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.alors Vopération T, L g-16,( & satisfait &
(ii) 1B O —al < vallwll,  pouwr @eD(0),

ol yy = a7y, p+8), p=max(ly, 1), ¢ =wmin(Ah 1), py = Vigdyp,
8 =max(A—1, A7 ~1) et A, u; sont les constantes définies dans 5.2.

Démonstration. Prouvons d’abord que
(a) 1By Us —ally < Vighgyo @, pour  @eD(T).
En effet, en vertu de (5.3.7) on a ]
Ty Ut — all, = 1O Go(8*) 7 B* AP~ ||y = | B [Gy ADp — D]l
< Vg |6y AB0 — ol < Vi, |5l < Vshaps ],

en tenant aussi compte de (5.2.7).

Dautre part, les  opérations U, C sont engendrées par V(w, y)
= (P, Dy), et (v, )., respectivement; posons dans le lemme 3 poiut 3.1:
Pl(w, y) pour y(w, y), (#, y): Dour Py(s, ), (@, y), pour (a2, ¥),, max (4, 1)
pour g, min(i;%, 1) pour ¢, max(l,—1, 7 —1) pour &, Y1 pour yy, Iy
pour Fy. Les hypothéses du lemme 3 étant ainsi véritides, on obtient:

(b) o O — afly < 0™ (y, o+ )|l m

CororrAtr. 8¢ lo nombre a™'(y, p+-8) < 1, T, est une presque-inverse
de 0 = — A. Sinon, on peut obtenir une presque inverse de C en wtilisamt
ta remarque du point 3.1 (faisant suite au théoréme 2).
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STUDIA MATHEMATICA, T. LVIIL. (1976)

Bernoulli convolutions in LOA. groups
by
CIHUNG LIN and SADAHIRO SAEKT (Tokyo)

Abstract. Lot @ be a nondigerete metrizable LCA group with character group I

Chooso a local base {U/,)%_, at 0 consisting of compact sets satisfying Upp+ Uyyy
L

< Uy for all n, and let U = JJ U,. Take a sequence {(an> b n)}Y_; of triples of
Pryie

non-negative real numbers such that a,--by-+6, = 1 for all n. Given ze U, lot v,
denote the Bernoulli convolution

*1 (@5, 6(0) + by, 6 (m,) + ¢, (— 2,))
=

and let T, denote the weak* closure of I" in L% (vz). Let Sy consist of those complex
numbers in the closed unit disk D for which the corresponding constant function
belongs to I'y. Among other things, this is shown: If & i an I-group, then for quasi-
all zeU, 8, containg the multiplicative compact semigroup in D generated by all the
complex numbers of the form a+ be+ ¢z, where (a,d, ¢) is an arbitrary Limit point
of {(an, by, 0n)}my and |2| = 1. It is also shown that in many cases § = D for quasi-
all z¢U.

§ 1. Introduction. We adhere to the notation established above.
In addition, M (@) will denote the usmal convolution measure algebra
of G For we@, d§, = d(w) denotes the unit point mass measure at x. The
circle group and the group of r-adic integers are denoted by 7T and 4,,
respectively. The set of all integers is denoted by Z.

Tor @ == T and 4,, Hewitt and Kakutani [5] proved in 1964 that

=]
there is & measure », == % 2"1(5(0)—{-6(:0,,,))5 M(@) such that the weak*
ne=l

closure of I"in L%(»,) contains all constant fanctions with values in the
unit disk D. Brown and Moran [1] proved later that if {a,}5.; is & sequence
00

of positive integers = 2, @, == (dy,..., 6,)”" and v, = n§12"‘(6(0) +6(,))

e M(T"), then the weak* closure of T = Z in L*(v,) containg all constant
functions with values in D if and only if supa, = oo, This result gener-
alizes one of ITewitt and Kakutani’s results in [5], since in [5] they only

showed that ¥, has the required property if Y a;' < co. Brown and Moran
N Ne=]
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[2] recently proved the following more interesting result. Let.

