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Exhaustive measures in arbitrary topological vector spaces
#

by
IWO LABUDA (Poznai)

Abstract. In the paper bounded finitely additive measures with values in arbitrary
topological vector spaces are investigated. This leads to a generalization of C-spaces
of L. Schwartz and O-spaces investigated in different papers, for about thirty years
now, by Orlicz. For every pair of infinite cardinal numbers m, n we introduce topo-
logical vector spaces of type Oy (mt) and Oy (m). In this classification C-space and O-space
mentioned above are G'so (Ng)-space and Osu(Nﬂ)-Space, respectively. Necessary and suf-
ficient conditions for a complete topological vector space to be a Oy(m)- and an
Oy, (m)-space are given. Examples of 0y (m)-spaces which are not Oy (m)-spaces are pre-
sented. In the last section exhaustivity properties of Radon measures are considered.

0. In this paper bounded finitely additive measures with values
in arbitrary (Hausdorff) topological vector spaces are investigated. This
leads to a generalization of C-spaces of L. Schwartz and O-spaces investi-
gated in different papers, for about thirty years now, by Orlicz. For every
pair of infinite cardinal numbers i, n we introduce topological vector
spaces of type C,(m) and O,(m). In this classification C-space and O-space
mentioned above are O,go(so)-space and Oso(xo)-spaee, respectively. Until
now the only full characterization, in the setting of arbitrary topolo-
gical vector spaces, was known (Kalton [3]) for C-spaces. Namely, a
complete topological vector space X is a C-space iff X contains no sub-
space isomorphic to ¢,. In the present paper, basing on a recent result
of Drewnowski [1], necessary and sufficient conditions for a complete
topological vector space to be a Cy(m)-, and an O,(m)-space are given.
Complete C,(m)-spaces, which are not O,(m)-spaces are constructed. In
the last section exhaustivity properties of Radon measures are considered.

The results of this paper were anounced in [5], where the (probably
most important) countable case was studied. The reader may find therein
more references to the earlier work and the motivation for what follows.(*)

I would like to thank Lech Drewnowski for several helpful comments
and discussions. I am grateful to Susanne and Peter Dierolf for the cor-
rection of an error in the proof of Lemma 1. '

(*) Bee, however, “‘added in proof’’.
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1. Let I"be a set and m, n two infinite cardinal numbers. We denote
by card I the cardinality of I', §(I')-the ring of finite subsets of I', B (I")-the
power set of I. We say that a ring U of sefs is an m- ring if the umon of
any m disjoint elements of A belongs to A

If the set I'is fixed and card I" = m, then we denote D, (m
card B < n}. Wlth this notation if n >m, then D,(m) = ‘B(F).

Let X be a Hausdorff topological vector space (tvs), A a ring of
sets. A finitely ,additive set function is called measure; & measure »(:):
™->X (denoted also A>BrzyeX) is said to be m-exhaustive if for any
family (B,),; = % of pairwise disjoint sets card{w(H): w(B){ 7} <m
for each meighbourhood V of zero in X. x(:) is said to be bounded if its
range, #(%), is a bounded set in X; it iy said to be convexly bounded if the
convex hull of its range, conv(z(2)), is a bounded set in X.

We will say that X contains a disorete copy of & ring U if there exist
a neighbourhood W of zero in X, and a measure  (:): % — X such that
for any H,, B,<%

={H I

B, #+ B, = o(B)) —a(H,)¢ w.

In the sequel ®(I") = I°(m) denotes the Banach space of bounded
real-valued functions on I' (with cardl’ =m) endowed with the supremum
norm. c.(m) is the Banach subspace of I°(m) consisting of those
¢(+)el™(m) that card{y: le(y)| > & < n for any & > 0. With this notation,
for n>m, ¢,(m) = I*(m); the space oy (m) is denoted as usually by ¢, (m)
= g,(I"). s,(m) is the subspace of ¢,(m) consisting of finitely many
valued functions. It may be treated as the space of simple functions
over O, (m).

A measure #(:): On(m)->X is convexly bounded iff, taking simple
functions

n
D) tim, = sesy(m)

=1

n
with |s|| < 1, the corresponding set of values { 3 “Wzvi} is bounded in X;
1=l

xg denotes the indicator function of the set B < I A tvs X is said to be
a 0, (m)-space if every convexly bounded X-valued measure on a ring O, (m)
is m-exhaustive. A tvs X is said to be an On(m)-space if every bounded
X-valued measure on a ring O,(m) is m-exhaustive.
Every O,(m)-space is a C,(m)-space.
A complete metrizable tvs is called an F-space. Everywhere below I’
denotes a set with cardl’ =m.

13

2. The measure
Dn(m>3E = Zmeon (M)
will be called the canonical indicator measure of ¢,(m). It provides example

icm

EBahaustive measures in topological spaces 241

of a bounded non-m-exhaustive Banach space valued measure on rings
and n-rings of sets.

A tvs X is said to have bounded multiplier property (bmp) iff it
fulfils the following condition:

For each neighbourhood U of zero in X there is a neighbourhood -
V <= U of zero in X such that for any finite sequence (z,, ..., #,) < X:

= {sz Be{l,2,..

