, c B,(0), B, = B, u(B,)< . Let u, be a sequence as

in Lemma 1. Then the functions # —<®, %,» are u measurable and converge .

pointwise to 0 on X. By Bgorov’s theorem there are Borel sets 4,,,.4,,
< By, Ay = Ay such that u(B,,NA4,)< 2™ and u, converge uniformly
to 0 on 4,,. Lemma 2 assigns to each 4,, an element ¢,e X such that

me%[ )y hence U4, e%[{em} and u( X\UAm =0 smce 7 X\UA
__,M(UB ~—UAm) ( U B \4,) < 22-’“ = 2!~V
N

Remark 2. Theorem 2 shows that there is no o-finite Borel measure
psuch that all the p-null sets belong to A (the set on which u is concen-
trated belongs to W{e,}, its complement ¢A{e,} is of u-measure 0).

4. Class %’. The procedure used in construction of the class % can
be used to define a great number of other exceptional classes. Let By be
an exceptional class on R! whose elements are Borel sets of Lebesgue
measure zero. We assume that By is invariant under translations and
Jomotheties. By analogy with Definition 2, Section 1, we have the follow-
ing (X being separable Banach space).

DepiniTION 1. 1° Let 0 5 ae X, B(a

={4d c X:VzeX, An(w—i—
4+ R'a)e Bp1 on the line +R'a}.

2° For every sequence {a,}, a, 30, B{a,} =
A, B(a )}

3° B = By = MB{a,}, the _intersection being taken over all se-
quences {a,} complete in X.

It is clear that B(a) = Aa), B{a,} = A{a,}, B <A, that B(a), B{a,},
and B are exceptional classes, B(a) and 23{% } are invariant undel trans-

(AcX: 4 =4,
n
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lations and homotheties and B is in addition invariant with 1espeet to con-
tinuous linear automorphisms of X.

There are infinitely many choices of Bp1, one could take the classes
of sets of measure 0 for all kinds of Hausdorff measures, the classes of
sets of zero capacity, for all kinds of capacities, etc,

The smallest (non-trivial) class Bpr consists of all countable subsets
of R'; we denote this class by Y. The-corresponding class M is consider-
ably smaller than 2y, also in finite dimensional spaces. To illustrate
thit remark we mention the following fact.

Lot (64, +.., €,) be an arbitrary basis in R™ and on each of the awes Rey,
choose an arbitrary Cantor set (a compact which does not contain any interval
and any isolated point). Then A == Cy x... % C,, does not belong to Wy

The proof is obtained by constructing on each €, a positive measure
w, without point masses. Then the product measure u; X...Xu, of 4 is
positive whereas every set of A°{¢,} is of measure 0.

The clasg A will be of interest in the study of differentials of convex
functions and their generalizations (Chapter IT, Section 1 and Chapter ILT,
Section 2); it has found an interesting application in connection with
2 recent result of I. Zarantonello [12]. To explain this result we have
to introduce certain notions.

TFor a multivalued function 7', a point # in the domain of T is a point
of unicity if T () iy a single point, it is a point of multiplicity if T'(«) con-
sists of more than one point. A multivalued transformation T': D c X
—X* is monotone if @y, #,eD, Yy eT (8y), Yo L (@) IMPly &, ~¥a, Y1~ Y2
> 0. The theorem of Zarantonello can then be stated as follows.

TaRoREM Z. If T is a monotone tramsformation defined on an open
set G of a separable Banach space X, then the set of points of multiplicity
of T belongs to the class A°.

The original result of Zarantonello was less precise: the points of
unieity form a dense subset of G. The theorem stated above can be proved
by repeating without any changes the argument of Zarantonello.

Remark 1. For an arbitrary class B (subject to our conditions) it
may happen that the property analogous to the one indicated in Remark 1,
Section 1 does not hold. In such a ecase, in Definition 1.3° of the present
section we may restriet the sequences {a,} to those dense in X — we obtain.
then a class B larger than B. We will have an opportunity to nse the class
910 in Chapter IT, Section 1.

Remark 2. Checking the proof of Theorem 2 in the preceding
section, especially the use of Lemma 2, we notice that actually we prove
a stronger statement obtained by replacing in Theorem 2 the class U{e,}
by A {e,}.
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CHAPTER II
DIFFERENTIALS OF LIPSCHITZIAN MAPPINGS

) 1. Different notions of differentials. Elementary properties. We con-
sider two Banach spaces X and Y, in ¥ a locally convex Hausdorff top-
ology = weaker than the strong topology. Furthermore, we consider a map-
ping T of an open subset & = X into Y. In X we will consider only the
strong topology..

For a fixed z¢ @ and a vector e X we form the differential quotient
T(x+ou)—T ()
e
It has a meaning for ¢ small enough.

DeFINITION 1. 1° If the differential quotient (1) converges rel. v in
Y for o™ 0 we put

(1) for o> 0.

2) DT(2; u) = lim L@t —T(a)
N0 0

If necessary we specify DT (2; u) rel. 7.

2° It DT'(;u) rel. 7 exists for all ueX it is a mapping of X into ¥
which will be denoted by DT () (rel. 7) and called the Gateauw T-differential
of T at we@.

ProrosirioN 1. If DT (x) ewists it is positively homogeneous of degree
1, i.e. DT (x, au) = oDT(z; u) for all a> 0.

The proof is immediate.

If DI'(x,u) = —DT(w;—w) for some ue¢ X we say that DT ()
is antisymmetric at w. If it is the case for all ue X we say that DT (w) is anti-
symmetrie(”). .

ProPOSITION 2. If DT (%) ewists vel. v and DT (@5 u) is continuous as
a function of u (rel. any Hausdorff topology ' on Y weaker than the strong
topology) and if DT (x) is anti-symmetric at each vector a,.of a sequence {a,}
dense in X, then DT (@) is anti-symmetric.

The proaof is immediate. ~ ‘

It is clear that for real functions f of a real variable (X =Y = RY)
the anti-symmetry of Df(x) is equivalent to the linearity of Df(w; w) as
function of w.

It is of importance to compare the notions introduced here with the
usual notions in the theory of real functions of a real variable. If such
a function f is defined on an open interval T = R one introduces a unit

(") Many anthors restrict the notion of Gateaux differenti

als to anti-symmetric
differentials.
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vector ¢ in R! defining the unity of measure and the orientg’tion on R
One defines, then, the right and left derivatives fy(») and f () by thes
formulas

flo+e0) (@)

flo—e0)—f(@)

= lim. fol®) = lim" s

U e o%0

fal@)

TE £5(@) and f,(#) exist and are equal ‘nheilr common value is the (}erivative-
f(@). It is clear that the existpnee of fi(), fa(az) meang the exxstgnce of
Df(w) with Df(w; e) = fa(®), Df(a; —e) = —fo(@). Also,. the existence:
of f'(v) means the existence and linearity of .Df(s) with Df(w; e) =
—Df(w; —e) =f'(@). _

TFor our next propogition we will need a general lemma on functions.
f: R*—~R* which is due (under stronger form) to ‘W. Sierpinslei, but f_or-
which a reference is difficult to reach. We will give a short proof of it.

LumuA 1. Let f(x) be o real function defined on some open set, @ < R.
The set B of points of &, where f;(x) and f,(w) ewist, but f3(@) # f,(w) is ot
most enumerable.

Proof. Tt iy enough to show that EnlI is at mosb enumera,ple for-
any closed interval I = G. Suppose the contrary. Then there exists an
o> 0 and a non-enumerable subset B; = BNl such t]{lat for each xel,
|fs(@)—F,(®)] > a. Put & = af7. It follows that there exists a non-enumer-
able B, = B, and g, > 0 such that for all wel,, ¢ < 0o, ¢ > 0 we have

Kot =IO o)

<e¢ and !Mf(wmiez_f(w) —fo@) | <e.

Since F, is non-enumerable, it contains a point #, which is a limit of its
points @,> #,. We can find, therefore, such a point, @; = @, ¢e such
that o< go/2 and that the closed interval [m,; @ +206] = & We have
then the equalities: ‘
F(@o+ 06) —F(@g) = efa(@0)+ 8005 F(@o-+206) —F (w0 -+ ee) = efa(@)+ 210,
Flwo+200) —F(@o) = 20fa(@y) +ex2e, J(we) —f (20 -+ c6) = — ofg (1) + &0,
where for all 15110 8, we have |s;] < e, From these equalities we get
Sal®y) = Fal@o) +283— 20— 81, Jolwy) = Jalwo) 4 g0+ &5

Finally, |fi(@:)—f,(@)] < 6e< a & contradiction.

PropostrIoN 3. Let T be a continuous mapping of an open set G = X
into R, X being o separable Banach space. We suppose that for each x<@,

]
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DT () ewists and is continuous (as function of u). Then DT (%) is antisym-
melric exc. 5[}(“).,

Proof. Let 4 be the set of #’s, where DT () is not anti-symmetric
and consider any sequence {a,} = X, a, 5% 0, densge in X. Put 4, = {#< G-
DT (z) is not anti-symmetric at @,}. By Proposition 2, 4 = (J4,. By
applying Lemma 1 we would have immediately that 4,¢UA%(a,) if we
knew that 4, is a Borel set. To prove this it is enough to prove that for
each ball By(wy) = B,yg(#,) = ¢ such that [T(#)| is uniformly bounded on
Byr(®y); A, NBy(m,) is a Borel set(’). Consider the expression

T(w+ Qa’n) +T(w—9a1n)
e

It is a eontinuous function on (#, g) for we By(a,) and 0 < o < B/|a,l.

We have limg(w, o) = |DT(w; a,) + DT (2;—a,)|, hence |DT(w;a,)+
N0

+DI'(z; — Z,L)l is a Borel function of # and the set where it is 5« 0 is 2 Bo-

rel set.

