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Proof. Expanding the exponential in power series and using Theorem
2 we have
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and using the ratio test and the fact that
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we find that the series converges for l¢,|fl,¢< 1, which proves our
agsertion.
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Maximal smoothing operators
and
some Orlicz classes

by
1L P, CALDERON* and J. LEWIS* (Chicago, IIL)

Abstract. The paper gives a characterization of the Orlicz clagses of functions
that are “noar’ LM(R™), 0 < a < n, for which the functions belonging to them have
the property of possessing total differential of order a at almost all the points of R™.
‘When « is not an integer, the finiteness of My (f) replaces the existence of the a-dif-
ferential (sec [57).

0. Introduction, notation and definitions. In an earlier joint paper [5],
one of the authors studied the differential properties of functions belonging
to classes LEZ(R™), 0 < a < n, p> nfa. The purpose of this paper is to
extend those results to Orlicx classes of functions that are “near” L¥*(R"),
0 < a < n. More precisely, we characterize those Orlicz classes that are
“pear” LYe(R™, for which the functions belonging to-them possess total
differential of order a at almost all the points of R™. If a is not an integer,
we replace the existence of the a-differential by the finiteness of M )
see [B] or definition below.

Tarlier results in this direction are due to A. P. Calderén [4] when
o = 1. Positive results go back to W. Stepanov [11]; see also [6], [7]
and [9]. :

Throughout this paper we keep the notation and constructions
used in [B] and our method is partially borrowed from [4] and [5].

Almost all the lemmas in this paper use rvesults in [10] and [12],
and we shall refor to them systematically.

0.1. Lot (1) be a non-decreasing function of the variable ¢ > 0, con-
tinuous and such that p(0) = 0. We say that ¢ (f) is near 1° it the following
condifions are met:

(1) w(t) =p(t), t> 0 and ¢(t) > 0.

(i) @(¥) s slowly varying, thot 4s, for each positive d, there exists & num-

ber N > O such that for t > N, p(t)t is increasing, while p (1)t~ is decreasing.

* University of Minois at Chicago Cirele.
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(iii) There ewists 1> 0 such that if 0 <t <17, p(t) = K, where K > 0.

0.2. I¥(R") will denote the dlass of measurable functions in R" for
which P(|f]) belongs to L(R™).

Here ¥ is near ° for some ¢ > 1. (See [12], p. 16.)

0.3. L¥(R™ will denote the class of functions that are represented by
f@) = [G.o—n)g)dy, o>0,
R»N

‘where ge L'(R", G.(») denotes the Bessel kernel of order a (see [10],
p. 132). (The Fourier transform of G,(w) is (1 -+ |2%)~%%)

0.4. Let h be a vector in R”; thendyf(w) = f(o-+h)—f(x) and 4P f(z)
= 4,4V (2).

0.5. Let f(2) be a function mapping R™ into R. We say that f has

2 total differential of order % at &,, it there exists a homogeneous poly-
nomial P(x) of degree k, P(x): R"—+R, such that

1
lim —-

lim e |40 f (@) =P (B)] = 0.

0.6. Lot % be the smallest integer larger than or equal to a > 0. Then
M) (%) will denote the following supremum:

|A%f ()]
s
h,|h|1>)o [h]*

H

where % takes all the values in R"— {0} and f: R"—R.
1. Auxiliary lemmas. The following lemma is a version of Theorem
4.22 in [12] (see p. 116, vol. II).

1.1. LEMMA a. Let T be a sublinear operation mapping measurable
Sunctions in R" into measurable functions in R™ and such that

C.
BT > )| <o [ IfPide, =12,
nn
and 1< p; < py < o0, O; does not depend on f. Then if v is near ¢ with
P < P < P, we have

fe(TP)dz < O [ (i) do.
RN R%

The constant C depends on vy, py and p, but not on f.

Proof. The proof follows the pattern of that of Theorem 4.22 in [12]
and the transition to infinite measure space relies on the following three
easy to check inequalities.

