alors l'opération $F_0 \stackrel{\text{df}}{=} \Phi^{-1}G_0(\Phi^*)^{-1}$ satisfait à

(ii)
$$||F_0Cx-x||_2 \leqslant \gamma_2 ||x||_2 \quad pour \quad x \in D(C),$$

où $\gamma_2 = \alpha^{-1}(\gamma, \mu + \delta), \ \mu = \max(\lambda_1, 1), \ \alpha = \min(\lambda_2^{-1}, 1), \ \gamma_1 = \sqrt{\lambda_1 \lambda_2} \gamma_0$ $\delta = \max(\lambda_1 - 1, \lambda_2^{-1} - 1)$ et λ_i, μ_i sont les constantes définies dans 5.2. Démonstration, Prouvons d'abord que

(a)
$$||F_0 U x - x||_2 \leqslant \sqrt{\lambda_1 \lambda_2} \gamma_0 ||x||_2 \quad \text{pour} \quad x \in D(U).$$

En effet, en vertu de (5.3.7) on a

$$\begin{split} \|F_0 \, Ux - x\|_2 &= \|\varPhi^{-1} G_0 (\varPhi^*)^{-1} \, \varPhi^* A \varPhi x - x\|_2 = \|\varPhi^{-1} [G_0 A \varPhi x - \varPhi x]\|_2 \\ &\leq \sqrt{\lambda_2} \, \|G_0 A \varPhi x - \varPhi x\|_1 \leqslant \sqrt{\lambda_2} \gamma_0 \|\varPhi x\|_1 \leqslant \sqrt{\lambda_1 \lambda_2} \gamma_0 \|x\|_2 \,, \end{split}$$

en tenant aussi compte de (5.2.7).

D'autre part, les opérations U, C sont engendrées par $\Psi(x, y)$ $=(\Phi x, \Phi y)_1$ et $(x, y)_2$, respectivement; posons dans le lemme 3 point 3.1: $\Psi(x, y)$ pour $\Psi_1(x, y)$, $(x, y)_2$ pour $\Psi_2(x, y)$, $(x, y)_2$ pour $(x, y)_1$, max $(\lambda_1, 1)$ pour μ , $\min(\lambda_2^{-1}, 1)$ pour α , $\max(\lambda_1 - 1, \lambda_2^{-1} - 1)$ pour δ , γ_1 pour γ_0 , F_0 pour F_0 . Les hypothèses du lemme 3 étant ainsi vérifiées, on obtient:

(b)
$$||F_0 Cx - x||_2 \le \alpha^{-1} (\gamma, \mu + \delta) ||x||_2$$
.

Corollaire. Si le nombre $a^{-1}(\gamma, \mu + \delta) < 1$, F_0 est une presque-inverse de $C = -\Delta$. Sinon, on peut obtenir une presque inverse de C en utilisant la remarque du point 3.1 (faisant suite au théorème 2),

Travaux cités

- [1] K. Friedrichs, Spektraltheorie halbbeschränkter Operatoren u. Anwendung auf die Spektralzerlegung von Differentialoperatoren, Math. Ann. 109, Hoft 4-5 (1934).
- J. Lions, Équations différentielles partielles et problemes de limites, 1961.
- [3] С. Михлин, Проблема минимума квадратичного функционала, Москва 1952.
- [4] F. Riesz et B. Sz. Nagy, Legons d'Analyse Fonctionnelle, Budapest 1952.

STUDIA MATHEMATICA, T. LVIII. (1976)

Bernoulli convolutions in LCA groups

CHUNG LIN and SADAHIRO SAEKI (Tokyo)

Abstract. Let G be a nondiscrete metrizable LCA group with character group Γ . Choose a local base $\{U_n\}_{n=1}^{\infty}$ at 0 consisting of compact sets satisfying $U_{n+1}+U_{n+1}$ $\subset U_n$ for all n, and let $U = \prod_{n=1}^{\infty} U_n$. Take a sequence $\{(a_n, b_n, c_n)\}_{n=1}^{\infty}$ of triples of non-negative real numbers such that $a_n + b_n + c_n = 1$ for all n. Given $x \in U$, let v_x denote the Bernoulli convolution

$$\underset{n=1}{\overset{\infty}{\times}} \left(a_n \, \delta(0) + b_n \, \delta(x_n) + c_n \, \delta(-x_n) \right)$$

and let $\overline{\varGamma}_x$ denote the weak* closure of \varGamma in $L^\infty(\nu_x)$. Let S_x consist of those complex numbers in the closed unit disk D for which the corresponding constant function belongs to \overline{I}_x . Among other things, this is shown: If G is an I-group, then for quasiall $x \in U$, S_x contains the multiplicative compact semigroup in D generated by all the complex numbers of the form $a+bz+c\overline{z}$, where (a,b,c) is an arbitrary limit point of $\{(a_n, b_n, c_n)\}_{n=1}^{\infty}$ and |z|=1. It is also shown that in many cases $S_x=D$ for quasiall $x \in U$.

§1. Introduction. We adhere to the notation established above. In addition, M(G) will denote the usual convolution measure algebra of G. For $x \in G$, $\delta_x = \delta(x)$ denotes the unit point mass measure at x. The circle group and the group of r-adic integers are denoted by T and A_r , respectively. The set of all integers is denoted by Z.