;m}} = V implies
ieH

(BMP)

{Za%-mi: EFc{1,2,...,n}, Ogai<l} conv(d) =« U.

el
Levwa 1. 4 tvs X has bmp iff it can be embedded in o product [] X;
of metrizable tvs’s having bmp. iel

Proof. Let W be a base of neighbourhoods of zero in X. For every
U in U we construct a sequence (V,,) of balanced neighbourhoods of 0
with the following properties:

1) V=17,

(2) Vo being defined, V,, is chosen such that V,+V, < V,
and for V,, condition (BMP) is satisfied with V,,_,

Denoting by py the F-semi-norm generated by (V,,), the space
(X, py) has bmp. Moreover, the fhe family (py: U ¢ U) of F-semi-norms
defines the original topology of X which implies the ‘‘only if’’ part of
the lemma. The “if” part is easy and the proof will be omitted.

LEMMA 2. A metrizable tvs X has bmp iff every uncondmonally Cauchy
series in X is bownded mult@plwr Cauchy (i.e., if 2 x, 18 unconditionally

Cauchy, then for each (a,)el™, Z %y, 18 Cauchy).
n=1

Proof. Let || | be an F-norm defining the topology of X. The “only
if” part being contained in Lemma 3 below, we proceed to the proof of
the “if” part.

Take ¢, > 0 such that ) g, < co. If (BMP) is not satisfied, then we find
k=1 |

6> 0 and &,, n >n, such that for each g, there exists (2}), ie K, ¢F(N

with the property

I EPIEATES
iel

g, for each ¥ < K,
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(2) IIEaW?H>6>0 for some B c K, and 0<a; <1,

Ohoosmg (# for which (2) holds and arranging them one after another,
" we obtain an infinite sequence, (2,,) say, which is uncondltmnally Caunchy.

In the same time for some gequence (a,,)el™, the geries Z A, By, 18 OB
Cauchy, which proves the lemma. m=1

Tn view of the above lemmas and recent results of Kashin, Maurey,
Pisier and Turpin (see e.g. [4], [12]) the class of spaces having bmp con-
tains, except semi-convex spaces, quite a large number of other spaces,

TmwvA 3. Let U be a ving of sets, X a tvs having bmp and o(:): A->X
a bounded measure. Then x(:) is convealy bounded.

Proof. Given a neighbourhood U of zero in X, let V' be such a neigh-
bourhood of zero in X that (BMP) is satistied. Since a(:) is bounded,
we can find & > 0 such that ax(%) = V. Then clearly, aconv () =

TemorEM 1. Let X be a sequentially complete tvs having bmp, n an
infinite cardinal number. The following are equivalent.

(1) X is an O,(m)-space.

(i) © $ ey(m), i.e., no subspace of X is linearly homeomorphic to ¢, (m).

With the same notation

OOROLLARY. A. The following are equivalent.

(i) Bwery X-valued bounded measure on an m-ring of sets is m-ewhaus-
tive.

(i) X $ I°(m).

B. The following are equivalent.

(i) BEwery X-valued bounded measure on a ring of sets is m-exhaustive.

(ii) X = ¢(m)- “

Proof of the theorem. If X contains ¢,(m), then the caunonical
indicator measure of ¢,(m), treated as X-valued, is a bounded non-m-
exhaustive measure. Hence (i) = (ii). (ii)= (i). Assume @(:): On(m)—X
is bounded, hence convexly bounded by Lemma 3. If #(:) is not m-exhaus-
tive, we can find m disjoint sets in O,(m), (E)..r say, such that x(B)¢U
for some neighbourhood U of zero in X and vel. We may identify I
with I" and the ring O,(I) generated on I with D,(m). Transporting ®(:)
on O, (I) in 2 usual way, we get a measure on O,(m), which we denote
still by ®(:), with the property @({y})¢ U for any yel' As &(:) is convexly
bounded, its integral extension &: s,(m)—X is continuous, and con-
sequently extends by continuity to a bounded linear map (denoted still
by &) #: 6,(m)—X. The result now follows by Drewnowski’s Theorem [1].

An examination of the proof shows that we have proved also the
following
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TEROREM 2. Leét X be a sequentially complete tvs, n an infinite cardinal
number. The following are equivalent.

(i) X ¢ a Cy(m)-space.
(ii) X 3 ex(m).

In connection with Theorem 1 it may be worth to notice that among
F-spaces arising in a natural manner in analysis, one encounters both —
those which do not “contain” ¢,, and those which “contain” 1. Probably
the most important class of such F-spaces is that of Orlicz spaces L®.
They are “proper” F-gpaces (ie., not locally bounded in general) and,
as proved in [4], [12], they have bmp. Also it is known, mainly thank
to the work of Orlicz himself, that Z® with absolutely continuous norm
are Oy (Ro)-spaces, hence do not “contain” ¢,. On the other hand, if L* has
the norm which is not absolutely continuous, then L? contains a subspace
isomorphic to I*.