Thus 4, is a Borel set in A%(a,) and 4 = (J4, c A*{a,}. Finally,
{@,} being an arbitrary dense sequenceé in X, A e 9o,

TEEOREM 1. Let X be separable and Y have a Hausdorff locally conves
dopology v, weaker than © such that theve ewisis {v,} dense in Y rel. v,. We
assume that for T: X > G—-Y the Qateaun v-differential ewisis for each
weG and that DT (2): XY is continuous rel. a Hausdorff topology on ¥
(which may vary with @). Then DT (%) is anti-symmetric for oll @« G ewcept 900,

Proof. Let A be the set of a's, where DT () is not anti-symmetric,
«consider the dual Y™ rel. z;. The assummed properties of the topology =,
imply that there is a {w,} = Y™ dense in Y™ rel. the topology ¢(¥™, ¥).
Bince for the real-valued functions T, (#) = {T(=), w,> we have DT, (2; )
= (DT (z; u), w,), it follows that DT (v) is anti- symmetric if and only if

all the DT, (z) are anti-symmetric. By applying Proposition 3 our theorem
is proved.

We return now to real-valued mappings.

The mapping T: X —R*is called conven if for all convex combmatlons
w = Yy, 0> 0, S, = 1, we have

{3) T(u) < D)o Tu,.

If the opposite inequality is always true we say that T is concave. If T is
concave, —T is convex. T is concave and convex if and only if T ig linear.

—9T ()

oz, ) =

(%) The class 9° was introduced in Remark 1, Chapter I, Section. 4.

(°) Such bally exist for each 2,< ¢ by continuity of 7' and an enumerable system
-of such balls covers @ because of separability of X.
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If T' is positively homogeneous of degree 1, and T'is convex, inequality
(3) is true for every linear combination u = }' ¢, %, with positive coefficients.

PROPOSITION 4. If X is separable and the mapping T: X —R* is posi-
tively homogeneous of degree 1, continuous and conves (or concave), and if
T is anti-symmetric on o sequence {a,} complete in X, then T is Zmezw

Proof. Clearly we can restrict ourselves to T' convex. Take an arbi-
{rary, finite linear combination of the a}s, say u = 3 8.a,. By convexity
and anti-symmetry we have

@) Tu =118 (e a) < 3 1Bl Tisenpia) = > pila.
Similarly, '
() T(—w) < ) BT (— )

Adding the extreme members of these inequalities, we obtain
(4" 0 =T(u—u)<T(w)+T(—u)<0

Tt follows that all inequalities (4), (4') and (4"') are actually equalities.
In particular T(Y fay) = 3 BT (ay). It follows that T is linear on the sub-
space [{a;}] which is dense in X. 7' being contmuous iy, therefore, linear
on X.

TanonsM 2. Let T be a mépping of an open set G = X into B*. We
assume that X is separable and that for each v« G, DT (%) ewists, is continuous
and conven or conoave (depending on »). The set A. of points of &, where DT (x)
2s.n0t linear belongs to AO. '

Proof. Let {a,} be an arbitrary eomplete sequence in X, a, # 0.
By Proposition 4, DT (») is linear if and only if DT () is anti-symmetric
at each a,,. Therefore A = (4, where 4, is the set of @ ¢ G such that DT (@)
is not anti-symmetric at a,. As in the proof of Proposition 3, one shows
that 4, is a Borel set and A4,¢A%(a,). Thus A < A%{a,}. Since the {a,} is
an arbitrary complete sequence in X, 4.« A0,

Remark 1. We could give a stronger form to Theorem 2 by not
asking that DI'(z) satisfy the conditions of the theorem at every point
@¢@. Then A should be the set of #’, where all the conditions are satistied
and where D7 (a) is not linear. The proof proceeds in the same fashion but
we have (o assumo that the set, where DI'(#) does satisfy the conditions
of the theovem is a Borel set.

We are going 10 consider now two properties of a Gateaux r-differential:

(A) .DI'(2) i linear. :

(B) The z-convergence in (2) is uniform in % on each compact.

Remark 2. InTheorerm 2 we had a case where condition (A) is sabisfied
exc. A% But to be sure of condition (B) we will have to add certain
hypotheses concerning the wmapping 7.

1
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To abbreviate the terminology we will say that DI'(x) is a v-differ-
ential it it satisfies (A) and (B). We will say that DT'(s) is a differential
if it is a 7-differential v being the norm topology on Y.

ProPOSITION 5. Let T be a v-continuous mapping of G into X, G open
in X. a) If DT (x) rel. v ewisis and condition (B) is satisfied then DT (a; u)
as function of u is continuous rel. 7. b) If DT(x) rel.v ewists amd conditions
(A) and (B) are satisfied, then DI (w) as function of w18 a linear mapping
of X imto Y continuous in the sirong topology of X.

Proof.a) We have to prove that if v,—v in X, then DT (w;wv,)

T(m+ ou) —T ()

SDT(x; v). Since for every o> 0, is a 7-continuous

4
funetion of # and on the compact seb {v,} U(v) this function converges r-uni-
formly to DT (z; »), it follows that the limit on the set {v,} U (v) is 7-con-
tinuous which proves our assertion.

b) Now DT (%; u) is & v-continuous linear mapping of X into ¥. Hence
it is a closed linear mapping in the strong topology and by closed graph
theorem, it is strongly continuous. ‘ ‘

‘We may replace condition (B) by a stronger one:

(B’) The 7-convergence in (2) is uniform in % on every bounded set.

If (A) and (B') are valid we will call DT (z) a Fréchet v-differential.
If = is the strong topology DT (m) is called Fréchet-differential.

It is customary when dealing with differentials in Banach spaces to
use Fréchet-differentials; they have many properties which differentials
in our sense do not have. They are used to define transformations T' of
class C* in an open set @ = X which are transformations 7': G—Y which
are strongly continuous and bounded in @, and have a Fréchet-differ-
ential DT (x) at each we@, DT(2): G—HB(X,Y)(*°) being a strongly con-
tinuous bounded mapping.

The next theorem shows that by replacing in the last definition
“Préchet-differential” by “r-differential” we do not change the mnotion
of C-mappings. !

TuEOREM 3. If T: G—Y is v-continuous and uniformly bounded in
G and at each point weG has a v-differential DT (x) which as a mapping
© of G =B (X, Y) is strongly continuous and uniformlyb ounded, then T ¢ C*in G.

Proof. We have to show that at each weG, T is strongly continunous
and the z-differential DT () is actually a Fréchet differential. It is enough
to prove the second assertion of which the first is an obvious consequence.
By our assumptions, for any z¢ @ we can find a closed ball By(w) < G,

(%) # (X, Y)is the class of all linear strongly continuous mappings X—¥ made
into a Banach space with the usual norm. ’
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such that | DT (z+y)—DT (@) < e(lyl) for [yl < R, and &(e)™ 0 as g~ 0.
For any #eX we write-the Bochner integral:
Q .

*) f DT (o +tu; w)dt, eliull< B.

0 .
This integral is a fortiori a z-integral, and since the integrand is a continuous
oderivative of the 7-continuous function T'(w+-tu), the integral is equal
to T(@-ou) —T(#). On the other hand the integral can be written for ¢
< R[llul as

[4
feDT(w, w)dt - f DT (@--tuy u)— DI (@, u)]dt = o DT (%, w)-+gv(0),
o

0, .
llo(e) I < &g laell) Noell-

This proves condition (B') with the strong topology and finishes ’0%1@ proof.
Our main concern in the present paper will be with Lipschitzian map-

pings 7.
DrEINITION 2. If T: G—Y, ¢ open in X, we put
- IT (@) = (%))
M (@) = sup ————.
3) 2 (@) = T o=l
oY

I Mp(6) is finite, we say that T'is Lipschitzian with (Lipschitz-) constmiﬁ
Mp(G). We say that T is locally Lipschitzian in G if for every @e @ there
exists a ball By(e) « G, R > 0 such that T is Lipschitzian in Bg(®). We

put then
, My(#) = inf M (Bg(®)).
(3" R>0
Bp)c@

Tt is clear that M, (@) is an upper semi-continuous function in @. Since
wo are inberested in differentiability, which is a local property, our resn‘llts
for Lipschitzian mappings will imply gimilar results for locally Lipschﬁ?z-
ian mappings. From now on in the present chapter, unles§ otherwise
stated, we will ansume that 1'is & Lipschitzian mapping in G with constant
M = Myp(G) < oo, )

We will continue our assmmption that X is separable and restn‘:lct Y
o be o conjugate space of a separable Banach space *Y (a pre-con]ugate
of ¥). The topology v on ¥ will be fixed as the topology (X, *Y? (ie.,
the wealk*-topology relative to *¥) or the strong topology on ¥ in the
lagt case we will usually omit the use of 7.

Since the pre-conjugate iy not uniquely determined. the topology.w
will depend on the choice of *Y; therefore, for each choice of ¥ we will
consider the choice of *¥ as fixed. These assumptions have consequences
which will be constantly used, namely that any closed finite ball in ¥
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is metrizable and compact in the topology 7 and that the norm. of y, y¢ ¥,
is lower semi-continuous in the topology 7.

PROPOSITION 6, The differential quotient for fzwed

@ and ¢ as mapping: —~(G @)Y is bounded by M |ju| and is Lipschitzian

< M.
The proof is immediate.

ProrosITION 7. If DT(%) rel.v ewists, then (B) ¢s satisfied and DT (v; u)
as function of w is a Lipschitzian mapping: X—Y with constant <M.

T (@ + ou) —T ()
. [4

@ and variable o are uniformly equicontinuous in norms; hence a fortiori

with the weaker topology = on ¥. Therefore they are uniformly z-conver-

gent for o~ 0 on every compact. On the other hand the lower semi-con-

tinuity of the norm in ¥ rel. 7 assures the second assertion.

ProPOSITION 8. If DT (5 u) ewists rel. 7 (or the strong topology) on a dense
sequence {u,} < X, then DT (w) ewists rel. v (or the strong topology).

The proof follows from the general fact that if uniformly equicon-
tinuous functions converge on a dense subset of & domain they converge
in the whole domain if the range of all the functions is in a space with
uniform complete topology. Here the functions are (T(m—l— ou) — m)) o
and choosing the domain |ju|<< R, the images are in Bg;(0) which ig
complete in the norm topology and even compact in the z-topology

ProPOSITION 9. For Lipschitzian mappings T, DT (z; u) exists rel. v (or

5 1
strongly) if and only if k& (T (w + % u) - (w)) converges rel. = (or strongly)
Jor integer % s co.