For G = T and Δ_r , Hewitt and Kakutani [5] proved in 1964 that there is a measure $v_x = \frac{\times}{2} 2^{-1} (\delta(0) + \delta(x_n)) \epsilon M(G)$ such that the weak* closure of I in $L^{\infty}(v_x)$ contains all constant functions with values in the unit disk D. Brown and Moran [1] proved later that if $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive integers $\geqslant 2$, $a_n = (a_1, \ldots, a_n)^{-1}$ and $v_x = \sum_{n=1}^{\infty} 2^{-1} (\delta(0) + \delta(a_n))$ $\epsilon M(T)$, then the weak* closure of $\hat{T} = Z$ in $L^{\infty}(v_x)$ contains all constant functions with values in D if and only if $\sup a_n = \infty$. This result generalizes one of Hewitt and Kakutani's results in [5], since in [5] they only showed that r_x has the required property if $\sum_{n=1}^{\infty} a_n^{-1} < \infty$. Brown and Moran

[2] recently proved the following more interesting result. Let

$$B = \left\{ b = (b_n)_{n=1}^{\infty} \colon b_n \geqslant 0 \text{ and } \sum_{n=1}^{\infty} b_n^2 \leqslant 1 \right\}$$

and ν_h be the measure

$$\underset{n=1}{\overset{\infty}{\times}} 2^{-1} \left(\delta(-b_n) + \delta(b_n) \right) \in M(\mathbf{T}).$$

We may regard B as a subspace of the compact space $[0,1]^{\aleph_0}$. Then for quasi-all $b \in B$, the weak* closure of \hat{T} in $L^{\infty}(\nu_b)$ contains all constant functions with values in [-1,1]. The reason they used [-1,1] instead of D is that the measure ν_b is hermitian in this case.

Brown and Moran [2] were only concerned with the circle group T. In this note we shall first prove some analogs to their main result in [2] for nondiscrete, metrizable LCA groups G, and then generalize their result for G = T. We would like to give our thanks to Professor K. A. Ross for his thoughtful reading of this note.

DEFINITION. The LCA group G is called an I-group if every neighborhood of the identity contains an element of infinite order.

DEFINITION. A local base $\{U_n\}_{n=1}^\infty$ at $0 \in G$ is called *admissible* if each U_n is a compact neighborhood of 0 and $U_{n+1} + U_{n+1} \subset U_n$ for all n. A sequence $\{(a_n, b_n, c_n)\}_{n=1}^\infty$ of triples of non-negative real numbers is called *admissible* if $a_n + b_n + c_n = 1$ for all n.

Let $\Delta[M(G)]$ denote the maximal ideal space of M(G). We may regard it as a topological subspace of $\prod \{L^{\infty}(\mu): \mu \in M(G)\}$, where each $L^{\infty}(\mu)$ carries the $\sigma(L^{\infty}(\mu), L^{1}(\mu))$ topology [9]. For $f \in \Delta[M(G)]$ and $\mu \in M(G)$, let f_{μ} denote the function in $L^{\infty}(\mu)$ which is the restriction of f to $L^{1}(\mu)$.

In the sequel, we shall fix an arbitrary admissible local base $\{U_n\}_{n=1}^{\infty}$ at $0 \in G$ and an arbitrary admissible sequence $\{(a_n,b_n,c_n)\}_{n=1}^{\infty}$. Let $U = \prod_{n=1}^{\infty} U_n$, and let L denote the set of all limit points of $\{(a_n,b_n,c_n)\}_{n=1}^{\infty}$ in $[0,1]^3$. For each $x=(x_1,x_2,\ldots) \in U$, the convolution

$$\nu_x = \nu(x) = \underset{n=1}{\overset{\infty}{\times}} \left\{ a_n \, \delta(0) + b_n \, \delta(x_n) + c_n \, \delta(-x_n) \right\}$$

converges in the weak* topology of M(G), as will be shown in § 2. We define $\overline{\varGamma}_x$ to be the weak* closure of \varGamma in $L^{\infty}(r_x)$. The set of all constant functions in $\overline{\varGamma}_x$ is denoted by S_x .

THEOREM 1. If G is an I-group, then, for quasi-all $x \in U$, S_x contains the multiplicative compact semigroup in D generated by the set $\{a+bz+c\bar{z}:(a,b,c)\in L \text{ and } |z|=1\}$. If G is not an I-group, this conclusion fails to $c \in I$ ld for some $\{U_n\}_{n=1}^\infty$ and some $\{(a_n,b_n,c_n)\}_{n=1}^\infty$.

THEOREM 2. Suppose G is a nondiscrete metrizable LCA group which is not an I-group, and define q=q(G) to be the largest natural number such that every neighborhood of $0 \in G$ contains an element of order q. Then, for quasi-all $w \in U$, S_x contains the compact semigroup in D generated by all complex numbers of t e form $a+bz+c\overline{z}$, where $(a,b,c) \in L$ and $z^q=1$.

COROLLARY 1. Let G be a metrizable LCA group. Suppose the sequence $\{(a_n, b_n, c_n)\}_{n=1}^{\infty}$ has a limit point (a, b, c) such that $\max\{a, b, c\} < 1$.

(i) If every neighborhood of $0 \in G$ contains an element of order ≥ 4 , then quasi-all $x \in U$ have the property that

$$\delta_y * \nu_x^m \perp \nu_x^n \quad (y \in G; m, n \ge 0; m \ne n).$$

(ii) The same conclusion holds if q(G)=2 and $0\neq a\neq b+c$, or if q(G)=3 and $2a\neq b+c$.