B=1{b =) b,>0 and :‘jbﬁ <1}

Rl

and v, be the measure

oo

% 271 (8(—b,) + 8(b,))e M(T).

ne=l
We may regard B as a subspace of the compact space [0, L]%, Then for
quasi-all beB, the weak* closure of T in L®(w) containg all constant
functions with values in [—1, 1] The reagon they used [ -1, 1] instead
of D is that the measure v, is hermitian in thiy case.

Brown and Moran [2] were only concerned with the circle group T
In this note we shall first prove some analogs to their main result in [2]
for nondiscrete, metrizable -LCA groups @&, and then generalize their
result for G = T. We would like to give our thanks to Professor K. A. Ross
for his thoughtful reading of this note.

DrrintiToN. The LOA group G is called an I-group if every neighbor-
hood of the identity containg an element of infinite order.

DEFINITION. A local base {U,}i., at 0@ is called admissible if each U,
is a compact neighborhood of 0 and U, ;- U, = U, for all n. A sequence
" {(ay, by, )}, of triples of nonrnegative real numbers is called admissible
if a,+b,+e¢, =1 for all n.

Let A[M ()] denote the maximal ideal space of M(G). We may
regard it as a topological subspace of [T{L®(u): ue M (@)}, where each
L®(u) carries the o(L®(u), Ll(,u)) topology [9]. For fed[M(G)] and

we M(G), let f, denote the function in L™(x) which is the restriction of f

to Ii(u).
In the sequel, we shall fix an arbitrary admissible local base {U,}&.,
. o0
at 0@ and an arbitrary admissible sequence {(a,, by, ¢,)}%,,. Let U = [ U,,
sl
and let L denote the set of all limit points of {(a,, b,, ¢,)}2., in [0, 1]
For each @ = (#y, @, ...)e U, the convolution

o«
Yy = »(@) = %] {@, 6(0) b, 6(,) - 0, 8 (w0, }
9=
converges in the wealk* topology of M (G), as will be shown in §2. We
- define I, to be the weak* closure of I"in L™(»,). The set of all constant
functions in I, is denoted by §,.
TaeorEM 1. If G s an I-group, then, for quasi-all m¢ U, §, contwins
the multiplicative compact semigroup n I generated by the set {a-|-be--c2:

(@b, 0)eL and |o| = 1}. If G is not an I-group, this conclusion fails to

@ ld fO’l” some {U%};«Ll a’/’"d some {(a’na b‘n} cn)}:)ml'
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THEOREM 2. Suppose @ is o nondiscrete metrizable LOA group which
is not an I-group, and define q = q(@) to be the largest natural number such
that every neighborhood of 0eG contains an element of order q. Them, for
quasi-all we U, 8, contains the compact semigroup in D generated by all
complew numbers of t ¢ form a--bz--cZ, where (a,b,c)el and 2% = 1.

COROLLARY 1. Let G be a metrizable LOA group. Suppose the sequence
{(@y byy €)ooy a8 @ Uimit point (@, b, ¢) such thet max{a, b, ¢} < 1.

(1) If every weighborhood of 0eG contains an element of order > 4,
then quasi-all e U hawe the property that

Syxvy L vy (ye@; m,n=0; m % n).

(ii) The same conclusion holds if q(G) =2 and 0 s£a %=b+o, or if
¢(@) =3 and 2a = b+-e.
THEOREM 3. Suppose the admissible sequence {(a,, b, ¢,)}a, satisfies
M (b, — )% < co. Let (d,)%; be a given sequence of real positive numbers,

]

I

and .
B = {me”[o,dn]: 2w§b<0},
1 1

where C is an arbitrary real positive mumber. Setting b = limsupd,,, we
then have oo
(i) For each weB, the comvolution

Vp = v(@) = *1{0%6(0) +b,6(2,)+0e, 5(——-%")}
n— ‘
conwerges in the wealk* topology of M (T). R

(i) Quasi-all weB have the property that the weak* dosure of T = Z
in L®(v,) contains all the comstants in [1—4b, 17 if b= 1[4, in [0, 1] of
0<b<1/4, and {L} 4f b = 0.

(iii) Let w, be a given element of T’ having infinite ovder and p, = 0(@)* v,
(weB). Then, for quasi-all @eB, the weak* closure of T in L*®(u,) contains
all the constants in D if b > 0, and in {|e| =1} 4f b = 0.