T(o+ ou)—T
e

with constant

Proof. By Proposition 6 the mappings for fixed

1
< o < — then

k
T(@+ ou)—T 1
H ﬂi@.‘g‘.)*u_("") - k(T(m—’r %u)—l‘(w)) l
1
HT(ereu)—T(wJﬁu) 1 i
- +(~——k)(1’(m+—-%)—1’(a’)> |
0 0 /7

el ) 1~
—+ (E —k) M Il = 2w ==

Proof. Take any —7—}—
o

|

1

@
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Since 1 — ok < ¢ we get that the norm of the difference is majorated by
2 M |uilL/k whlch proves our assertion.

ProrosITION 10. For a Lipschitzian mapping T the set of @’s, where
DI (2; ) does not exist (for fiwed w) is a Borel set; the same is true for the:
set, where DT (@) does not ewist.

Proof. In fact the fivst seb is a set, where the sequence of continuous.
functions k( (w -+ %u) -T(w)) does not converge and the second wet is the
one, where for a fixed dense sequence {u,} = X at least for one n the
sequence % (T(w 4= % uﬂ) -T (m)) does not converge (we use here Prop-
osition 8).

2. The main theorem.

Lemyma 1. Consider a L@pwmfzmn mapping T of an interval I < R*
into Y. Then dT[d¢ exists rel. © for almost all te I. If ¥ 18 separable, then.
AT |t ewists strongly a.e.(™)

Proof. For the first assertion take a dense sequence {v,} in *Y
and consider {T'(t),v,>. It is a real function of the real variable f, Lip-

d .
schitzian with constant < M |jv,|. Ience W (T (1), v, exigts a.e. for each

n; hence also, for all »’s simultaneously. Thus almost everywhere there-
. a ar(t)

determined by the set of relations r T, v,y= <”ﬁt——’ v,
for all n. 4T /dt is thus the z-derivative of T'(t) for almost all ¢ It follows
that dT'/d# is & bounded Borel function rel. =.

Tf Y is separable the Borel sets in ¥ rel. vare the same as rel. the strong:
topology (*2). Hence dT'/dt is a Borel function in the strong topology t00.
‘We have the representation by a r-integral

ar
exists (*)
dt

+e
(4T
I8yt 0) — T (tg) == f ""c‘z;f“)‘dt

ty
This integral iy actually & Bochner integral and hence the derivative.
AT (t) | iv a strong derivative for almost all ¢
QOROLLARY 1. Let T be o Lipschiteian mapping T G—X, G open
in X. a) The set where DT (w) does not ewist rel. v is in A. b) If Y is separable

the set where DT () does nob ewist strongly is in 2A.

(1) This Lemma is ossentially well known but is usually considered in another:
context. That is why we give here a short proof of it.
(%) Since & cloged ball in ¥ is closed (even. compact) rel. 7.
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Proof. We take any complete sequence {a,} = X. We form the
sequence {a,} of all finite linear combinations of the a,’s with rational
coefficients. This is a dense sequence in X with A{a,} = A{a,} (see Re-
mark 1, Section 1, Chapter TI). Cons1der1ng T restricted to G,, = Gn(v+
+Rla”) for any #e X, n =1,2, ..., we apply Lemma 1 and obtain Lhmt
for o'¢ Gy, DI (w; a”) ex1sts &e Hence the set of #’s where Dl’(m ay)
does not exist is in A(a,). It follows that the set, where DT (2; a,,) does
not exist for at least one n, is a Boml et belonging to W{a,} = A{a,}.
In the complement of this set DT (@; a,,) exists for all n xel. v or strongly
depending on case a) or b) of the corollary. Therefore, by Proposition 8
of Section 1 the set where DT () does not exist is in % {a,} for every com-
plete sequence {a,}. Hence it is in the clags .

The next lemma is an extension of the classical Rademacher’s theorem
when X = R"™ and Y is a Banach space satisfying our assumption.

LeMMA 2. Let T be a Lipschitzian mapping of an open set G < R" wnto
Y. Then a.e. DT (x) ewists rel v and is o v-differential.

Proof. That DT () exists rel. = a.e. follows from Corollary 1 (since %
in R™ is the class of sets of Lebesgue measure 0). Consider a sequence {b,}
dense in *Y. It is enough to show that (DT (@; ), by is linear in « for all
k. At points @, where DT (2) rel.  exists we have obviously

= (T(@), b

But T,,: G@—R! is Lipschitzian and by the clagsical Rademacher’s theorem
has a.e. in G a linear differential. Our lemma follows then immediately.

Remark 1. One can give a very short proof of the classical Radema-~
cher’s theorem by regularizing the mapping T': G—R™ and using Corollary 1.

TumoreM 1. (Main Theorem). Let T be a Lipschitzian mapping of an
open set G < X imto ¥, X and Y satisfying our general requirements. Then:
a) DT (@) is a =-differential ewc. A, b) if Y is separable, then DT (x) is a dif-
Serential eme. U, c) if Y i reflewive (without being mnecessarily separable),
then DT (%) is olso o differential ewe. A

Proof. b) follows from a) by Corollary 1, b).

To prove a) consider any complete sequence {a,} = X. By rational
linear combinations of the a,’s we form the dense sequence {a,} < X.
If DT (%) exists it is Lipschitzian and hence it is linear if for any two vectors
(ay,, air)

() DT (@; a,,+a,,) = DT (@; 6,) +DI(w; a,,).

Let B = {we G: DT(a) rel. 7 exists}; G\Fe U Let further 8, ,, = [ay,
] Then the get of #’s in E where (%) does not hold is by Lemma 2 in
‘QI(S,LI,,ZZ QI{a;,’l, ay,}, and therefore the set where () does not hold

{DT(w;u), byy = DTy(w; u), wWhere T (@)
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for at least one couple (74, %s) i in A{a,} = Afa,}. The sequence {a,}
heing an arbitrary complete sequence in X the assertion a) is thus proved.

To prove ¢) we remark that I' is actually a mapping into ¥, =« ¥,
where ¥, iy the closed subspace of Y spanned by 7(@), ¥, = m].
Y, is reflexive and separable, therefore, we can apply part b).

Remark 2. In case a) of the main theorem the v-differential existing
exc. % may depend on the choice of *Y which determines the topology .
It is an open question if for two such choices of *Y the resulting v-differen-
tials will coincide exc, . By the mam theorem, b), this is actually the
case when Y is separable.

Remark 3. I may happen that we have a Lipschitzian mapping
T:G-»Y, where Y does not satisty onr requirements and we wish, however,
to define a differential of I'. We may achieve it by enlarging suitably the
gpace Y. We remark first that we can always consider Y separable, other-
wise, we will replace it by its closed subspace [T(@)]. With ¥ agsumed
geparable we take any sequence {y, } dense in Y and consider a corre-
sponding sequence {y,} < ¥* (for y e ¥, y* is any of the points of ¥*, exist-
ing by Hahn-Banach Theorem, which satisfy |y*| = Iyl and <y, y*>
=|yl®). We consider then the closed subspace Z = [{y;}] = ¥*, where the
closure is in the norm topology of ¥* Then it is easy to see that Y is
embedded isomorphically and isometrically in Z *, hence 7' is a Lipschitzian
mapping of ¢ into Z* and Z* satisfies our requuements Thus exe. A
DT () exists now inZ* and iy a v-differential where 7 is the weak *-topology
on Z*, Obviously, depending on our choice of {y,} and {;} we will have
different representations of DI'(w).

3. Some counter-cxamples.

Bxamrri I We will construct here an example of a Lipschitzian
mapping T of & separable Hilbert space ¢ onto itself (which will be actu-
ally & Lipschitzian automorphism) such that each point ze2# has a dif-
ferential D' (x) in our sense and at mo point #e o, DI(z) is a Fréchet
differential. Such examples are known(**). We give here our example since
it is more oxplicit and therefore, more illustrative.

Lot {4} be a sequence ol positive real numbers such that AN 0 and,

o .
jz 23 = oo, Lol further ¢ be w real valued function in C°(R') such that
wa ]

1Y p(t) is invm:min,«: and anti-symmetric ie. @(t) = —@(~—1).

2% (k) =t for 0 =56 r/J('I) t \ -2 for ¢z 2.

3% Kor overy te R.'
M and M finite 1)0Hi1.lv0 (‘O]lHl&m’(:h

< M, with M},

() Seo, for instance, M. Hova [11].

5 — Studia Mathematica LVIL2
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Tn # choose an orthonormal basis {e,} and define

e (2]

&) ;
1 . W

B
for wz‘?_lf,,e%e,%”, T(a) =

Tt is clear that T is a Lipschitzian mapping with constant < M’ and that

" it iy actually a Lipschitzian .automorphism of # with -t hfwin,r_, a Lip-

schitzian constant < 1/M,. Take an arbitrary wue#,w = ZO,,en and

form the differential quotient

T(@+ou)—=T(®) _ N[ (Suteba) _ _5_@
st S () ofo)

We may assume that ¢ << 1. The set of all positive integers N can be
divided in two subsets N and N{; .

1/2 0
N = {neN: e—ﬂ]—"t<1}

"N

It is clear that when o\ O, N"’)\@ The coefficients in development (2)
will be evaluated separately for me N® and ne N&. For ne N we write

Al [Ea 00\ (E\)_ (20 (& AW
ol e ) = (S G ) = oo [+ 5

(2)

and N® = N\NO.

where .|a,| < M".
0?16,
Since <1, we get
¢
T (fn-l—@@n) (5 ) £,
— Pl R —_n _B < 1/2 1
e ((P ﬂ'7':. ? }’n ¥ (Zn) ® m | S
For ne N® we write
’In §n+ Qen E'n )'n an,l
() o ()| < 3 S o =

Writing the whole sum in (2) as > -+ it is now clear that wheii o 0, Y
N(l) N(B) N(Z)

(4
(-

> . ) x
Thus DT (») exists in the strong topology and DT'(z; %) = ‘? 0,¢' ( ”i—n" ) b
N

is converging strongly to 0 whereas 3’ converges strongly to 3'6,,¢'
. N
e

T being Lipschitzian, condition (B) is automatically satisfied and (A) is
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obvious from the formula for DT (w; u).
our sense everywhere.