THEOREM 3. Suppose the admissible sequence $\{(a_n,b_n,c_n)\}_{n=1}^{\infty}$ satisfies $\sum\limits_{1}^{\infty}(b_n-c_n)^2<\infty$. Let $(d_n)_{n=1}^{\infty}$ be a given sequence of real positive numbers, and

$$B \,=\, \left\{\,x\,\epsilon\, \prod_1^\infty \,\left[\,0\,,\, d_n\,\right]\colon\, \sum_1^\infty\, x_n^2 \leqslant C\right\},$$

where C is an arbitrary real positive number. Setting $b = \limsup_{n \to \infty} b_n$, we then have

(i) For each $x \in B$, the convolution

$$v_x = v(x) = \underset{n=1}{\overset{\infty}{+}} \{a_n \delta(0) + b_n \delta(x_n) + c_n \delta(-x_n)\}$$

converges in the weak* topology of M(T).

(ii) Quasi-all $w \in B$ have the property that the weak* closure of $\hat{T} = Z$ in $L^{\infty}(v_x)$ contains all the constants in [1-4b,1] if $b \geqslant 1/4$, in [0,1] if 0 < b < 1/4, and $\{1\}$ if b = 0.

(iii) Let w_0 be a given element of T having infinite order and $\mu_x = \delta(x_0) * \nu_x$ ($x \in B$). Then, for quasi-all $x \in B$, the weak* closure of \hat{T} in $L^{\infty}(\mu_x)$ contains all the constants in D if b > 0, and in $\{|z| = 1\}$ if b = 0.

In the case $a_n = 0$, $b_n = c_n = 1/2$, and $d_n = 1$ for all n, part (ii) of the above theorem is due to Brown and Moran [2].

COROLLARY 2. Under the hypotheses of Theorem 3, quasi-all $\omega \in B$ have the property that

$$\delta_t * v_x^m \perp v_x^n \quad (t \in T; m, n \ge 0; m \ne n),$$

provided that b > 0.

§ 2. Proofs of results. We shall preserve all the notation established in § 1. In particular, G denotes a metrizable nondiscrete LCA group. For each $\omega \in U$, we write

$$v_n = v_{x'n} = a_n \delta(0) + b_n \delta(x_n) + c_n \delta(-x_n)$$

for n = 1, 2, ...

LEMMA 1. Given $w \in U$, the convolution product $\overset{\infty}{\underset{n=1}{+}} v_n$ converges to some $v_x \in M(G)$ in the weak* topology of M(G). Moreover, the correspondence $(w, \chi) \rightarrow \hat{v}_x(\chi)$ is a continuous function on $U \times \Gamma$.

Proof. Let $x \in U$, and $\chi \in \Gamma$. Given natural numbers r > p, we have

$$\begin{split} &|(\mathop{\times}_{n=1}^r \nu_n)\widehat{}(\chi) - (\mathop{\times}_{n=1}^p \nu_n)\widehat{}(\chi)| \\ &= \Big|\prod_{n=1}^r \widehat{\nu}_n(\chi) - \prod_{n=1}^p \widehat{\nu}_n(\chi)\Big| \leqslant \Big|\prod_{n=p+1}^r \widehat{\nu}_n(\chi) - 1\Big| \\ &= \Big|\int (\overline{\chi} - 1) d(\mathop{\times}_{n=p+1}^r \nu_n)\Big| \leqslant \sup\{|\chi(x) - 1| \colon x \in U_p - U_p\}, \end{split}$$

because $U_{n+1}+U_{n+1}\subset U_n$ for all $n\geqslant 1$. Since $\{U_n\}_{n=1}^\infty$ is a local base at 0, it follows that the sequence $(\ \ \times \ \nu_n)^{\hat{}}(\chi)$ converges uniformly in (x,χ) $\epsilon U\times K$ for each compact subset K of Γ . Therefore the product $\ \ \times \ \nu_{x'n}$ converges to some $\nu_x \epsilon M(G)$ in the weak* topology of M(G) for each $x \epsilon U$ (notice that all the measures under consideration are carried by the compact set $2U_1-2U_1$). The second assertion in our lemma is obvious by the above arguments.

Now let H be the subgroup of G generated by U_1 . Clearly, if Theorem 1 holds for H, then so does it for G as well. Therefore we may assume G = H. Then G is σ -compact and metrizable (by hypothesis), and so Γ is separable. We choose and fix an arbitrary countable dense subset $\{\psi_k\}_{k=1}^{\infty}$ of Γ .

LEMMA 2. Let $\alpha \in D$ and $\nu \in M(G)$. Suppose that to each $N \ge 1$ there corresponds a $\chi_N \in \Gamma$ such that $|\alpha \hat{\nu}| (\psi_k) - \hat{\nu}| (\chi_N \psi_k)| < 1/N$ for all $1 \le k \le N$. Then the constant α belongs to the weak* closure of Γ in $L^{\infty}(\nu)$.

Proof. Let $\{\chi_N\}_{N=1}^{\infty}$ be as above. Then we have

(1)
$$\lim_{N\to\infty} \int \overline{\chi}_N \psi \, d\nu = \int \alpha \psi \, d\nu$$

for every $\psi \in \{\psi_k\}_{k=1}^{\infty}$. Since the last set is dense in Γ , (1) holds for all $\psi \in \Gamma$, and hence for all $\psi \in L^1(\nu)$ (cf. [7], 31.4). In other words, the sequence $\{\overline{\chi}_N\}_{N=1}^{\infty}$ converges to α in the weak* topology of $L^{\infty}(\nu)$.

Let $(a, b, c) \in L$, |z| = 1, and $\alpha = a + bz + c\overline{z}$ be given. Set

$$E(lpha,\,N) = igcap_{\chi \in D} igchi_{k=1}^N \left\{ x \, \epsilon \, U \colon \left| lpha \hat{r}_x(\psi_k) - \hat{r}_x(\chi \psi_k)
ight| \geqslant 1/N
ight\}$$

for N = 1, 2, ...