- ©
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Lot us write (1) = P (1), ¢(t) slowly varying and constant in & neigh-
horhood of the origin. Then

o
(1L1.1) [ #p)d < Eyp(a)a®™, 7> p,
a
a
1.1.2) fe-i=rp)dt < Kpp(a)a®™, r<p,
( ; .
‘ -~} o0
(1.1.3) [ Dyy(W)ar < Ky [ Dy (D2 (2 dA.
0 0

Here, D,(4), g =0, stands for the distribution function of g, K, and K,
do not depend on a, and K, doos not depend on f. ‘

1.2. Remark. The Sobolev space Si(R™, where %k is an integer
larger than or equal to one, and p is near ¢, where p > 1, is the space
of functions f such that : -

J D fl)de < oo

" .
for 0 < |8] < k. Here, the derivatives have been taken in the distribution
senge and D°f =J.

We have the identity SL(R") == L{(R"); indeed, in the case when
¥ (t) is neax 4, p > 1, k is an integer > 1, Lemma a yields that the proof
of Theorem. 3, Chapter V in [10] could, be carried out without change
if norms are replaced by integral expressions of the form

C [eDf)as.
. Rn
1.3. LEMMA b. If w() is near ¥ and p >'1, then there exists a convew
fumetion (1) such that

0<Mo~~\~ip‘(z)'~<~M1 for 1> 0.
¥(?)

Proof. Write w(t) = #"e() and define g(?) in the following way

gy =lp(D) # 0<i<I
(1.3.1) gty = 7o) it > L.

L has been chogen, o that 7 (%) is increasing for t 3> L. Now we define
(1) in the following way: :

(1.3.2) p(t) = [ g(s)ds.

0
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So, near the origin we have p(t) ~ ¢t?. For ¢t > 41 we have

fg §)ds > fs” To(s) ds>0( )m(p(_;_)

i

(1.3.3)

amd on the other hand, f g(s)ds <1P¢(t). This finishes the proof.
1.4. Remark. Lemma, b shows that L*(R") is equivalent to LE(R”)_

1.5. LEMMA c. Let a be such that 0 < a <n. Suppose that ¥ s near

1™, Let §(t) be any conver function equivalent to v in the sense of Lemma b
Let us denote by 6(t) a conjugate of p(1) in the Orlice sense. Then

1
. 1\
1, =f0(yn_a)r" L4y

o0

£ af(n—a) '
o

1

is finite if and only if

8 finite.

Proof. According to Lemma b it is enough to consider %(t) in I,
instead of y(z).

-On account of the construction of p(t) we see that @' (¢) behaves
as t7'p(1) for large values of 4. Therefore I, is equivalent to

o of(n—a
[ el e

1

(1.5.1)

By introducing the change of variables ¢'(t) = s in (1.5.1) and taking
into account that 6’ and ¢’ are the 1nverse of .each other, out integral

becomes
2 et
FRT™ ",

30

@

(1.5.2)

where the integral should be understood in the Stieltjes sense. (1.5.2)
behaves as

af(n—a)
(1.53) D [5’}] [6'(2++) — 0'(2¥)].
k>1 *

Call n/a = ¢+1; according to Lemma b, P () = t°y () with () slowly
varying. :

Let {f;} be a sequence defined by the equations
(1.5.4) S 2 =tg(t), k=1,2,..,

icm
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and let
‘s 1w G
(:5:8) 2 T )t

where ¢> 0 and small Tor t large enough #(#)i° is decreasing, thus

5.6 (t’“ )c+8<1 it k>k
1.5. = -
( ) Tt1 2
Consequently,

02" Co<l i >k
(1.5.7) mfn‘;q <0< 0-

This inequality gives the fact that (1.4.3) behaves as

[ 1 a/‘(n—a) 1 ok+1 L ln=a) -Ice 27:
(1.5.8) Z[Eg] 02" or kZ o (2%)-
>34

The second series (1.5.8) behaves as

g 1 7o 1
SR =
1

Setting ¢ = 1»"~¢ in the above integral we get

1
cf 0 (Tnl_a ) .
0
This finishes the proof.