In the case @, = 0, b, =¢, =1/2, and d, =1 for all », part (ii)
of the above theovem is due to Brown and Moran [2].

JOROLLARY 2. Under the hypotheses of Theorem 3, quasi-all weB have
the property that

Spea | o (LT my =05 mo#n),

provided that b > 0.
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§ 2. Proofs of results. We shall preserve all the notation established
in §1. In particular, G denotes & metrizable nondiscrete LCA group. For
each welU, we write

Yy = Vo, = 4, 6(0) +bn6(wn) +e,6( —,)
for n =1,2,... "
LeMMA 1. Given @< U, the convolution product % v, converges to some
Nea]
v,e M(G) in the weak* topology of M(G). Moreover, the correspondence
(®, )—>v,(x) 18 o continuous function on U XTI
Proof. Let we U, and yel' Given. natural numbers # > p, we have

I( * vn)“(x)-(i )" ()1
n=1 n=1
=‘Hﬁ”(75)—fl ";n(l)!<’ l 1 Jn(l)—‘l‘ ¢
nel a1 ey

=|Ja-na o v) | < sup{Iz(0) ~11: weT,— Uy},
n=p-+1

because U, + Uypy < U, for all =1, Since {U,}2,; is a local base

»
at 0, it follows that the sequence ( % #,)" (x) converges uniformly in (s, y)
=] o0

«Ux K for each compact subset K of I. Therefore the product * w,,

N
converges to some v, e M (@) in the weak* topology of M(G) for each e U
(notice that all the measures under consideration are carried by the compact
set 2U,—2U,). The second assertion in our lemma is obvious by the
above arguments. :

Now let H be the subgroup of @ generated by U,. Clearly, if Theorem 1,
holds for H, then so. does it for & ag well. Therefore we may assume G = H,
Then & is o-compact and metrizable (by hypothesis), and so I"is separable.
We choose and fix an arbitrary countable dense subset {Wtiay of I

LEMMA 2. Let aeD and ve M(G). Suppose that to cach N = 1 there
corresponds a yyel' such.-that lav (w,) —3 (xyw)| <L/N for all 1< k<N,
Then the constant o belongs to the weal* closure of I im L™( ).

Proof. Let {yy}5.., be as above, Then we have

1) J%EI:QIYNWM = fmpdv

for every pe{y,}= . Since the last set is dense in Iy (1) bolds for all pel’,
and hence for all peLt(s) (cf. [7], 31.4). In other words, the sequence
{Z¥}¥-1 converges to « in the weak* topology of L% (»). ‘

icm
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Let (@, b, ¢)el, 2| =1, and a = a+bz-+¢z be given. Set

N .
B(a, N) = ngl {@eU: avy (ve) — v, (x| > 1/}
for N =1,2,...
Levwa 3. The set B{a, N) is closed in U. If @ is an I-group, then
E(a, N) has no interior point. .
Proof. For each yel,7,(y) is a continuous function of zel
by Leroma 1. Thevefore HB(a, N) iy closed in U. ‘

Now suppose @ is an I-group. To force a contradiotion, asgume that.
E(a, N) has non-empty interior. Then there exist finitely many non-

empty sets V, < U,, 1< n < M, such that

o
Vix oo X Vayax [[ Uy = Bla, ).
M
We may assume M satisfies
max{|a—ayl, [b—byl, lce—eyl} < 1/(8N),
e — Ll <1/(8F) (1<E<I).

‘Choose any points @V, 1< 0 < M. Sinee G is an I-group, we can
find an @y eUy such that pwy,¢Gp({w,: 1< n < M}) for all nonzero
integers p (for the proof, see [8], 5.2.3). Then there exists a yel' such that.

(3) Ixlon) —1] <1/BMN) (1<n< M),
(4) 2% (@5) — 2l < 1/(8N).