LEMMA 3. The set $E(\alpha, N)$ is closed in U. If G is an I-group, then $E(\alpha, N)$ has no interior point.

Proof. For each $\chi \in \Gamma$, $\hat{r_x}(\chi)$ is a continuous function of $\alpha \in U$ by Lemma 1. Therefore $E(\alpha, N)$ is closed in U.

Now suppose G is an I-group. To force a contradiction, assume that $E(\alpha, N)$ has non-empty interior. Then there exist finitely many non-empty sets $V_n \subset U_n$, $1 \le n < M$, such that

$$V_1 \times \ldots \times V_{M-1} \times \prod_{M}^{\infty} U_n \subset E(\alpha, N).$$

We may assume M satisfies

(1)
$$\max\{|a-a_M|, |b-b_M|, |c-c_M|\} < 1/(8N),$$

(2)
$$\|\psi_k - 1\|_{U_M} < 1/(8N) \quad (1 \leqslant k \leqslant N).$$

Choose any points $\omega_n \in V_n$, $1 \le n < M$. Since G is an I-group, we can find an $\omega_M \in U_M$ such that $p\omega_M \notin Gp(\{\omega_n: 1 \le n < M\})$ for all nonzero integers p (for the proof, see [8], 5.2.3). Then there exists a $\chi \in \Gamma$ such that

(3)
$$|\chi(w_n) - 1| < 1/(8MN) \quad (1 \le n < M),$$

$$|\chi(x_M) - \overline{z}| < 1/(8N).$$

Setting $x=(x_1,x_2,\ldots,x_M,0,0,\ldots)\epsilon E(\alpha,N)$ and $v_x=\mathop{\times}\limits_{n=1}^M \nu_n$, we have for $1\leqslant k\leqslant N$

$$\begin{split} |a\hat{v}_{M}(\psi_{k}) - \hat{v}_{M}(\chi\psi_{k})| & \leq |a\{\hat{v}_{M}(\psi_{k}) - 1\}| + \\ & + |a + bz + e\overline{z} - a_{M} - b_{M}\overline{\chi}(x_{M}) - c_{M}\overline{\chi}(-x_{M})| + |\hat{v}_{M}(\chi) - \hat{v}_{M}(\chi\psi_{k})| \\ & \leq 1/(8N) + 5/(8N) + 1/(8N) = 7/(8N) \end{split}$$

by (2), (1) and (4), since $a = a + bz + c\overline{z}$. It follows from (3) that $1 \le k \le N$ imply

$$\begin{split} |a\hat{v}_x(\psi_k) - \hat{v}_x(\chi\psi_k)| &= \Big|a\prod_{n=1}^M \hat{v}_n(\psi_k) - \prod_{n=1}^M \hat{v}_n(\chi\psi_k)\Big| \\ &\leq \sum_{n=1}^{M-1} |\hat{v}_n(\psi_k) - \hat{v}_n(\chi\psi_k)| + |a\hat{v}_M(\psi_k) - \hat{v}_M(\chi\psi_k)| \\ &< (M-1)/(8MN) + 7/(8N) < 1/N. \end{split}$$

Hence $w \notin E(\alpha, N)$, which contradicts our choice of x.

Proofs of Theorems 1 and 2. Suppose G is an I-group, and take any countable dense subset A of the set

(*)
$$\{a+bz+c\bar{z}\colon (a,b,c)\in L \text{ and } |z|=1\}.$$

If $x \in U$ is not in $\bigcup \{ E(\alpha, N) \colon \alpha \in A \text{ and } N \geqslant 1 \}$, then we have $A \subset S_x$ by Lemma 2. On the other hand, it is easy to see that S_x is a compact semigroup in D for every $x \in U$. Therefore, for each x as above, S_x contains the compact semigroup generated by the set (*). Thus the first assertion of Theorem 1 follows from Lemma 3.

Now assume that G is not an I-group. Then G contains an open subgroup of the form $\mathbb{R}^n \times H$, where $n \geqslant 0$ is an integer and H is a compact abelian group. Since G is not an I-group, n=0 and H must be torsion ([6], 25.10). So H is a compact open torsion subgroup of G. Let n_0 be a positive integer such that $n_0 w = 0$ for all $w \in H$. Define $a_n = 0$ and $b_n = c_n = 1/2$ for all $n \geqslant 1$; hence L = (0, 1/2, 1/2). If $\chi \in I$ and $w \in H$, then we have either $\chi(w) = 1$ or $|\operatorname{Re}\chi(w)| \leqslant |\cos(2\pi/n_0)|$, since $\{\chi(w)\}^{n_0} = \chi(n_0 w) = 1$. Let $\{U_n\}_{n=1}^\infty$ be any admissible local base at $0 \in H$. Then, for every $w \in U$ and $\chi \in I$, we have either $\hat{v}_x(\chi) = \prod_{i=1}^\infty \operatorname{Re}\chi(x_n) = 1$, $\hat{v}_x(\chi) = -1$ (if $n_0 = 2$), or $|\hat{v}_x(\chi)| \leqslant |\cos(2\pi/n_0)|$ (if $n_0 \geqslant 3$). Therefore every S_x is disjoint from the open interval (-1, 1) if $n_0 = 2$ and from $(|\cos(2\pi/n_0)|, 1)$ if $n_0 \geqslant 3$. This establishes Theorem 1. The proof of Theorem 2 is almost the same as that of Theorem 1, and so we omit the details.

To prove Theorem 3, we need the following fact.