1.6. Levma d. Let p(f) be near 1*/° and suppose that

Tl

is divergent. Then, there exists a function g(r) non-negative, non-increasing
and supported in the interval [0,1] such that:

() (f’lp(g('r))y”‘ldr < 005

1
1 1 " a men
(ii) ufrn_-a-g(ﬂv“ 1dy = oo.
Proof. On account of the property ¢(2f) <

(where 9 is the function of Lemma b) we have

sup ‘ f "
7<

IFemtar < 1.

(1.5.9) o(t)dt.

(1.5.10)

Oy(t) and (2t) < Op()

n—-ldy. = 00,

where §

={f; 0f11/7(
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See [12] (p. 170: 10.1, Theorem 10.4, 10.8, and line 27 on page 175)
and Lemma c.

On account of the particular shape of 1/#**, there exists a denumerable
family f,(r) of functions in § such that

(1.6.1)  fu{r) >0, non-increasing and supported on [0, 1],
. L

(1.6.2) fwfm(r)r”“dr-mo 8  m-—>co,
0

(1.6.3) Fu(r) < A4, for r>0.

On account of conditions (1.6.1) and (1.6.3), there exists a sub-
sequence fmj(r) converging t0 a non-increasing function f(r) except in a
set at most denumerable.

) Now it is easy to verify that if we take g(r) to be f(r) conditions (i)
and (ii) in the thesis are satisfied. This finishes the proof.

2. Statement of the main results.

2.1. THEOREM A. If y is near "%, 0 < a <n, and

fm[ ‘t af(n—a) v
— dt = oo
; w(t)] !

then, ther_e_ ewists a function fe L¥(R™) such that
(i) l}jtm [f(e+h)—f(@)] = co for almost every » in R™ In particular,
-0
F(#) fails to have total differential of any order ot almost all the poinis tn R™.

Proof. Consider the funetion g(r) of Lemma d and let us congtruct
the following function f(z):

(2.1.1) f@) = Y anglle—ay),

where ¢, > 0 and ;‘ak =1. The set {2} is a denumerable set dense in
R". Define now the following function F(a):

(2.1.2) Fo) = [@(a—y)f(y)dy;
. RO

here @, is the Bessel kernel of order « and S(®) is the function (2.1.1).
Now, we are going to show that F (%) has the desired properties.

+ In the first place fe LY(R™; this follows from Lemma d and the fact
that ¢ satisfies the conditions of Lemma b. :

icm
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On the other hand, given # and a neighborhood ¥ of , it is possible
to find for each N > 0 a point s belonging to # such that

(2.1.3) F(s)> N.

In fact, let @, be & point of {w;} and ; « H. On account of the fact that
@,(y) > 0 for all ¥ we have

(2.1.4) F(s)> o, [ Go(s—9)g(ly—a5,)dy-
P
On the other hand,

(2.1.5) Go(s—y) > 0, ls—yl < By,

ls—y"e’
see [10], p. 132.
By selecting s near y, we have

. 1
(2.1.6) F(s)> 0,0, fWg(ly—wkﬂl)dy-
. R

On account of Lemma 4, if s is close enough to @, the expression on the
right-hand side of (2.1.6) can be made larger than . ‘

On the other hand, since G, L'(R™), 0 < a, F () is finite a.e. There-
fore, for a.e. x the difference |F(x)—F(s)| can be made a:rbiﬁmrily
large for points s in each neighborhood of .

This finishes the proof. . .

92.2. COROLLARY. There exists a function f belonging to IM(R"), 0 < a
< n, that fails to have total differential of any order at almost all the paints
of R™.