Betting & == (@, ®a, ..., %37, 0,0,...)eH(a, N)
for 1<k NV

&)

M
and v, = % »,, we have.
n=1

|0 ag (1) — P (o) | < la{Pap () — L} +
@02 b 02—t — by T(00g) — O T — @20 -+ Wr () — s (02)]
< 1/(8N)--B/(8N)--1/(8N) = T/(8N)

by (2), (1) and (4), since « == a-+bz+ ¢z It follows from (3) that 1 < k < N

imply
. M M
(e () = R (vl = | @ [ [hulw) = [ [ Putwe)
Tyl N ]

M1
) 1w =P (i) - L g (wi) —Pae ()|

=]
< (M —1)/(8MN)+T/(8N) < 1/N.

Hence w¢# (e, N), which contradicts our choice of .
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Proofs of Theorems 1 and 2. Suppose G is an J-group, and take
any countable dense subset 4 of the set

{*) {a-+b2+c2: (a,b,c)el and |o = 1}.

If 4T is not in \UJ{B(a, N): aed and N =1}, then we have 4 < g,
by Lemma 2. On the other hand, it ix easy to see that &, is & compact
gemigroup in I for every s U. Therefore, for each & as (nbovc, 8, coutaing
the compact semigroup generated by the set (x). Thus the first assertion
of Theorem 1 follows from Lemma 3.

Now assume that & is not an I-group. Then ¢ contains an open sub-
group of the form K" x H, where » > 0 is an integer and H iy a compact
abelian group. Since ¢ is not an I-group, n = 0 and H must be torsion
([6], 25.10). So H is a compact open torsion subgroup of . Let n, be
@ positive integer such that n,e = 0 for all weH. Define a, = 0 and b, = ¢,
=1/2 for all # >1; hence L = (0,1/2,1/2). If yeI' and a<H, then we
have either y(#) = 1 or |Re (@) < |cos (27/n,)], since {x (@)}™ = x(noa) = 1.
Tet {U,}2_, be any admissible local base at 0<H. Then, for every zeU

= {]Rex(w,,,) =1, u(y) = —1 (if n, = 2),

or v, ()] < 008 (2m /)| (if e = 3). Therefore every 8, is digjoint from the
open. interval (—1,1) if ng = 2 and from (]eos(zn/ﬂn)l, 1) if ny, > 3. This
establishes Theorem 1. The proof of Theorem 2 is almost the same ag
that of Theorem 1, and so we omit the details.

To prove Theorem 3, we need the following fact.

Lemwva 4. Let & be o real positive number, and p o natural number
larger tham max{32n?d~% 1}. Then, for each natural number s, therc
exist four non-negative integers p, (1 <k < 4) such that

and yeI', we have either 7,(y)

Inpf(sp+1)<d 1<k<4) and pi+pi-+pidpl = s(sp-2).

Proof. By hypothesis, we have 2p < 4™ p?(27)"2d* < [p(2n)~ d]3,
where [ ] dénotes integer part. Let s be a given natural number. By the
four-square theorem of Lagrange ([4], p. 302), there oxist non-negative
integers p; (1 < % < 4) such that pi--... 4-p} = s(sp--2). Then we have

$(sp+2) < 28°p < 8 [p (2m) M < {(sp 1) (2m) @),

a8 was required.

Proof of Theorem 3. Lot {(a,, by, ¢,)} 0, (@), B, and ayeT
= [0, 2=) be as in Theorem 3. We first note that if «, b, ¢ and ¢ are real
numbers with a+b+¢ =1, then

2
P <

[L—a—~be~%—ce| = [b(L—e"%) +o(1— ¢t

< b+l (1~ cost) + (b — o) sint| < 274 b ¢|#2 - |(b— o).

icm
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It follows that weB and keZ imply

el -
Z [1 — a, — b, exp ( — ik, ) — ¢, exp (ika,)]|
1

718

(R, )+ }j (0 — ca) T, |

1
<2

-

7ig

€2“1702§m§k+|k|(§ by—0, )1/2( mfb)”ﬂ < oo
1 1

by Schwarz’ inequality. This assures that the convolution product defined
in part (i) of Theorem 3 converges in the weak* topology of M (T') and that

-

=”{an—l—bnexp(-——@‘km,,)+o,,exp(ikmn)} (keZ)
1

B k
for all eB. A similar argument shows that if Y'd2 < co, then &—v,(k)

1
is a continuous function of weB for every keZ. In this case, the proof
of Theorem 3 proceeds on the same lines as that of Theorem 1. Consequently,

we shall hereafter assume that »'dj = oo.