LEMMA 4. Let d be a real positive number, and p a natural number larger than $\max\{32\pi^2d^{-2},1\}$. Then, for each natural number s, there exist four non-negative integers p_k $(1 \le k \le 4)$ such that

$$2\pi p_k/(sp+1) < d \ (1 \le k \le 4)$$
 and $p_1^2 + p_2^2 + p_3^2 + p_4^2 = s(sp+2)$.

Proof. By hypothesis, we have $2p \leqslant 4^{-1}p^2(2\pi)^{-2}d^2 \leqslant [p(2\pi)^{-1}d]^2$, where [] denotes integer part. Let s be a given natural number. By the four-square theorem of Lagrange ([4], p. 302), there exist non-negative integers p_k $(1 \leqslant k \leqslant 4)$ such that $p_1^2 + \ldots + p_4^2 = s(sp+2)$. Then we have

$$p_k^2 \leqslant s(sp+2) \leqslant 2s^2p \leqslant s^2 [p(2\pi)^{-1}d]^2 < \{(sp+1)(2\pi)^{-1}d\}^2,$$

as was required.

170

Proof of Theorem 3. Let $\{(a_n, b_n, c_n)\}_{n=1}^{\infty}$, $(d_n)_{n=1}^{\infty}$, B, and $a_0 \in T$ = $[0, 2\pi)$ be as in Theorem 3. We first note that if a, b, c and t are real numbers with a+b+c=1, then

$$\begin{split} |1-a-be^{-it}-ce^{it}| &= |b(1-e^{-it})+c(1-e^{it})| \\ &\leqslant |b+c|(1-\cos t)+|(b-c)\sin t|\leqslant 2^{-1}|b+c|t^2+|(b-c)t|. \end{split}$$

It follows that $\boldsymbol{x} \in B$ and $k \in \mathbb{Z}$ imply

$$\begin{split} \sum_{1}^{\infty} |1-a_n-b_n \exp\big(-ikw_n\big) - c_n \exp\big(ikw_n\big)| \\ &\leqslant 2^{-1} \sum_{1}^{\infty} (kw_n)^2 + \sum_{1}^{\infty} |(b_n-c_n)kw_n| \\ &\leqslant 2^{-1}k^2 \sum_{1}^{\infty} x_n^2 + |k| \, \Big(\sum_{1}^{\infty} (b_n-c_n)^2\Big)^{1/2} \, \Big(\sum_{1}^{\infty} x_n^2\Big)^{1/2} < \infty \end{split}$$

by Schwarz' inequality. This assures that the convolution product defined in part (i) of Theorem 3 converges in the weak* topology of M(T) and that

$$\hat{r}_x(k) = \prod_{n=0}^{\infty} \left\{ a_n + b_n \exp\left(-ikw_n\right) + c_n \exp\left(ikw_n\right) \right\} \quad (k \in \mathbb{Z})$$

for all $x \in B$. A similar argument shows that if $\sum_{1}^{\infty} d_n^2 < \infty$, then $x \to \hat{r}_x(k)$ is a continuous function of $x \in B$ for every $k \in \mathbb{Z}$. In this case, the proof of Theorem 3 proceeds on the same lines as that of Theorem 1. Consequently, we shall hereafter assume that $\sum_{n=0}^{\infty} d_n^2 = \infty$.

Next notice that if $b=\limsup_{n\to\infty}b_n$, then $(1-2b\,,b\,,b)$ is a limit point of $\{(a_n,b_n,c_n)\}_{n=1}^\infty$, since $\lim_{n\to\infty}(b_n-c_n)=0$. Moreover, the compact semigroup in D generated by the set $\{1-2b+bz+b\bar{z}\colon |z|=1\}=[1-4b\,,1]$ is $[1-4b\,,1]$ if $b\geqslant 1/4$, $[0\,,1]$ if 0< b<1/4, and $\{1\}$ if b=0.

Now we want to prove part (ii). Let |z|=1, $(\alpha,b,c)\epsilon L$, N a natural number, and $j\epsilon Z$ be given. Put $\alpha=\alpha+bz+c\bar{z}$, and define $F_j=F(\alpha,N,j)$ to be the set

$$F_j = \bigcup_{k=-N}^N \{ x \in B \colon |\alpha \hat{\nu}_x(k) - \hat{\nu}_x(k+j)| \geqslant 1/N \}.$$

By Lemma 2 and the last remark, we need only confirm that $E(\alpha, N) = \bigcap_{1} \overline{F}_{j}$ has no interior point. (Notice that F_{j} may not be closed in B, since, in general, the correspondence $x \to \hat{r}_{x}(k)$ is not continuous for any fixed $k \neq 0$; see [2], Lemma 2.)

Suppose this is false for some α and N. Then there exist finitely many open intervals $I_n \subset [0, d_n]$ $(1 \le n \le M-2, M > 2)$ such that

(1)
$$\emptyset \neq B \cap (I_1 \times \ldots \times I_{M-2} \times \prod_{n=M-1}^{\infty} [0, d_n]) \subseteq E(a, N).$$

Setting $I_n=(0\,,\,d_n)$ for all $n\geqslant M-1$ and replacing M by a larger number, we may assume the following:

(2)
$$\max\{|a_M-a|, |b_M-b|, |c_M-c|\} < 1/(24N);$$

(3)
$$\sum_{M}^{\infty} (b_n - c_n)^2 < 1;$$

there exist $y_n \in I_n$ $(1 \le n \le M-2)$ such that

$$0 < C - (y_1^2 + \dots + y_{M-2}^2) < \min\{(8N)^{-4}, d_M^2\}.$$

(Notice that we have assumed $\sum_{1}^{\infty}d_{n}^{2}=\infty$.) We can demand that $x_{0}, \pi, y_{1}, \ldots, y_{M-2}$ are rationally independent. (The reason x_{0} is treated here is to prove part (iii).) Let p be any natural number satisfying $(2\pi)^{2}/p < C - (y_{1}^{2} + \ldots + y_{M-2}^{2})$ and $p > 32\pi^{2}d^{-2}$, where $d = \min\{d_{M+k}: 1 \leq k \leq 4\}$. Then there is a number $y_{M-1} \in I_{M-1}$ such that

$$(4) (2\pi)^2/p < C - (y_1^2 + \dots + y_{M-1}^2) < \min\{(8N)^{-4}, d_M^2\},$$

and such that $x_0, \pi, y_1, \dots, y_M$ are rationally independent, where

(5)
$$y_M = \{C - (y_1^2 + \dots + y_{M-1}^2) - (2\pi)^2 / p\}^{1/2}.$$

Hence y_M is in I_M . By the well-known Kronecker theorem ([8], 5.1.3, we can find a natural number s > N so that

(6)
$$|\exp i(sp+1)y_n-1| < 1/(8MN) \quad (1 \le n < M),$$

(7)
$$|\exp i(sp+1)y_M - \bar{z}| < 1/(8N)^2,$$

$$(7)_0 \qquad |\exp i(sp+1)x_0 - \overline{w}| < 1/(8N),$$

where w is an arbitrary, but preassigned, complex number of absolute value one. (The requirement $(7)_0$ is only needed in the proof of part (iii).) By Lemma 4 and our choice of p, there are four non-negative integers p_k $(1 \le k \le 4)$ such that $2\pi p_k/(sp+1) < d_{M+k}$ for $1 \le k \le 4$ and $\sum_{i=1}^{4} p_k^2 = s(sp+2)$. Set $y_{M+k} = 2\pi p_k/(sp+1)$ for $1 \le k \le 4$ and $y_n = 0$ for n > M+4. Then we have $y = (y_1, y_2, \ldots) \in \mathcal{B}$, and

(8)
$$C - \sum_{n=1}^{M+4} y_n^2 = (2\pi)^2 / p - (2\pi)^2 s (sp+2) / (sp+1)^2 = (sp+1)^{-2} (2\pi)^2 / p$$
 by (5).

Now we define V to be the set of all $x \in B$ satisfying these conditions:

$$(5)' x_M < (8N)^{-2},$$

$$(6)' \qquad |\exp i(sp+1)x_n-1| < 1/(8MN) \quad (1 \le n < M).$$

(6)"
$$|\exp i(sp+1)x_n-1| < 1/(32N)$$
 $(M < n \le M+4),$

$$|\exp i(sp+1)x_M - \bar{z}| < 1/(8N)^2,$$

$$(8)' C - \sum_{n=1}^{M+4} w_n^2 < 2(sp+1)^{-2}(2\pi)^2/p.$$

Then V is open in B and contains the element y. Hence

(9)
$$\emptyset \neq W = V \cap (I_1 \times \ldots \times I_{M-1} \times \prod_{n=M}^{\infty} U_n) \subset E(\alpha, N)$$

by (1). We claim this contradicts the definition of $E(\alpha, N)$. Let $w \in W$, and k any integer with $|k| \leq N$. Upon setting

$$v_n = a_n \delta(0) + b_n \delta(x_n) + c_n \delta(-x_n),$$

we have

$$\begin{aligned} (10) \qquad \Big| \prod_{n=1}^{M-1} \hat{v_n}(k) - \prod_{n=1}^{M-1} \hat{v_n}(k + sp + 1) \Big| \\ \leqslant \sum_{n=1}^{M-1} |1 - \exp i(sp + 1) w_n| < 1/(8N) \end{aligned}$$

by (6)'. Similarly, we have

(11)
$$\left| \prod_{n=M+1}^{M+4} \hat{v}_n(k) - \prod_{n=M+1}^{M+4} \hat{v}_n(k+sp+1) \right| < 1/(8N)$$

by (6)". On the other hand,

$$\begin{split} &(12) \quad |a\hat{v}_{M}(k) - \hat{r}_{M}(k + sp + 1)| \\ & \leq |a(\hat{r}_{M}(k) - 1)| + |a - \hat{r}_{M}(sp + 1)| + |\hat{r}_{M}(sp + 1) - \hat{r}_{M}(k + sp + 1)| \\ & \leq |\exp(ikw_{M}) - 1| + |1 - \exp(ikw_{M})| + \\ & + |a + bz + c\bar{z} - a_{M} - b_{M}\exp\left(-i(sp + 1)w_{M}\right) - c_{M}\exp\left(i(sp + 1)w_{M}\right)| \\ & \leq N/(8N)^{2} + N/(8N)^{2} + 3/(24N) + 2/(8N)^{2} < 2/(8N) \end{split}$$

by (5)', (2) and (7)'. Since $|k| \le N < s$, we also have

$$\begin{split} & (13) \qquad \Big| \, 1 - \prod_{n=M+5}^{\infty} \hat{v_n}(k + sp + 1) \, \Big| \\ & \leqslant 2^{-1} \, (k + sp + 1)^2 \sum_{n=M+5}^{\infty} x_n^2 + (k + sp + 1) \, \Big\{ \sum_{n=M+5}^{\infty} (b_n - c_n)^2 \Big\}^{1/2} \Big(\sum_{n=M+5}^{\infty} x_n^2 \Big)^{1/2} \\ & \leqslant 2 \, (sp + 1)^2 \sum_{n=M+5}^{\infty} x_n^2 + 2 \, (sp + 1) \, \Big(\sum_{n=M+5}^{\infty} x_n^2 \Big)^{1/2} \\ & \leqslant 2 \, (sp + 1)^2 \, \Big(C - \sum_{n=M+5}^{M+4} x_n^2 \Big) + 2 \, (sp + 1) \, \Big(C - \sum_{n=M+5}^{M+4} x_n^2 \Big)^{1/2} \end{split}$$