Proof. Let (f) = t™°; then

A A G o

[ ga] a= [T
1 1

More generally, we have

2.3. COROLLARY. Suppose that.y(t) has the form t"*p(t)*®= 9% 0 < a
<n, 0<s< 1, and p(t) has any of the forms:

14logte, 14 (logte)(log*log™i),

1 -+ (log™ #) (log tlog " #) (log *log*log*4), ...
Then there ewists o function f balonging to LL(R") that fails 1o have total

differential of any order at almost all the poinis of R”, in particular, for that
fumction M a(f) is infimite a.e..
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2.4, THEOREM B. Let f belong to L"’(R”) 0< a<n, where y is near Write g = gy ¢, Where g, =g if |g| < 1 and zero otherwise, and g, = ¢
£"1% and satisfies it |g| > 1 and zero otherwise, Choose 6> 0, and consider |g,[**%; clearly,
©r o) |gy |[H0+D ¢ L0+ (R gince |gy| is bounded and w(¢) = K"® for 0 <t
f [—WJ dt < oo, < 7. On the other hand, |gy| < |g:|"®+?; therefore
Y
1 -
Then (2.47)  sup [ 14t e-nlnwdy

k a
heR™,|B|>0 [ | \w—yl<Lih|

¢ C o) -
D) |B(M5(f) > A)| < (7—,— + ———_) [ w(lg) dy wheref = G.xg
v(2)] i

and the constants C,, C, and Cy do not depend on f.
(ii) If a is an integer, then f has total differential of order a at almost

l
< sup = f A5G (0 — )| g, dy .
nheR%, |hj>0 ‘ | |—y<Lih|

all the points in R". . ‘Oalling 7.(@) to the right-hand member of (2.4.7), we have
Proof. Consider APf(x) and its integral expression as a Bessel 1]
potential: (2.48) 1B(F.> ) < e | loi"dy
(2.4.1) [ A6 (@—y)g(y)dy. "
B

c
< JaaEE f‘l’(]gl)di'l-
Here, k is the smallest integer bigger than or equal to a. Now let I be ) rn
an integer larger than 3%k and let us split (2.4.1) in the following way: This estimate follows from the proof of Theorem I in [8] since

(2.4.2) [ APee-ygway+ [ APG.(a—y)g(y)dy. a0 ARy and LI S
a

le—yi<Lih| |z~—u|> LR PN,

Let g%
et g,(x) be Now, we shall deal with

(2.4.3) sup - AP G, (x— y y)d ‘
heR™, |h|>0 lhl lz—~y({>LIh| Y | | Ia A%)Gu<w—y)gﬂ(y)dy .
g (@) satisfies . ) lo—yl<Lik| -
(2.4.4) lgll, < C,, Nl 1<p< oo Let us consider the following estimate for the Bessel kernel of order a,
a p U2
. a>0. .
(see proof of Theorem I in [5]). On account of Lemma a we have 0,
(2.4.9) 0 <@, (8) < W’ 0<|s] < o0
(2.4.5) fw gde< o [vlg)d
nr  (see [10], p. 132 and 133).
; of (2.4. y inati 4
NOW? on account of the fact that v is non-decreasing, and increasing in On account of (2.4.9) we have the domination i
& neighborhood of the origin and in a neighborhood of infinity; we have "k‘v 1
(2.4.10) IA Q(x—y)| <20, Tmﬁ""?‘”n_
(2.4.6) 1B(g" > )] f’/’ (lg))d 7=
Take a typical term:
‘We estimate 1
2.4. e g, (Y) |
(2.4.11) S 192()1dy

lz—yl <Lk

1
Tl N AR

lZ~yI<Lin| where 0 <I<< k< L/3.
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Consider ‘a ball B,, centered at o1k and hamng radius 2L |h|.
Clearly,

(2.4.12) = l92(y) dy

1
oy

lz—y| <L|hf
< s 10a0)dy
< e |, .
|+ Th— U] <2L|h| e+ —y"
Let E,; be the set in B,, where
(2.4.13) I< Iga(y)| < 2741

Call 3;(x) to be the characteristic funetion of E;. Then we have

Z 298;(@) < lga(y 22”1/9 ()

0
These estimates follow from the fact that either |g,| > 1 or |gs(y)| = 0.
The right-hand member of (2.4.12) is dominated by