1
Next notice that if b = limsupbd,, then (1 —2b, b, b) is a limit point

n—+00
Of {(@yy by 0p) oy, since lim (b, —e¢,) = 0. Moreover, the compact semi-
n—+0 .
group in I generated by the set {1—2b+be+bz: |2| =1) = [1—4b,1]
is [1—4b,11if D> 1/4, [0,1]if 0 <b <1/4, and {1} if b = 0.

Now we want to prove part (ii). Let [2| = 1, (a, b, ¢)eL, N a natural
number, and jeZ be given. Put « = a-bz+-¢7, and define F; = F(a, N, j)
to be the set

N
{meB |l (T) =9 (T - 5)

wa

¥y = = 1/N}.

By Lemma 2 and the last remark, we need only confirm that F(a, N)

0
== (J; has no interior point. (Notice that F; may not be closed in B,
1

~ sinee, in general, the correspondence @->7,(k) is not continuous for any

fixed T o4 0; see [2], Lemma 2.)
Suppose thiy is false for some « and N. Then there exist finitely many
open intervals I, < [0,d,] (L<n< M—2, M > 2) sach that

(1) @ 4 BA(I X oo X Iyg X n [0, 4,1 = Bla, N).

Nw= M1
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Setting I, = (0, d,) for alln >
we may assume the following:

M —1 and replacing M by a larger number,

(2) max {|ay — al, by —bl, jer—el} < 1/(24N);
(3) Zj(l)w——(z,n)2 <1;
577

there exist y,el, (1< n< M~—2) such that

0<C— (Yt ... +0hs) <min{(8N)™, di,}.

. . b
(Notice that we have assumed J3'd2 = co.) We can demand thab

1
DBy Ty Y1 + -y Yo are rationally independent. (The reason x, iy treated
here is to prove part (iii).) Let p be any natural number satisfying (2=)2/p
< O—(g3+... +¥5r,) and p > 32n2d~% where d = min{dy, ;: 1< k< 4}
Then there iy a number y,,_,ely,; such that

(4) m)p < C— (43 + ... +yh1) <min{(8N)™ di,

and such that @, =, yy,..., Y, are rationally independent, where

(2m)2 /p}He.

Hence y,, is in I;. By the well-known Kronecker theorem ([8], 5.1.3,
we can find a natural number s > N so that

(5) Yar = {0~ W+ .. +¥)—

(6) lexpi(sp +1)4,—1 <1/(8MY) (1<n< M),
(7 lexpi(sp +1)ya—2 < 1/(8N)?,
(T lexpi(sp +1) @~ < 1/(8N),

where w is an arbitrary, but preassigned, complex number of absolute
value one. (The requirement (7), is only needed in the proof of part (iii).)
By Lemma 4 and our choice of p, there ave four non-negative 1n1.ogerq

P A<B<4) such that 2np,/(sp-+1) < dyryy for L k<4 and \p,,

Co=s(sp+2). Set Yy, = 27mp/(sp+1) for L<h<4d and Yp =0 101*
n > M +4. Then we have y = (yy, ¥a, ...)¢B, emd.
Jl'l-_(—{l
(8) 0= >yl = (2m)fp—(2m)%s(sp +2) (sp +1)* = (sp +1)"* (2m)2/p

n=]1

by (5).
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Now we define V to be the set of all #¢B satistying these conditions:

(5)’ g7 < (SN)_27
6y - lexpi(sp +1)@, —1| <1/(BUN) (1<n< M),
(6)" lexpa(sp +1)a,—1] <1/(32N) (M <n<M+4),
(7 [expi(sp --1)my —2| < 1/(8N)?2,

M4
(8) 0— D) o <2(sp+1)"*(2m)/p.