This differential is not a Fréchet differential for any me 2. In fact,

Hence T has a differential in

. oo
let @ = ) &,¢, and consider any e> 0. Since 1% 0 there exists j, such
1

that 4 < &/3 for all j > j,. Since )‘}F = oo and 2, |&” <<eo there exist

~ infinitely many &> j, such that |£,r1 < $4,. For cvetv such &

[Flesize)~Tte Pl

32,

\ ]‘P (B-F&p/2) —

3

Sinee 8 - (£,/4) > 2 and —1/2 < §,/2, < 1/2, by I)I'O'peltlm 1° and 2° of

1 5
¢ the last expression is equal to 3 (3 + »75" + zn.gﬁ) = 3 This shows

2z %
that on the bounded set of ¢,s for the above chosen integers %k the con-

vergence of the differential quotient to DT (z, ¢,) = ¢ (E'i) €, = ¢; cannot -

g

be uniform.

In view of Theorem 3, Section 1 of the present chapter it follows that
DT (@) as a mapping of /f into 4 (o7, #°) cannot be strongly continuous
in any open set of #’x. Tn fact, it is easy to check that DT'(») is not strongly
continuous at any point @ in .

BxavpLn I’. Using the same function ¢ and sequence {2,} as in
the previous example we can construct areal valued function f on the space
It as follows: for @ = (&, &, .. .)elt we put

o= Do (2.

By completely analogous argument (&s in Example I).we show that for
w = (0q, Oy ... )it we have Df(m;u) = 3 0,9 (£,/4) is a differential
in our senxe but not in Fréchet sense.

Wxamers IT, We will consider now a mapping T' of the interval
[0;1] = R* into I [0; L] defined as follows. Tor 0 < @< 1 let x, Dbe the
characteristic function of the closed interval [0; @] and put (@) == (¢

4+1) 5, (#). This mapping ix obviously Lipschitzian with Lipschitz constant

2. It L*[0; 1] were a conjugate space, by our main theorem this mapping
T would have a strong differential for almost all @’s. This is, however,
impossible since the differential quotient obviously cannot converge
strongly at any point . This gives the shortest proof to our knowledge that
I2[0;1] is not a conjugate space.
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Suppose that instead of considering our mapping T’ as a mapping into
I[0; 1] we consider it as a mapping into the space Pt[0; 1] of all Borel
finite measures on the interval. This is possible by identification of fune-
tions fe L'[0; 1] with measures fdt MM [0; 1]. This identification is actually
an isometry if on 9[0; 1] we take for norm [ul = the total mass of w.
Since M[0; 1] is the conjugate space of the space C°[0; 1] applying again
our main theorem we have the existence a.e. of the v-ditferential and, in
fact, one sees immediately that for every ze (0; 1) the differential quotient
converges in the weak *-topology of 9 to the measure (% -+1) d(2)u, where

~ 8(w) is the Dirac point measure.

This example shows that if the space ¥ is not separable in general

we will not have a strong differential anywhere.

CHAPTER IIT
APPLICATIONS

1. Compositions of Lipschitzian mappings with Linear compact operators.
Let T: G—Y be a Lipschitzian operator. If we compose it with a compact
linear operator we may expect to have some stronger properties of the
differential or be able to abandon certain restrictions. We will consider
two cases:

I. Left composition. We will skip the requirement that ¥ be a conju-
gate space but will maintain X separable. Let K be a compact linear
operator, in the norm topology, of ¥ into ¥, (¥, a Banach space). Hence
KT: @—Y is a Lipschitzian mapping. We can proceed as in Remark 3,
Section 3, Chapter II and replace ¥, by ¥, = [KT(G)] = Y,. Then, as
in the remark, we construct a subspace Z = Y; such that ¥, is embedded
isomorphically and isomeétrically in Z*. We have, therefore, a z-differen-
tial DKT(») in’ Z*, where v is the weak*-topology of Z*. Consider now
for fixed ue X the set S, , of the differential quotients

KT (x+ ou)— KT'(%)
4

_K (_’l"(m—}_ ou) —-T(m}) .
e
T (% ou) —T(2)

This set is precompact in Y, (since the set of —————————— is bounded

— 4
i Y). Hence, the closure 8, , = Y, i3 compact in the norm-topology and,
since the z-topology is- weaker, the two topologies on 8, ,, coincide. There-

fore, the v-limit of the differential quotients is their strong limit, hence
we get this statement: '

THEOREM 1. DET () is o differential exe. A.
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II. Right composition. We come back to our requirement that ¥ be

a conjugate space of a separable Banach space. Consider & compact linear

operator K :X,—~X, X, a separable Banach space. Then Gy ==K (K (X;)n

mG) is an open subset of X, and TK: ¢,~Y. By our main theorem of

Section 2, Chapter II, DTX (»,) is a v-differential exc. Uy, . Consider the
differential quotients

TK (2044 o%y) —TK ()

T(Kw, -+ oKu,) —T(Ka,)
0 e '
One sees immediately that the existence of DT (1,5 u) is equivalent
to the existence of DT (Ko ; Ku,). If we take any bounded set of u.’s
it is transformed into a precompact set of Ku,’s. Hence condition (B’) for
TK is implied by condition (B) for 7. The last condition being true wher-
ever DT (K»,) exists (see Proposition 7, Section 1, Chapter IT), we obtain
the following statement: ‘
TusorEM 2. DIK (@) is a Fréchet v-differential eme. U, .

‘Remark 1. If in Theorem 2 we add to our requirements that ¥ be
either separable or reflexive, the conclusion will be that DT (z;) is a Fréchet
differential exc. Wy, - ,

Remark 2. Ky: Y-Y, and K,: X;—+X satisfy the requirements
of Theorem 1 or 2 respectively, ¥ being an arbitrary Banach space, we get
that DK, TH,(w,) exists and is a Fréchet differential exec. Uy, .

2. Comvex functions. In Section 1, Chapter IX, we introduced convex
functions in o special case when they were defined on the whole Banach
space X. We will now consider convex functions defined on an open set
G c X. ) .

DrrrNITION 1. For any set § < X, we denote by C[S] the convex
span of §, i.c. the set of all convex combinations of elements of §; by
0C[8] we will denote the convex-cone span of §, i.e. the set of all finite
linear combinations with positive coefficients of elements of §.

Tt in eloar that C[@y, -.., #,] is the (n—1)-dimensional simplex formed
by the n points o, and that o [§] is the closed convex cone with vertex
at 0 generated by elements of S.

DrENTIroN 2. Bunction B @->R' is called conwen it for any finite
sequence (i, ..., ,) such that Ofw,...,,] < G and for any convex

M

combination o == > @, we have
1

(1) D)= D ().

Sometimes a more vestrictod definition of convexity is used, valid for
an arbitrary domain of definition ¢ which says that whenever (@45 evey @)
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< @ and the convex combination @ = 3 a,&,¢ G we have inequality (1).
COlassical properties of convex functions on finite dimensional spaces.give
immediately :

PROPOSITION 1. For the comvexity of T in G it is sufficient (and obviously
necessary) that F be convex on each straight line segment contained in G-.

In an obvious way we can define “local convexity” but this notion is
redundant because of the following proposition:

PROPOSITION 2. If F is locally conves in G, then it is convex in .

Proof. By Proposition 1 we have to show that F is convex on any
closed segment contained in G. By local convexity this segment can be

* covered by a finite number of open segments on which J' is convex. Again

by a classic property of convex funetions on intervals, F, is convex on
the whole closed spgment.

ProPOSITION 3. For a convexr F in G the three following properties are
mautually equivalent:

a) F 4s locally Lipschitzian,

b) F is continuous,

¢) F is locally bounded.

Proof. Implications a)=b) and b)=-c¢) are obvious. To prove c)=-a)
consider for an arbitrary #e @ a ball Byp(#) = G, B> 0 such that |F(y)]|
< < oo for yeByp(x). For ary two points @; 7 @, in Bp(®) consider

Ly 4%, By — B

Ly =

and U4 = ———=.
2 llaes — 24}

On the straight line @, R*% we have then the segment [%, — Ru ; @, + R
contained in B,x(#) and containing the points #,, #, and »,. The function
f(t) = F(m,+1u) is convex in the real variable ¢ and bounded by O for

—R— llo, — o] <i< i, “‘wlu

Tt follows that f;(t) (the right derivative) exists everywhere in the interval,
is an increasing function and we have

ty
—20 < f(t) —f(h) = [ fat)ar<20.
i

By applying it to the two-intervals
[——~R _ s — @)l — i, —“’171“]

2 2

[

and [sz — @) iy — ’”1_” + R]

. 2 ' 3
by mean value theorem we obtain that there exists ¢’ and ¢’ in each of
the intervals respectively such that —20/R<fi(¥)</fi(t"") < 20/R.
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Tinally,
kg —wyli/2
|F(wz) — I ()| =

ey e/

Lot 20
fa(t)di\ SR llooy — a4l

Contrary to what happens in finite dimensional spaces a convex

- function in an infinite dimensional Banach space need not be in general

continuous. From now on we will be assuming that the convex function
F(a) is continuous, hence, locally Lipschitzian.

TrmoriM 1. For a continuous convew function F: G—~RL the Gateauw-
differential DI (m) emists everywhere in Q. As function of u, DF(w;w) s
conver and Lipschitzian with o constant < Mp(®) (*). DF(») is a differ-
ential in G epe. A

Proof. That DF(w;u) exists for every #e @, ueX reduces to the
fact that a convex function of the real variable has a right derivative
everywhere (where it is defined). That DF (x; u) is convex follows from
(2 + ou) — F(x)

the fact that each differential quotient is obviously

convex as function of w. That DF(w; w) is Lipschitzian with constant
< My (@) follows from Proposition 7, Section 1, Chapter IT and the fact
that DF(o; w) i determined by F' in arbitrarily small neighborhood of .
The last part of the theorem follows from Theorem 2, Section 1, Chapter IT.