by (3), (8)' and (4). Similarly, we have

(14)
$$\left| 1 - \prod_{n=M+5}^{\infty} \hat{\nu}_n(k) \right| < 1/(8N).$$

 $\leq 4(2\pi)^2/p + 4(2\pi)/p^{1/2} < 4/(8N)^4 + 4/(8N)^2 < 1/(8N)$

Combining (10)-(14), we conclude that

$$\begin{split} |\hat{\omega_x}(k) - \hat{v_x}(k + sp + 1)| &= \left| \alpha \prod_{n=1}^{\infty} \hat{v_n}(k) - \prod_{n=1}^{\infty} \hat{v_n}(k + sp + 1) \right| \\ &< 1/(8N) + 1/(8N) + 2/(8N) + 1/(8N) + 1/(8N) \\ &< 6/(8N) \end{split}$$

for all $x \in W$ and all $k \in \mathbb{Z}$ with $|k| \leq N$. But this implies $W \cap F_j = \emptyset$ and so $W \cap \overline{F_j} = \emptyset$ for j = sp + 1, because W is open in B. Hence $W \cap E(\alpha, N) = \emptyset$, which contradicts (9) and therefore completes the proof of part (ii).

The proof of part (iii) is almost the same as that of part (ii), and so we only give a sketch of the proof. Let α be as before, and choose an arbitrary complex number w of absolute value one. Recalling $\mu_x = \delta(x_0) * \nu_x$, we redefine F_j to be

$$F_j = \bigcup_{k=-N}^N \left\{ x \in B \colon \left| wa \, \hat{\mu}_x(k) - \hat{\mu}_x(k+j) \right| \geq 1/N \right\},$$

and set $E(a, w, N) = \bigcap_{j=1}^{\infty} \overline{F}_j$. Define V and W as before; then $w \in W$ and $|k| \leq N$ imply

$$|wa\hat{\mu}_x(k) - \hat{\mu}_x(k+sp+1)| < 7/(8N),$$

which gives us the desired contradiction.

Proof of Corollaries 1 and 2. Suppose that the hypotheses of Corollary 1 hold. Then, for quasi-all $x \in U$, S_x contains a complex number α with $0 < |\alpha| < 1$ by Theorems 1 and 2. For such x and x, there exists

an $f \in A[M(G)]$ such that $f_{\nu(x)} = \alpha$ ($\nu(x)$ -a.e.). Then we have

$$f_{\delta(y)*\nu(x)^m} = f(\delta(y))\alpha^m \quad (\delta(y)*\nu(x)^m$$
-a.e.)

and

$$f_{\nu(x)^n} = \alpha^n \quad (\nu(x)\text{-a.e.}).$$

Since $|f(\delta(y))| = 1$ for all $y \in G$ and since $|a|^m \neq |a|^n$ unless m = n, this establishes Corollary 1. The proof of Corollary 2 is similar.

§ 3. Further results. Under the hypotheses of Corollary 1, ν_x has independent powers for quasi-all $x \in U$. For such ν_x , it is known that $\{f_{\nu(x)} \colon f \in \Delta \, [\, M(G)\,] \}$ contains all constant functions of absolute value one (see [3]). More is true; $S_x = D$ for quasi-all $x \in U$ under certain conditions. The following lemma is strong enough for our purpose.

LEMMA 5 (cf. Lemma (4.1) of [5]). Let a_{nk} be non-negative real numbers for $1 \le n \le N$ and $|k| \le K$, and

$$a(z) = \prod_{n=1}^{N} \left(\sum_{k=-K}^{K} a_{nk} z^{k} \right) \quad (|z| = 1).$$

Suppose (i) $\sum_{k} a_{nk} = 1$ for all n, (ii) $\max\{a_{nk} \colon |k| \leqslant K\} < 1$ for some n, and (iii) $\sum_{n} \sum_{k} k a_{nk} \neq 0$. Then the semigroup generated by all $\alpha(z)$, |z| = 1, is dense in 'he closed unit disk D.

Proof. We have $|\alpha(z)| \le 1$ for all z by (i) and $|\alpha(z)| < 1$ for some z by (ii). Therefore the compact semigroup S generated by all $\alpha(z)$ is contained in D and contains [0,1], because $|\alpha(z)|^2 = \alpha(z)\alpha(\overline{z})$ is in S whenever |z| = 1. Since $e^{it} = 1 + it + O(t^2)$ as $t \to 0$, we also have

$$\alpha(e^{it}) = \prod_{n=1}^{N} \left\{ 1 + it \sum_{k=-K}^{K} k a_{nk} + O(t^2) \right\} \quad \text{as} \quad t \to 0.$$

It follows that $\lim_{m} \alpha (e^{it/m})^m = \exp(it\sum_{n}\sum_{k} ka_{nk})$ for all real t. Therefore S contains the circle $\{|z|=1\}$ by (iii); hence $D=[0,1]\cdot\{|z|=1\}\subset S$, as was required.

Finally, we state two results without proofs. The former of them follows from Theorem 1 and Lemma 5 while the latter can be proved along the same lines as Theorem 3 was proved.