Then 7 is open in B and contains the element 4. Hence

xDyyx [ U) € Bla, )

n=0L

(9) G # W = Vn(lx

by (1). We claim this contradicts the definition of F(a, N).
Let we W, and k any integer with |k| < N. Upon setting

Yy = “né(o) —{—bna“ﬂn) +0n6( ""wn)ﬂ
we have

-1 M-

(10) ]n 7y () —

n=1

";n(k +'§p -+ 1) ‘

M-1

< D L—expi(sp+ 1)z, < 1/(8N)

=1

by (6). Similarly, we have
ﬂf_+l * M4
(11) NIRACE [] #utltsp+1) ’<1/ (8N)
i [ESS "D s M1

by (6). On the other hand,

(12)  Javy (k) 5y (k- sp -+ 1)

a (B (k) = 1)+ fo— P (89 4 1)| 4 g (89 +1) =9y (b +-8p +-1)]
exp (tka ;) — 1|+ [1 — exp (¢hwy,) | +
b b2 o 02— gy —bygexp (—i (sp + 1)) — arexp(i(sp +1) )|
< N/(8N) - N(8N)2+ 3 (24N) +2/(8N)* < 2/(8N)

=
-
S
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by (8), (2) and (7). Since [k] < N < s, we also have

-
.(13) |1~' Il ﬁ,,(k,+sp+1)]
n=M+5
<27 (hrsp+1r Y ait(bsp+1){ N e D w2
e M5 =45 X s ML A5
<2041 Y at2ep+n( Y a)”
== M A5 e M -5

M4 B

<2sp+12(0- ) @) +2(p+1) (0 24 )"
=1 n=sl

< 4(2m)2/p +4(2m) fp* < 4/(8N)* +4/(8N)2 < 1/(8N)
by (3), (8)" and (4). Similarly, we have

(14) ]1— ﬁ 1?"(70)|<1/(8N). :

ne=1+5
‘Combining (10)-(14), we conclude that

[aljﬁn(k)"*ﬁﬁn(h-l-s_p .{1)}
nstl nen

< 1/(8N) +1/(8N) +2/(8N) --1/(8N) -1 /(8N)
< 6/(8X) ‘

dor all @ W and all keZ with [k| < .N. But this implies WNF; =@ and
80 Wn 1l =@ for j = sp+1, because W is open in B. Hence WnH(a, N)
= @, which contradiets (9) and therefore completes the proof of part (ii).

The proof of part (iii) is almost the same as that of part (ii), and so
“‘we only give a sketch of the proof. Let a be as before, and choose an arbit-

rary complex number w of absolute value one. Recalling u, == ()% 7,,
‘we redefine I; to be

N
By = | {weB: jwap,(k)—j,(k+j) i 1[N},

Toaz
. ®
and set B(a, w, N) = (M F;. Detine V and W as hefore; then ze W and
Bl < N imply i1
(Wt () — iy (K 1= 50 +1)| < T)(BN),
which gives us the desired contradiction.

Proof of Corollaries 1 and 2. Suppose that the hypotheses of
quollary 1 hold. Then, for quasi-all we U, §, contains a complex number «
with 0 < |a] <1 by Theorems 1 and 2. For such 2 and a, there exists
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an feA[M(@)] such that f,, = a (»(2)-a.e.). Then we have
fd(u)w(m)m :f(é(y)) a™

(8(y)# (@)™ a.e.)
and

Jogn = " (v(w)-a.e.).
Since |f(8(y))] =1 for all yeG and since |a|™ # |of* unless m = m, this
establishes Corollary 1. The proof of Corollary 2 is similar.

§ 3. Further results. Under the hypotheses of Corollary 1, », has
independent powers for quasi-all #¢U. For such »,, it is known that
{fuey: FeA[M(@)]} contains all constant functions of absolute value one
(see [3]). More is true; S, = D for quasi-all s U under certain conditions.
The following lemma is strong enough for our purpose.

LevMA 5 (of. Lemma (4.1) of [5]). Let a,, be non-negative real numbers
for L<n< N and |k < K, and

N K

[1( 3 o)

n=1 k=—K

als) = (le] =1).

Suppose (i) N, =1 for all m, (i) max{a,,: k< K} <1 for some n,
I

and (i) 3 3'kay, 7 0. Then the semigroup gonerated by all a(2), lo] =1,

n k
is dense in ‘e closed unit disk D.