Temark 1. The last part of Theorem 1 could be proved in an inte-
resting way by applying the theorem of Zarantonello (Theorem Z, Section 4,
Chapter I). We use the fact that DF (#; u) being convex and Lipschitzian
is eompletely determined by its supporting linear functionals ¢(u), i.e.
such that ¢(u) < DF (05 w) for all we X. These @(w) form a subset VI (w)
c X*, called the (multivalued) gradient of F. VF () is obviously convex
and weak *-closed. Tt is known that VE (@): G—X" is a multi-valued mon-
otone mapping (**). The mapping is single-valued at o if and only it
DF(x;w) is linear in w. ence Theorem 7 gives the last statement of
our theorem. .

TixAMPLa. An interesting application of Theorem 1 is obtained by
taking () = |o|. Mere G == X. Obviously #(x) is convex and Lipschi-
tzian with constant 1. Thus the Gateaux differential DF () exists for every
. Tt is certainly not a differential for @ == 0. The set of points where DF (»)
is not o differential belongs o the class 91°, The fact that DF (@) is a dif-
ferential hax the following simple geometrie interpretation. We consider

(M) Soo (89, Section 1, Chapter IL
(15) Seo H. Brezis, {2], p. 21, Example 2.1.4. In this reference the gradient is
callod sub-difforontial.
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the closed ball By, (0); we have x¢dBy,(0) and DF(») is a differential
(i.e. linear) if and only if there exists only one supporting hyper-plane

(of co-dimension 1) at # to By, (0).

3. Convex mappings and generalizations. If we wuant to extend the
notion of convexity from real-valued functions to mappings between Ba-
nach spaces we have to consider in the image space Y a suitable convex

cone I" playing the role of positive numbers in R'. To define the notions. '

suitably we will assume certain hypotheses. The space Y will again he
required to be a conjugate space of a separable Banach space * Y. In *Y
we will consider a complete sequence {b,} = *¥ and set

(1) I'={yeXY;<{y,b,> >0 for all n}.

With 7 the topology o(Y, *Y) it is obvious that:

PROPOSITION 1. I is a v-closed conves cone with vertex 0 in Y not con-
taining any straight line. ’

I may be reduced to the 'element 0.

DeriniTION 1. A mapping T': G =Y, G open in X, X separable, is
said rel. conwvem (rel. I') if for every finite number of points #, ..., #, with
Cl#y, ..., 3,] ©« @ and for each convex combination @ = 3 a,®,:

(2) ZakTw,ﬁ~T(m)eF.

Most oi_ften we will skip the parentl1ésis (vel. I').

PROPOSITION 2. T' i3 rel. convew if and only if all the real-valued functions
KT(®), by, n =1,2,..., are conves.

The proof is immediate.

Remark 1. When ¥ = R' there are only two cones I' available,
namely the one of non-negative numbers and the other of non-positive
numbers. In the first case we get the usual notion of convex functions,
in the other case we get the notion of concave functions.

For rel. convex mappings it does not seem that a proposition analogous
to Proposition 3 of Section 2 is valid. Therefore, instead of com;inuit.); woe
will assume that our mapping 7 is locally Lipschitzian, in abbreviation
we will write 7 1.1.. rel. convex.

THEOREM 1. For a mapping T: G-Y which is I.L. vel. convex, the
Gateaun v-differential DT (@) ewists everywhere in 6. As function of 1 DT (w;u)
is rel. conven and Lipschiteian with constant < My (z). DT (») s o v-dif-
fereniial in G exe. W. DI (w+tu;u) is, as function of the real variable t,
right ©-continuous
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Proof. For thereal-valued functions T, (¥) = {T'(#), b,,>, DT, (2) exists

for every #(by Theorem 1, preceding section). Hence <g"(»m:gq_4,_):£(‘w_)_7 bn>
0 .
converges for g™ 0 and for every n. Since by the locally Lipschitzian
character of T for sufficiently small ¢ the differential quotients are
uniformly bounded and {b,} iy complete in *¥, Ew;ﬂ?g“;)-:g(-ﬁ—)«, bn>
J

has a limit for every be*Y. Hence, the differential quotient converges
in z-topology. The differential quotients a4 functions of % are rel. convex.
The same i true of their 7-limit (we uxe here the fact that I"is z-closed).
That DI (%5 ») is Lipschitzian with constant < M,(w) is obtained as in
the theorem of the preceding section. That exc. A° DI (x) is linear is reduced
to the fact that for each T, (») = (T(#), b,>, DT, () is linear exe. NA°.
Finally, considering the function f(#) = DT (#-+tu; ) we have that
{f(t)y by = DIy (% 4tu; ). Since DT, (4--tu; w) is the. right-derivative
of the function f,(f) = T, (x+fu) which is real-valued and convex of
the real variable ¢ we know that it is right-continuous. Again, using the
fact that sequence {b,} is complete and that 7T is locally Lipschitzian,
hence, ||f(H)| < Mp(w-tu)lu)], Mp(2 +tu) being upper semi-continuous as
function of £, we obtain finally the last statement of the theorem.

We will next enlarge the class of mappings for which our theorvem is
valid. :

DEFINITION 2. A mapping T': G—Y is called var. conves (abbreviation
for variably convex) if each point of ¢ is contained in an open neighbour-
hood, where T' is rel. convex relatively to a cone I" varying in general with
the neighborhood.

Since var. convex means locally rel. convex we obtain immediately :

Tuworem 1'. For o mapping T: G-+Y which is 1.L. var. conves the
Qateans ©-differential DI (®) exists everywhere in G. As function of w DI (@; u)
is rel. convem and Lipschitwian with constant < Mp(w). DI (2) is a r-dif-
ferential in G ewe. W DI (@ --tu; u) is, as function of the real variadle i,
right T-continuous. -

To introduce more general mappings for which our theorem can be
extended we have to introdunce certain notions and notations.

It U iy open in X we consider the space Lip (U, Y) of all Lipschitzian
mappings U->Y. This xpace is obviously linear and we can introduce there
a norm by fixing any @ye U as Lollows: ||T)] == |T'(@o)ll 4 My, where M,
is the Lipschitz constant of 7' in U. It is immediately checked that 7] is
actually a norm and that (ifferent choices of @, give equivalent norms.
Furthermore, with this norm, Lip(U, X) iy a complete Banach space.
In this Banach space consider the subsel of all var. convex.mappings..
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The closed linear span of this subset forms a class of mappings which we
will call comvexoid. Finally swe will consider the locally convexoid map-
pings. These mappings are obviously locally Lipschitzian. We geb then
the following theorem: A

TrmormEM 17. For locally convemoid mappings T: G—X the Gatoausx
v-differential DT (z) ewisis everywhere in G. As function of w DI'(w;u)
is convewoid and Lipschilzian with constant < Mp(z). DI (@) is @ v-differ-
ential in G exe. A. DT (w+iu;w) is, as funciion of the real variable T, right
T-CONINUOUS.

Proof. Since all the statements in the theorem are local, we can
restrict ourselves to convexoid mappings. If T is a finite linear combi-
nation of Lipschitzian var. convex mappings the theorem follows immedi-
ately from Theorem 1. Let now I be convexoid and T, Dbe finite linear
combinations of var. convex Lipschitzian maps sueh that T —T,ll con-
verges to 0. It follows that T', is a Cauchy sequence in Lip (G, Y) and thag
for every @ ¢ G, and ue X, |D (T, — Tp)(2; w)lr << WTo— Tl 1l 2nd D (T, —
— TV () lipi, 2y 1T — Tpll. These inequalities allow us to prove all
the statements of the theorem.

Remark 2. The theorems in this section present an improvement
for the mappings considered in them on our main theorem since we have
the existence of a z-differential exc. A° which is a much smaller class than
9[. However, in our main theorem we were able to prove under special
assumptions on Y (sepdrability or reflexivity) that exec. % DI (#) was
actually a differential. We cannot improve this kind of statement in our
present cases since for a relatively convex Lipschitzian mapping, even
if Y is a separable Hilbert space, we are not able to prove in general that
DT(x) is a differential exc.¥’.

Bxampres. I. Rel. convew mappings. a) Assume that the sequence
{b,} is a generalized basis for * Y. Therefore, there exists a dual generalized
basis {a,} in ¥ forming with {b,} a biorthogonal system. Clearly, ye I
means that all the Fourier coefficients (y,b,» are non-negative. Consider
now real-valued functions @, (%), #¢G which are convex and Lipschitzian.
Tt is then clear that for a sequence {a,} of positive numbers converging fast
enough to zero, T(®) = } a,9,(%)a, is a mapping of @ into Y which is
Lipschitzian and rel. convex (rel. I).

b) Consider X = ¥ = L?(Q, du), where du is a separable measure
on the measure space 2. X and Y are separable and for 1 < p < oo they
are reflexive, hence our requirements are satistied. Clearly, ¥* = Y
= L (8, du). Take in the measure ring (£, du) & dense sequence of sets
and the corresponding characteristic functions which we will denote by
b, (). The convex cone I, corresponding to the sequence {b,} in PR, du)
is formed by all the non-negative functions in L?(Q, du). We define the
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projection P: LP—I, by putting for a(w)e L?, P(2) = a™ (w) (). It
is clear that P is rel. convex (rel. I',) and Lipschitzian with constant 1.
By Theorem 1, DP(®) exists everywhere as a Gateaux r-differential. We
can give an explicit formula for it:

e for  we Q7 (4),
we Q'(x),

we 2 (@),

(8) DP(x;u) = {uw"(w) for

0 for

where 27 (), £°(x) and £ (#) are the sets where #(w)> 0, =0 or <0
respectively. One checks directly that DP (@) is actually a strong Gateaux-
differential and that it is a differential except when £'(s) is of positive
IMeasure.

Tven though our requirements for ¥ are not satisfied for p =1, one
checks directly that even in this case, (3) gives the Gateaux differential
for every e L'(2, du). Hence, by Theorem 1 of the present section, in
case 1 << p < oo; and by Theorem 2, Section 1, Chapter IT, in case p = 1,
the set where DP(x) is mot a differential belongs to °, i.e. the set of
functions @ (w)e L¥(£2, du) which vanish on a set of positive measure be-
longs to A The result is rather surprising and it seems rather difficult to
prove it directly.