COROLLARY 3. Suppose that G is a metrizable LCA I-group, and that $\{U_n\}_{n=1}$ and $\{(a_n,b_n,c_n)\}_{n=1}$ are as in § 1. If there exists a point (a,b,c) in L such that $\max\{a,b,c\}<1$ and $b\neq c$, then quasi-all $x\in U$ have the following property: to each $|z|\leqslant 1$ there corresponds an $f\in \Gamma$ such that $f_{r(x)}=z$ $(v_x$ -a.c.). Here Γ denotes the closure of Γ in $\Delta[M(G)]$.

icm[©]

THEOREM 3' (cf. [2], Remark 3). Let $\{(a_n, b_n, c_n)\}_{n=1}^{\infty}$ and $(d_n)_{n=1}^{\infty}$ be an (arbitrary) admissible sequence and a sequence of positive real numbers, respectively, and let C > 0 be such that C/π is irrational. Setting

$$B' = \left\{ x \in \prod_{n=1}^{\infty} \left[0, d_n\right] \colon \sum_{n=1}^{\infty} x_n \leqslant C \right\},$$

we then have (i) for every $w \in B'$, the convolution product v_x defined as in § 1 converges in the weak* topology of M(T), and (ii) for quasi-all $w \in B'$, the weak* closure of \hat{T} in $L^{\infty}(v_x)$ contains all the constants in the compact semigroup defined as in Theorem 1.

Remarks. (a) Suppose $d_n > 0$ for all n and $\sum_{1}^{\infty} d_n < \infty$ (resp. $\sum_{1}^{\infty} d_n < \infty$). Then the set B in Theorem 3 (resp. B' in Theorem 3') may be replaced by $\{x \in \prod_{1}^{\infty} [0, d_n] : \sum_{1}^{\infty} f(x_n) \leq 1\}$, where f is an arbitrary non-decreasing continuous function of $t \geq 0$ such that f(0) = 0.

- (b) Under the circumstances of Theorem 3, put E = [1-4b, 1] if $b \ge 1/4$, E = [0, 1] if 0 < b < 1/4, and $E = \{1\}$ if b = 0. Let Y be a countable subset of T. Then quasi-all $x \in B$ have the following property: given $m \in \mathbb{Z}$, $\{z_1, z_2, \ldots, z_N\} \subset \{|z| = 1\}$, and $a \in E$, there exists a sequence $(r_j)_1^\infty$ of natural numbers such that (i) $\limsup (ir_j y) = \exp(imy)$ for $y \in Y$, (ii) $\limsup (ir_j x_n) = z_n$ for $1 \le n \le N$, and (iii) $\limsup (ir_j t) = a$ in the
- weak* topology of $L^{\infty}(\nu(x,N))$, where $\nu(x,N) = \sum_{N=1}^{j} \nu_{n}$. In particular, etting \hat{Z}_{x} denote the weak* closure of \hat{T} in $L^{\infty}(\nu_{x})$, we conclude (for quasiall $\kappa \in B$) that \hat{Z}_{x} contains many functions which are not of the form $\beta \exp(int)$, where $\beta \in C$ and $n \in Z$, and that the measures $\delta(x) * \nu(x,N)$, $\kappa \in Gp(\{x_{1},\ldots,x_{N}\})$, are mutually singular for $N=1,2,\ldots$ Similar assertions hold under the circumstances of Theorems 1,2 and 3'.
- (c) Replacing the set U (B or B') by the countable cartesian product of sets of the same type, we have some obvious generalizations of the results established in this note. Furthermore, as Lemma 5 suggests, our methods used here apply equally well for convolution products of measures of the form $\sum\limits_{|k|\leqslant K}a_k\delta(kx)$, where K is a fixed natural number, $a_k\geqslant 0$ for all k and $\sum\limits_k a_k=1$.
- (d) Suppose $\mu \in M(G)$, $g \in \Delta[M(G)]$, and $g_{\mu} = \alpha$ (μ -a.e.) for some α with $0 < |\alpha| < 1$. Then, to each $z \in D$ there corresponds an $f \in \Delta[M(G)]$ such that f = z (μ -a.e.); for the proof, see [9]. Therefore we have the following result under the hypotheses of Corollary 1: for quasi-all $x \in U$ and all $z \in D$ there exists an $f \in \Delta[M(G)]$ such that $f_{r(x)} = z$ (r_x -a.e.).

References

- [1] G. Brown and W. Moran, Bernoulli measure algebras, Acta Math. 132 (1974), pp. 77-109.
- [2] In general, Bernoulli convolutions have independent powers, Studia Math. 47 (1973), pp. 141-152.
- [3] On the Silov boundary of a measure algebra, Bull. London Math. Soc. 3 (1971), pp. 197-203.
- [4] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Third edition, Oxford at the Clarendon Press, 1954.
- [5] E. Hewitt and S. Kakutani, Some multiplicative linear functionals on M(G), Ann. Math. 29 (1964), pp. 489-505.
- [6] and K. A. Ross, Abstract harmonic analysis (I), Springer-Verlag, Berlin 1963.
- [7] Abstract harmonic analysis (II), Springer-Verlag, Berlin 1970.
- [8] W. Rudin, Fourier analysis on groups, Interscience, New York 1962.
- [9] Yu. Sreider, The structure of maximal ideals in rings of measures with convolutions, Mat. Sb. 27 (69) (1950), pp. 297-318; English transl.: Amer. Math. Soc. Transl. 1 (8) (1962), pp. 365-391.
- [110] J. L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc. 119 (1965), pp. 150-166.

UNIVERSITY OF OREGON, EUGENE, OREGON and

TOKYO METROPOLITAN UNIVERSITY, SETAGAYA, TOKYO

Chung Lin's current address:

University of British Columbia, Vancouver, B.C.

Received April 17, 1975 (1001)