Proof. We have |a(2)| <1 for all z by (i) and |a(2)] <1 for gome 2
by (ii). Therefore the compact semigroup § generated by all a(2) is con-
tained in D and contains [0, 1], because |a(2)|® = a(z)a(?) is in 8 whenever
12 = 1. Since ¢* = 14+ 0(t?) as t—0, we also have

a(e“)=[N]{1+u ZK’kankJrO(t*)} as  3—>0.
n=1 k==K

Tt follows that lima(e¥™™ = exp (it Y ka,;) for all real #. Therefore S
n k

m
containg the circle {[2| =1} by (iii); hence D = [0,1]-{|¢] = 1} < 8,
an was required.

Tinally, we state two results without proofs. The former of them
follows from Theorem 1 and Lemma 5 while the latter can be proved
along the same lines as Theorem 3 was proved.

COROLLARY 3. Suppose that G is a metrizable LCA I-group, and that
{U, ey omd {(ay; byy 0p)}nmy a6 08 40 § 1. If there ewists o point (a, b, o)
in I such that max{a,d,c} <1 and b %o, then quasi-all @<T have the
following property: to cach [2| < 1 there corresponds an fel' such that f,,y ==
(vy-e.). Here I' donotes the closure of I'in A M(@)].
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TemorREM 3’ (cf. [2], Remark 3). Let {(@,; by Cp)lney omd (d,)2., be
an (arbitrary) admissible sequence and a sequence of positive real numbers,
respectively, and let C >0 be such that Clm is irrational. Setting

o0 o]
B =lwe[]10,d,] Zmngo},
=1 n=1

we then have (1) for every weB', the convolution product v, defined as in § 1
converges in the weak* topology of M(T), and (ii) for quasi-all xeB’, the
weak* closure of T in L®(v,) contains all the constamis im the compact semi-
group defined as in Theorem 1. . -
Remarks. (a) Suppose d, > 0 for all » and %‘dfb <00 (resp. %’,‘dn < oo).

Then the set B in Theorem 3 (resp. B’ in Theorem 3') may be replaced
by {z¢[][0,d,1: Y f(#,) <1}, where fis an arbitrary non-decreasing
1 1

continuous function of ¢> 0 such that f(0) = 0.

(b) Under the circumstances of Theorem 3, put B = [1—4b,1]
Ho>1/4 B=1[0,1]i 0<b<1l/4, and B = {1} if b = 0. Let ¥ be
a countable subset of 7. Then quasi-all #<B have the following property:
given meZ, {2, 25, ..., 2y} < {l¢| =1}, and ac<B, there exists a sequence
(r)7° of natural numbers such that (i) lijmexp(irjy) = exp(tmy) for yeY,

(i) limexp (ir;m,) = 2, for 1<n< N, and (iil) imexp(ir,¢) = o in the
i FAC

weak* topology of L™ (v(w, N)), wheie »(2, N) = % #,. In particular,
N1

etting ZA,G denote the weak* closure of T' in L*®(n,), we conclude (for quasi-
all w#eB) that 2, -contains many functions which are not of the form
Bexp(int), where feC and neZ, and that the measures 8()*»(z, N),
2eGp({wy, ..., wy}), are mutually singular for N =1,2,... Similar
agsertions hold under the circumstances of Theorems 1,2 and 3'.

(c) Replacing the set U (B or B’) by the countable cartesian product
of sets of the same type, we have some obvious generalizations of the
results established in this note. Furthermore, as Lemma K suggests, our
methods used here apply equally well for convolution products of measures

of the form > a; é(kx), where I is a fixed natural number, a, = 0 for all &
[HESS
and Ya, = 1.
k

(d) Suppose ue M(@), ged[M(G)], and g = a (p-a.e.) for some «
with 0 <la| <<1. Then, to each zeD there corresponds an feA[M(G)]
such that f = 3 (u-a.e.); for the proof, see [9]. Therefore we have the
following result under the hypotheses of Corollary L: for quasi-all e U
and all zeD) there exists an fed[M(G)] such that Sy = 2 (-ne.).

icm°
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