II. Var. convex mappings. a) It is trivial to construet a var. convex
mapping R'--R'. Then if we have any separable Banach space X we can
take any vector g, 0 s ge X and any linear projection P of X onto the
one-dimensional subspace [¢]. On [¢] c¢hoose any var. convex function f
into R! and define for me X, F'(x) = f(Px). One checks immediately that
T is locally Lipschitzian variably convex.

b) Suppose that we have N couples of Banach spaces X, Y,
n=1,..., N, Y, being conjugate of *Y,, X, and *Y, separable. We

N N !

2 N
form the direct sums X = Y'X,, Y= Y'Y, and "¥= 3" *Y,. It we define
1 1 1

N N
on any of the diveet sums, say X, H%z wll = (_\1_: o542 we obtain that A7
and *Y are separable Banach spaces and Y is the conjugate space of *Y.
Suppose now that we have locally Lipschitzian var. convex mappings
T,: 6, +Y,,d, open in X,. We can detine then G = > @, —an open
subseti of X — and a mapping T': G--Y by putting for & =z 2 ... Ty,
N
@ye,, T(m) = 31, (2,). This mapping ix obviously locally Lipschitzian
- ‘
and is var. convex. To verify the last statement we should cover @, by
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a countable number of neighborhoods U in each of Whlch T, is convex.
relatively to a cone I'®. Then the open sets U®iFn) = Z‘ U for all

sequences (%, ..., k,), form an open covering of ¢ and in each [lpeken)
N

is convex relatively to the cone 2 T,

II1. Convewoid mappings. Oonmder now an infinite hequcnce of couples
of Banach spaces X,, Y,, ¥, being the conjugate of *Y,, X, fm(] Y,

being separable. We can then form the infinite direct sums X = )‘ Xos
Y= f Y,, 'Y= Z *¥,, with similar choice of norm as in Example lI b).
1

We will consider now mappings T,: X,—~Y,. To simplify our develop-
ments we will assume that 7, (0)=0 and that in Lip (X, Y,) and Lip (X,Y)
we form the norm by choosing @ = 0. Suppose then that 7,0\ 0.

If we form 7 = Z’T we notice that H S‘T < HTVHH\ 0.Tf we assume that

N

X,

._1

each T, is var. convex we have that 24 T, is var. convex, at first in

(by Example IT, b)), but we extend it to the whole of X by replacing all the
T, for n> N by 0. It follows, therefore, that T' is convexoid.

Tt is clear that if we assume that for » > N,, T, is rel. convex then
T becomes a var. convex mapping of X into Y.

4. Distance from a point to a subset. We will now consider a sep-
arable Banach space X and a non-empty subset § « X and conmder the
real valued functlon
ze X.

(1) Fy(w) = inf o —yll,
yes

Tt is clear that the value Fy(2) will not change if we replace 8 by its strong
closure S. From now on we will therefore assume that § iy strongly closed.

It is immediately checked that Fg (@) is Lipschitzian with constant 1.
Hence by our main theorem, Section 2, Chapter IT, DFg(w) exists and is
a differential a.e. and DFg(a; u) for all # exc. U is a linear functional in w
with norm < 1. Our aim in this section will be to establish certain geo-
metric relations between the existence of the differential DI'g(2) and geo-
metric properties of the set S. The example of Section 2 is a special case
of our present developments where S
more precise relationships if we assume some additional hypotheses about
the-space X and its norm, [#], and also on the nature of the set S. Our
analysis will be far from exhaustive, the aim being only to indicate some
such relations.

= (0). It is cleaxr that we will obtain.
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As additional requirements on the space X we may assume that X
is o conjugate space of some *X or that it is reflexive. Before we describe
the requirements we may impose on the norm in X, we will introduce
certain notations.

Tor every @e X we denote by (x)* the set of all a*eX* satisfying
llo*l = |wll, and <{m,®*> = jz|* The mapping @-—(2)* will be called the
conjugote mapping. The conjugate mapping is in general mulfi-valued
and monotone (see Remark 1, Section 2, Chapter III). For every real a
we have obviously {ax)* = a(w)*. If this mapping is single valued for every
we X, we will say that the norm in X is smooth. The norm in X is smooth
if and only if the unit ball B,(0) (and therefore any Dall with positive
radius) has a unique supporting hyperplane at each point of its bound-
ary. By remarks in the example of Section 1, the smoothness means
that ||| has a differential at every point different from 0 (7).

Besides smoothness, we may require the norm to be strictly convex.
In terms of the conjugate mapping, this property means that for # # vy,
{#)* O (yy* = @. An equivalent meaning is that the boundary of the unit
ball B, (0) does not contain any segment of straight line containing more
than one point.

We can start now with the general case. The smallest distance Fg(w)
may be attained or not attained. In the first case'we will define the pro-
jection Pg(w) as the set :
(2) Py(w) = {ye8: lo—yl = Fglw)}.

This projection Pg is in general multi-valued and the set of o'
it is not empty is the domain of Pg.

To explain the additional requirements we may impose on § we
introduce the following notions: If 7 is any locally convex Hausdorf top-
ology on X weaker than the strong topology we will say that § is bounde-
dly (bdd.) v-closed or boundedly z-compact if any intersection of § with

a closed ball By(») is v-closed or v-compact respectively. The top-'
ologies we will consider on X are the strong, the weak and the weak-*
if X iy a conjugate space. The last one, if it exists, is the weakest one.
Hence, we have the implications: bdd. weak-*-closed = bdd. weakly closed,
Dd. strongly compact == bdd. weakly compact = bdd. weak-*-compact.

By using the fact that [ is lower semi-continuous for the weak
and any weak-*-topology on X, we obtain immediately: }

PROPOSITION 1. If 8 is bdd. weakly compact, ov, if X is a ('o'nj'ugate
space and 8 is bdd. weak-*-closed, then the domain of Py is X.

where

(17) This notion of smoothuoess of the norm is very wealk. '
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TaroREM 1. If DF (%) is a differential, @ being in the domain of Py and
@ — *
2¢ 8, then |DFg(z)| =1 and DFy(x)e ( |Iw~—ZW) for every ye Py(w).
Proof. Take an arbitrary yePg(z) then Fgy(w)
0<<o<,

= |y — | and for
Fg(o+oly—u) = il}sfsllw+g(y—06) —yI< (1—o)lly —a| .

On the other hand, for y’e 8

le+eo(y—a)~y'l = lo—y'll—elly — @l =k —yl— elly —wll= (1 — o)lly —a.

Therefore, Py (aH—g(?/ m))

—[Fs(w+e(J o)) —Fg(a)] =

=1 and proves our theorem.

= (1—yp)|ly —»| and the differential quotient

— |ly — a|| which shows that DF (m, iz Z-ﬂ)

CorOLLARY 1. Under the assumptions of Theorem 1, the hyperplane
—DFg(@; w) =1 is a supporling hyperplane of the ball B,(0) the imter-

section of which with 0B, (0) is a convex sel containing all the points “i/m*-'-i—
: Yy — ||
for yePg(@).
The proof iy immediate.

COROLLARY 2. Under the assumptions of the theorem, 4,f the norm in X
18 smooth, then the hyperplane — DFy(x;u) =1 is the umque supporting

hyperplane for the uwit ball at each of the points

y—
- f(w yePy (2).

This follows from the single-valuedness of the conJugabe mapping.

CorOLLARY 3. If the norm in X is strictly convews, then, under the as-
. sumptions of Theorem 1, Pgy(m) is single-valued.

This follows immediately from the properties of strict convexity
“mentioned above.
n ~
PROPOSITION 2. If 8 = () 8, S, strongly closed, then Fy(w) = mm By, (w),
1 .

Legfosin
The proof is immediate.

ProposIrionN 3. If 8 is comven, Py(w) = 8 NIB gy () s @ conven set.
If in addition the norm im X is stvictly conves, then Pg(w) s single-valued
for all ® in its domain.

Proof. Suppose that y, and y,¢Pg(s). Then the closed segment
[Y1; 9] < S and for each ye[y,;¥»] we have |y— ol < max (|ly, —2|,
Iy —al) = Fg(#), hence [y;y,] = Pg(a).
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If the norm in X is strietly convex there existy no convex set on
O0Bpy(®) containing more than a single point, hence the second part of
Proposition 3.

PrOPOSITION 4. If 8 is convew, Fy(m) is a convew function on X.

Proof. Consider any segment [#;;a,], any points y, and ¥,
in 8 such that Fg(w,) > |ly,—@,)l—e, & =1,2, and &> 0. The segment
[¥1; ¥2] = 8 and we will consider the mapping of the interval 0 << t < 1 into
L —%)(yy —01) --2(y, —@,)||. For any ¢ we have

(L —8) (2 — @) + 8 (s~ @) || <

It follows that
Fis (L =)y 4 tg) < (1 —18) (2 — @) +1(y,— @5) |
< (L=8)(Fg(as) +6) +1(Lg(@y) - 6) = (1—1)F,

(I —t)llyy — ol lly— @i

(1) + P (@) + &

Since ¢ is arbitrary, we obtain here the convexity inequality on the segment
[,; @,]. Hence, Fy is convex..

ProrosrronN 5. If S is convex and if the norm.in X is strictly convea
and if the convex set is bdd. weakly compact (bdd. weak-*-closed when X is
a conjugate space), then the projection Pg is defined on the whole of X and
is single-valued.

The proof follows from Proposition 1 and Proposition 3. ‘ ,

By Proposition 5 and Theorem 1 of Section 2 of the present chapter
we obtain:

TuroruM 2. If the norm in X is strictly convew and S is convem, then.
DFg(w) ewists everywhere as o Gateaun differential and is a differential.
ewe. A°.

Examrres. I. Consider a hyperplane

8 =28,,={yeX: {y,v) = a for fixed a« and ve XT* v 3= 0}.

8 is alinear variety of codimension 1. Tt divides the space X into two open

half spaces X~ and X" of points & with {(®; v> < ¢ and (&, »> > « respect-
ively. X~ will be called the left half space and X+ the right half space.
Ay a ret of points § does not change when we replace v and .« by pv and
fa for any real g s 0. However, if > 0, the left and right half spaces
are not changed, whereas for < 0 these half-spaces interchange. Hence,
it will be convenient to consider that ve X* defines an orientation in X
which is not changed if we replace » by fv with g > 0 and changes to the.
opposite when we replace v by fv with 8 < 0. Congider now Pg and Fg.
For every S, 8 lies obviously in the domain of Pg. It is checked im-.
mediately that for a hyperplane § if Pg(w) is not empty for one ¢ S,
then it is not empty for every w¢ X. This case arises if and only if ve (2)* for-
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some ze X. Algo, in this case if we denote by *(v) the set of all 2’s such that
‘ Fy(m Py (o

50) ) op g T30

ol i () for o<

Ve (z)* (%) we have Pgy(x) =24
or ¢ XT respectively.