T ? 1
2.4.15 i B
¢ ) ; f |+ —y|" e

S
! Ix+lh—~1/|<|Ej]1/"‘ |w+lh— '11,—

o

(2.4.14)

2 oJ IE lu/n

On the other hand:

PV Y '
afn __ \ a;
(2.4.16) 2022%! P = 22?&(2’—)5“7'7[”“2’” " | Byl
0

Applying Hélder’s inequality with exponents n/a and n/(n—a) to the
right-hand member of (2.4.16), we get the domination

2fﬂ/(7b—ﬂ) (n—a)/n
(Z ["P 27 ]u/ n-a)) (Z "P 21) lEj’)

Ip turn, (2.4.17) is dominated by

(2.4.18) C(f [;%y]a/(n—u)dt)(n~a)/n(

(2.4.17)

‘w(mndy)um

lz—y| <3L|h}

e ©
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Congequently,
1
hle |A;i€ra(w_y)l |gz(y)|dﬁl
nern, o |1 -

) _ 1 ’ afn

<Osup (- wlahay)

>0 |w—y]<3Le .

This concludes the proof of part (i).
Paxt (ii) follows from pmt (i) by using a standard argument; see [5],
Corollary I.
2.5. ToporREM C. AU f belonging to Lj(R™), where & is an integer, 1 < k
< my and p near 1% has total differential of order ¥ a.e. in R™if and only if

° t -8 .
f [..__] at < oot
¢ Lv(@)

The proof follows from Theorems A and B.
2.6. TEROREM D. Let f be a real funciion defined on R™ and suppose
that DPfe LLo(R™, for 0 |B1<k, 1<k <mn, v near n/k and satisfying

ad § el
f [————] di < oo,
¢ Lv(®)

Then f has the tolal differential of order & at almost oll the points of R".
(Here D’ are derivatives in the distributions sense.) '
Proof. Let y(x) be a O function such that y(x) =1 if o] <
zero if |z| > 3.
The functlons f@)- v (sw)e LE(R™ for all ¢ > 0. Now the result follows
from Theorem B and 1.2.
2.7. Remark. If W) =" [p@))* ¥, 0<a<mn, and P(1)
. any of the functions ‘

1+ (log™#)***,  1-log*¢:(log*log*i)'*?,
1+ (Jogtt) (log™log™t) (log+logTlog™¢)

1 and

14%
y e

Then the conclusions of Theorem B hold.
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Inequalities for the maximal function relative to a metric

by
A, P. CALDERON* (Chicago, IIL)

Abstract, Weighted L?-norm inequalities for the maximal function relative
to a family of spheres defined by a pseudo-metric are obtained.

The purpose of this note is to obtain weighted I”-norm inequalities
for the maximal function defined by the spheres of a certain pseudo-metrie.
These inequalities generalize those known to hold in Euclidean space
with the ordinary metric (see [2]), and other metrics considered by D. Kurtz
[3] but they do not cover his results about maximal functions defined
by certain families of rectangles.

Let X Dbe a metric space with a measure x4 and assume that the spate
of continuous functions with bounded support is contained and is dense
in the space of integrable functions. Further, suppose that there is given
a real-valued function o (%, %) in X X X (it need not be the distance func-
tion) with the following properties

(i) e(@, ) = 0;

(i) e(@,y) = ely, ®) >0 if & #y;

(iii) there is a constant ¢ such that o(w, ) < cle(®, y)+o(y, 2)] for all
@, Y, and 2;

(iv) given a neighborhood N of a point x there is an &, & > 0, such that
the sphere B,(@) = {y| o(®,y) < s} with center at @ is contained m N;

(v) the spheres B,(x) = {y| o(m,y) <1} are measurable, the measure
1B,(1)| of B,(w) is a continuous function of v for each =, and there is a con-
stant o, ¢ > 1, such thot

1By ()] < 0| By(@)] < o0

for all r and . For convenience we shall assume that the constamt here coincides
with the one i (ili).
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