We agsume now that the norm in X iy strietly convex. Then Py is
an affine mapping of X onto 8. If § is a subspace (i.e. a = 0), then Py iy
a linear projection.

Consider now Fg. By Theorem 2, DFy (@) exists for all ».as a Gateaux
differential. For #e X~, or meX*, DF(2) is o differential and DFy(z; u)
= —u, oflpl> or +<u, v/|bly respectively. If we S, DFgy(w) is actu-
ally a Gateaux differential such that DFg(w;») is symmetric in « and
vanishes for « such that #-u%eS.

Oonsider now 8§ = 8,08, with §, and S, hyperplanes: <y, v> = a,
and {y, v,y = a, respectively, with v, and v, linearly independent.

Now Pg(a) exists for every o if and only if *(v,) and *(v,) are both
non-empty.

X\8 decomposes in four connected open components X, X,
X~*, and X++, where X~ is the intersection of the left half spaces of
8, and 8, and similarly for the other components. If the norm in X iy strictly
convex and Pg(@) exists everywhere, then Pg(z) is composed of a single
point or of two points.

In the open sets G = {we X: Fg (2)< Tg,(#)} and Gy = {we X:
Fg, (2) > Fg, (@)}, DFg(x) is a differential = DFg (0) or = DI 5 (@)
respectively. For x in the closed set where Fsl(w) = Iy (®), DFg(a) is
a Gateaux differential with DFg(z; 1) = 0 for u parallel to 8,08,.

II. Consider now 8 = 9B,(0). Tt is obvious that Pg(x) = |L— |zl

We will assume now that the norm in X is strictly convex, then
Py(@) = afllal for & # 0, and Pg(0) = 0B,(0). If #¢ B,(0), Fg(z) =1 — [
and DFg(w) = — D |lo| which is always a Gateaux differential. DEG(0;5u)
= —|lul, and for ze B;(0)\(0), DFg(») is a differential if and only if, at
the point #/|z|, B,(0) has a unique supporting hyperplane (see the
example in Sec. 2). For we X\ B, (0), Fy(s)= ol -1, DF () is a Gateaux
differential. Hence again DFg(x) is a differential if and only it at @/|e|,
B,(0) has a unique supporting hyperplane. If e 0B,(0) and there is only
one supporting hyperplane at @, then DF(x) is a Gateaux differential
such that DFg(#; %) = DFg(w; —&) = L.and DFg(w; 4) = 0 for all »
parallel to the supporting hyperplane at .

It seems that interesting results could be attained by introducing
-an adequate notion of supporting hyperplanes for an arbitrary closed set
8 and relating the differential (or Gateaux differential) DFg(x) with the

(*®) The set *(v) is closed and convex.
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supporting hyperplane at the points of Py(x). We do not introduce here
the relevant notions since it-would increase greatly the size of the present
section and what is more, we are not able to answer, at this stage, many
of the naturally arising questions connected with these notions.

CHAPTER IV
BOREL MEASURES ABSOLUTELY CONTINUOUS REL. 2

1. Structure of measures absolutely contimuous rel. 9[. _

DrprnrrroN 1. Let B Dbe an arbitrary exceptional class in X and
let u be a o-finite signed measure on X. We say that u is absolutely con-
tinuous (@.c.) rel. B if every set in B is of y-measure 0. It the whole measure
w is concentrated on a set in B we will say that u is singular rel. B.

PrOPOSITION 1. For any o-finite signed measure u on X and any ewcep-
vional class B in X there ewists a unique decomposition p = p,,--u, into
o-finite signed measures such that u,, is a.c. rel. B and u, s singular rel. B.

The proof is completely similar to the classical proof of the decompo-
gition of x into abgolutely continuous and singular parts relative to another
measure w, (**). .

PRroPOSITION 2. a) In order that the o-finite signed measure p be ale. or
singular rel. B it is necessary and sufficient that its positive and negative parts
be a.c. or singular respectively.

b) In order that a non-negative o-finite measure u be a.c. or singular
rel. B 1t is necessary and-sufficient that each finite part of it be a.c. or singular
respectively.

Again the proof follows the classical argument.

TrmoreEM 1. For a medsure p in X to be a.c. vel. W it is necessary and
sufficient that u be representable as & sum: ’

[=+]
1) Bo= et D ey
. Jowal
where all the measures in the right-hamd member are mutually disjoint (i.e.
they are concentrated on mutually disjoint sets), py, kb =1,2, ..., is a.c. rel.
W{a} for some sequence (o, af®, ...) complete tn X, and uy, if it is not 0,
is singular vel. all the classes W{a,}, but a. ¢. vel, A
Remark 1. The measures satisfying the properties of the measure
o will be called emceptional measures. We do not know of any example
of sueh a wmeasure and we are not able to prove that they do not exist.

(¥) The nsual definition of absolute continuity and singularity rel. u, coincides
with our Definition 1 with 8 replaced by the class of sels of yy-measure 0. -

6 — Studia Mathematica LVIL.2
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Proof of Théorem 1. That representation (1) is sufficient for u
0 be a.c. rel. U follows from the fact that u;, being a.c. rel. W{al?} is a for-
tiori a.c. rel. % = A{al®}.

To prove that the existence of representation (1) is necessary we use
Proposition 2 to remark that it suffices to prove it for x non-negative
and finite; we will assume this in the remainder of the proof. We use trans-
finite induction. Let I" pe the first ordinal number of cardinality equal to
the eardinality of the set of complete sequences {b,} in X. ITence, we can
arrange all the sequences in a transfinite sequence {{b{"},} for 1 <y < I'.
For y =1, we put u= u; +», where y; is the absolutely continuous part of u
rel. A {b{"} and », is the singular part. Suppose that for all y < a < I' wehave
already defined g, and », such that for each f< a we have y = vy )jﬂ,u;;

: e

with all the measures on the right-hand side mutually disjoint and non-
negative so that u, be a.c. rel. AP} and »; be singular rel. all % {H}
for y < B. It follows that only a countable number of measures ,u;, are not
identically zero and that the measures », form a decreasing sequence of
measures. Hence

(2) p= D u+r,

- y<a

where v, is the limit of the decreasing sequence of measures Yy, ¥ << A
By our assumptions, all the measures in the right-hand member of (2)
are mutually disjoint and », is singular rel. all A (B} with, y < a. Hence,
decomposing ¥, into u, -+ v,, the a.c. part and singular part of »,, rel. A {H},
we achieve the inductive definition of all u, and », for y < I'. Since v, is
singular rel. all A{p{"} and, on the other hand, as part of 4 is a.c. rel. %,
vy qualifies for the exceptional measure u,. The countable number of
#,’s which are not identically zero can be arranged in a simple sequence
denoted by {m} and the corresponding {3} will be denoted A{al}.
Thus representation (1) is' achieved.

Remark 2. Representation (1) is certainly not unique.

Sinece we do not know about the existence of an exceptional measure
o all the measures u a.c. rel. A which we will construet will be of the form
(1) with p, == 0. Hence, the problem of constructing the measures w will
be reduced to construeting all the measures (or, at least, large classes of
them) which are a.c. rel. A{a,} for some given sequence {a,} complete
in' X. .

2. Cylindrical measures. For any complete sequence {a,} = X we
can form an equivalent generalized basis {eﬂ} in X such that Q[{an} = )\ {e.}
and X is decomposable in direct sums X = [e,, ..., a,,]—k[e,H 1y el
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The corresponding projections P, of X onto [eq, ..
that P, P, , =P,.

Consider now an arbitrary finite Borel non-negative measure x on X
(not necessarily a.c. rel. A{e,}). It defines a series of Borel measures s,
on [e,...,e,] given by

) for

(1) fin(A) = (A +Teni, -

The measures u, are called the cylindrical measures corresponding to
the measure u and the generalized basis. It is immediately checked that
the measures u, must satisfy the compatibility condition:

(2) Mo 1 (An -+ [37:,-}-1]) = Mn(iAn)

., €,] have the property

A, = [y ..., 6,]-

for every 4, = [ey, ..., €,],
w=1,2,..

The total mass of a measure x will be denoted by ty,l By (1) and (2)
we obtain immediately -

(3) ‘ | = lul, o =1,2,...

(4) TFor every Borel get 4 < X,u,(P,4)> I‘nu(PnH—A u(Ad),

n=1,2,...

Remark 1. Most authors consider a somehow different kind of eyl-
indrical measures(®?). In this other notion we don’t consider cylindrical
measures relative to a given generalized basis {¢,}. As cylindrical measures
corresponding to u are considered the measures uy, defined on the quo-
tient space X /I when F is a closed subspace of X of finite co-dimension.
If 4 c X/F, then px;p(A4) = u(A+F). Almost all our developments in
this section are based on ideas which were used in connection with the
other notion of cylindrical measures. However, the slight difference in the
notion warrants a brief account of the proofs. Our choice of the definition
is justified by the fact that we will want to construct the measure u by

using the eylindrical measures u, defined on an increasing sequence of

concrete finite dimensional spaces [6y, ..., €,].
ProPosTIoN 1. For any dlosed ball By (y) we have -

() 1l P B W Bply)-

Proof. Consider the basis {f,} = X* dual to {¢y}. Then the subsp'uce

" [{fu}]is weak-*-dense in X*. Hence, the closed ball "By (y) can be obtained
’

as infersection of a countable number of closed half spaces

8y = {we X:.@?, > S Oy Pre€ [{fn}]}

(%) See Gelfand~Vilenkin [5]-and L. Sehwartz [10].
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Q 8y is a cylinder with basis in [ey, ..., 6,1, where @, is the largest

index of f, figuring in the g, ¥ =1, ..., m, represented as finite linear
combinations of the f,’s. Since

-P'erBR(/!/) < 'an o Sln

it follows that
m

—_— m
:“nm(P'nm-BR (?/)) < ;un,m('an O Sﬂ) = 'u( Q S’“)
we get

Jim g (Pr, Bn(0) < () 85) = () 85) = (B0

Comparing with (4), we obtain (5).

CoroLLARY 1. In order that the cylindrical measures {u,} correspond to
some finite Borel measures it is necessary that for each &> 0 there emisis
a closed-ball BR(y) such that

(6) . ‘un('PnBR(y ) Ilull —é&.

We use here (3) and (5) and the fact that u(Bg(y)) 7 lul = |uy| when
R oo,

THEOREM 1 (Uniqueness Theorem). If two Borel measures u' and
' in X determine the same séquence of eylindrical measures {u,} in X,
then y' = u''.

Proof. By Proposition 1 we see that for any closed sphere Bn(y):
# (Br(y)) = p'(Bg(y)). Furthermore, the same proof as in Proposition 1L
gives us the extension of (5) to all finite intersections of closed spheres
in X. It follows that for every set 4 which is a finite intersection of closed
spheres u'(4) = u'’(4). This implies by a standard argument, since X
is separable, that u'(4) = u' (4) for all Borel sets A.

A sequence of measures y, defined on. successive spaces [6y, ..., 6,]
is called a eylindrical sequence of measures if the compatibility condition
(2) 18 saut;lsfled From this condition already it follows that |u,| = |yl
forn = 1,2, ... Our aim is to establish conditions under which such a com-
patible sequence of measures corresponds to a Borel measure u. By The-
orem 1, if it corresponds to some Borel measure_fhis measure is unique.

For the existence of a Borel measure y corresponding to a compatible
sequence of cylindrical measures, we know that the condition of the Cor-
ollary 1 is necessary. In the next theorem we will show (by a simple
application of a generalized Prokhorov’s theorem(?) that under certain
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restrictions on the space X and on the generalized basis {e,} the necessary
condition of Corollary 1 is alfo sufficient.

TurnorEM 2 (Existence Theorem). If X is a conjugate space and the
dual basis {f,} of the generalized basis {e,} lies in the preconjugate *X, then
any compatible sequence of cylindrical measures, satisfying the condition
of Corollary 1, corresponds to a Borel measure u in X.

Proof. We notice first that if X is & conjugate space with a precon-
jugate *X the preconjugate must be wseparable, is canonically, isomor-
phically and isometrically embedded in X*, that any complete sequence
{v,} in *X is necessarily weak-*-complete in X* so that by starting with
any complete sequence {,} in X and any complete {v,} in *X we will
obtain, by Proposition 1 of Section 2, Chapter I, two dual bases {,} and
{f.}in X or *X respectively, {f,} being at the same time a basis for X*.
In this way if X is a conjugate space there is an infinite number of choices
for the generalized basis {e,} to satisfy the requirement of our theorem.
On X we consider the weak-*-topology (rel. *X). By our requirements
on {e,} the projections P, are continuous in this topology and, furthermore,
the closed balls By (0) are weak-*-compact. Therefore, by the generalized
Prokhorov’s theorem, the condition of Corollary 1 is sufficient for the
existence of a Borel measure u corresponding to the compatible sequence
of cylindrical measures u,.

Remark 2. 1° The condition of Corollary 1 can be written equiv-

alently in the form (for y = 0):

(7)  For B oo, uy(PyBr(0)) 7 lu,l = |zl wniformly in m.

2° Since PHBR(O) D[, ...y8 ]mBR 0), the following condition which
is more easily checked (it does not require the knowledge of the projection
P,) is stronger than (7):

(7)  For B 00, (L6, -, €10 Bg(0) ))/l/«cnl = |py| uniformly in .
3°If {e,} is a weak Schauder basis, conditions (7) and (7 '} are equiv-
alent (since the projections P, are then uniformly bounded).
4° A stronger condition than (7) is
(7")  Tor some fixed B and every n, u, is concentrated on
[ers vy ea]1NBR(0).
This condition iy often satistied in concrete cases.
Remark 3. In many cases, even when X is not a conjugate space,
we can obtain, by the generalized Prokhorov’s theorem, the existence of

(*Y) See L. Schwartz [10], Theorem 22, p. 81.
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u corresponding to the compaitible sequence {u,} it we can find for every
>0 a compact set K, X (in the weak topology) such that wu,(P,XK,)
> |pu,| —e. This is the case (already used) when u, = »; X... X%,, where
v, 18 a measure with total mass [v,] = 1, », being concentrated on a segment

. =3

[ — opey; oper], 0>0 with D'ag|le,]l << co. The corresponding infinite rectangle
o 1 '

JTT — azer; az.6.) is then compact even in the strong topology of X.

. .

3. Measures absolutely continuous rel. U{e,}. In view of the dovelop-
ments of the preceding section we will accept throughout the present sec-
tion that X is a conjugate space with preconjugate *X < X* and that {g,}
is & generalized basis with dual basis {f,} = *X. Therefore, each compatible
sequence of cylindrical measures satisfying (7), Section 2, corl.'eﬁj)ondﬂ to
a unique Borel measure in X. We want to investigate under which con-
ditions the so determined measure in X is absolutely continuous rel. % {e,}.
‘We have first a necessary condition in the following: '

ProrosrrioN 1. If the measure u corresponding to a sequence of com-
patible measures u, 18 a.c. vel. {e,}, each p, is w.c. vel. to the Lebesgue
measure in [6g,...,6,] -

Proof. If u, has a singular part », rel. Lebesgue measure, not idlent-
ically zero, concentrated on a set A, < [e,, ..., ¢,] of Lebesgue measure
0, then v,(A,) = p,(4,)=p(A4y+ 601, -..]). But the set 4,-+[epry..]
<Wles, ..., 6,1 = A{e}. Hence, u wouldn’t be a.c. rel. Afs,}.

Remark 1. We do not know if the condition of Proposition 1 is suf-
ficient for the maasure 4 to be a.c. vel. A{e,}; we doubt that it is s0. We can
establish necessary and sufficient conditions for u to be a.c. rel. A{e,)
by using decomposition of measures (called by Bourbaki disintegration
of measures). For each & =1,2,... put X® = [e,,..., €1, €541y --]-
'.I_jh;en we have a direct decomposition X = X" - R'e,. To this decompo-
sition corresponds the decomposition of the measure ‘win the forim dy(x)
= dw(2) 6% (&,), where w, is a uniquely determined measure on X®
of total mass |ul, o'« XM, 0 = o' + £¢,, 0P iy & measure on the real line
of variable &, of total mass 1 which depends on #'. Two ditferent determi-
nations of the measures 9% differ only on a set of s of w,-measure 0.
In terms of these decompositions the necessary and sufficient conditions
for 4 o be a.c. rel. Afe,} is that for each & the meagures 0% be a.c. rel.
the Lebesgue measure except perhaps on a set of a'’s of wy-measure 0 (*).

. ('22) The sufficiency #ollows immediately by @ppl&ing the Tubinils theorem to
the integral ){ 24 (@) dpe(m) = (fk) Rf1 % (@ +Epe) 6D (&) dwy (), where %, is the

c . x
characteristic function of a set 4 « U (). The necessity:is glightly more complicated.

B
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However, this condition is not readily expressible in general in terms of
the sequence of cylindrical measures {u,}. In these conditions we will be
satistied with establishing large classes of sequences {u,}, to which cor-
respond measures u a.c. rel. A{e,} without knowing if we exhaust all of
them. .

From now on we will consider only sequences u, of compatible cylin-
drical measures satisfying the uniformity condition (7) of Section 2 and
the necessary condition of Proposition 1.

PROPOSITION 2. a) If u, and u, are non-negative measures satisfying
our requirements, then the measures u, = apn—+Buy,a>0, >0, also
satisfy the requirements and for the corresponding Borel measures on X we
have u = ap' - pu’’.

b)Y If py < o, B =1, 2, ..., then for the corresponding Borel measures
we have u' < p.

Proof. a) That the requirements for {u,} are satisfied is clear. That
the relation g = au’'+ fu’’ holds is obtained by using the same idea ag
in the proof of Proposition 1, Section 2.

b) We can write u, = u,+u, and check immediately that our re-
quirements are satistied for g, if they are satistied for u, and u,. Hence,
by a) u=u +u'’ 2 u'

Let ny = 1< n,<< M, <... be an increasing sequence of integers.
Consider on each subspace [e,, ..., enk_‘_l_lj a non-negative measure
of total mass 1 a.c. rel. the Lebesgue measure. Such measures generate
a sequence {u,} of compatible cylindrical measures where for n,<n <7,
and A < [€, ..., 6,1, '

(l) /"11(4) = ("’1 KV X X "']c)(A'i" [en-rl! e enk+1—11)'

This measure obviously satisties our necessary condition from Proposition
1 but we will have to assume that the »,’s are chosen so that the uniformity
condition (7) of Section 2 is satisfied (??). Under these conditions we have:

ProrosreioN 3. The Borel measure u corresponding to {u,} is a.c. rel.
W{e,}. ;

Proof. In the present case wo can achieve the decomposition of
w corresponding to the decomposition X = X +R'e, (see Remark 1)
by taking & with my, < n << ny,,, and decomposing the measure v, corre-
sponding to the decomposition [e,, ..., 6y, 1] = X6y ey Cnyyy 1]+
--R'e,. Since », is a.c. rel. Lebesgue measure the decomposition of w,
leads to measures 0% (&,) which are all a.c. rel. Lebesgue measure. Ilence
we can use the Fubini’s theorem.

i

() Tor instance, we can achiove it by assuming that all the product measures
vy X.o. X are concentrated in o fixed ball Bp(0). .
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Starting with the class of cylindrical measures treated in the last
proposition, we can define a whole convex cone of non-negative Borel
measures a.c. rel. A{e,} (by using Proposition 2). If we place this cone in the
space M of all finite signed Borel measures on X with the norm x| = |u*| -
+ @~ (**), then its closure will still eongist of measures of the same kind.

‘This is the class of measures a.c. rel, A{e,} which we can construct
effectively by using the cylindrical measures.

190 N. Aronszajn

() ut and u— ave the positive and negative parts of u.
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