When no convexity properties of a given tvs X are known, a result
similar to Theorem 1 could hardly be expected. In fact, we will give later
examples of complete C(m)-spaces which are not O,(m)-spaces. First,
necessary and sufficient conditions for a tvs X to be an O,(m)-space will
be given. Our argument relies on the already mentloned paper of Drew-
nowski [1].

3. Let A(I") be a ring of subsets of I" such that
1V {yreA(D),
pel*

20V V EndeW(T),
EeU(I') del’ .
i.e., an ideal containing finite subsets of I. In parmculm QI( ) may be
the ring O, (m).
If 4 I, then A(4) denotes the subring {Fn 4: E<A(I")}; the
same convention will be applied to the symbol B(I") which will appear
below.

THEOREM 3. Let X be atvs, 2(:): W(I)—~+X a bounded measure. Assume
that for some neighbourhood U of zero in X the set I of all such y el that
2({y}) ¢ U is infinite. Then there exists a subset I of I with card I = card ™
such that the restriction %(:): W(I")—~X has the following property:

There is a neighbourhood W of zero in X such that for each B,, Hye W(I"Y
with B, # By, a(B,)—x(B,)¢ W.

In other terms, X contains a bounded discrete copy of (L")

Proof. In the proof we will represent I" as a set of ordinal numbers.
If « is an ordinal number, then P, will denote the set of all ordinals less
than a. et m = cardl’, and let x be the least ordinal number with card P,
=m. We may and shall assume I" = P,. For each a < u we denote ¥,
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= {f: a< B < p). Purther on, we may assume that I" =TI Also, we
may and shall identify each element of A(I') with its indieator function.
Denote by B(I") the set of all simple functions over A(I") which take
values 0,1, —1, i.e., if deB([), then 4 = B,—¥,, where By, B,<A(I')
and are disjoint. It i3 clear thatb #(:): AI—-X can be uniquely ex-
tended to B (). Indeed, if A = B, — Hye B(I'), then we put #(4A) = z(H,;) —
—a(B,). Obviowsly &#: B(I)—~X is still bounded.

Arguing exactly as in the proof of Theorem in [1] we will get:

There is a subset 4 of I' with card I’ = card 4 such that for every
oed B({o}+A)¢ Wit AeB(4NT,,,), where W is a balanced neigh-
bourhood of zero(?) (and {o} = y by our identification).

(%)

El

By the symmetry &(—{oc}+4) = —&({o}+(—4))¢ W, since W
is balanced. This means precisély that #(4)¢ W if 4 #0, AdeB(4).
Indeed, if & = A = B, —H,, By, By« A(4), let o be the least ordinal in
B,uB, We have A = {0} +B or A = —{c}+B, where Be B(ANT, )
and (%) applies. )

Take any two different sets By, HyeA(4) and consider o (B,) —x(Hy).
We have z(Hy)—u(H,) = o(H, —B,) —o(H,—B,) = &(4), where G+ A
e B(4). So z(H,)—x(H;)¢ W. This proves the theorem.

With the same notation

CoROLLARY 1. Bzactly one of the two following possibilities holds.

(i) «(:): D/m)—>X is m-exhaustive.

(if) X o O (m), i.e., X contwins a bounded discrete copy of On(m).

COROLLARY 2. The following are equivalent.

(i) X s an O,(m)-space.

(i) X = Oyn(m), i.e., X contains no bounded discrete copy of Oy (m).

In particular, since card$P(I") > cardl™

COROLIARY 3. Let X be a tvs and assume that the character of density
of X is at most 1ir. Then every bounded measure on an m-ring of seis, with
values i X, is m-exhaustive.

icm

As the character of density of ¢,(m), for m<{m, iy precisely m, the ‘

following generalization of Phillips-Sobezyk theorem holds (compare
Pelezynski and Sudakov [6]):

COROLIARY 4. There is no continuous projection from 1°(m) onto (M),
ngm.

(%) W is chosen as in [1] but for & instead of x(:) (which corresponds to I in

(£33
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In fact, the composition of such a projection with the canonical
indicator measure of I%(mt) would be m-exhaustive. And it is not as yg,++0
in ¢, (m).

4. Consider the space s,(m) of simple functions, where n is an in-
finite cardinal number. It contains the range of the canonical indicator
measure of ¢,(m) which is isomorphie to a bounded discrete copy of O, (m).

We will endow s,(m) with the suitable for our purposes complete
linear topology 7z,(m). Let for e%ch Ne N, X, denote the subset of s,(n)

of simple functions of the form } a, %z, Where |a;| < N, B;eD,(m) and are
i=1

pairwise disjoint. For instance, v—vhich will be of importance for us, X, is
a balanced hull of the range of the canonical indicator measure of ¢,(m).
Sets X, Ne N, have the following properties:

(1) X5’s are balanced,
(2) Xy+Xy © Xoynp,

(8) U Xy = sy(m),
N=1 .

(4) X,’s are complete (in the original topology of uniform con-
vergence),

(8) X, containg a discrete bounded copy of Oy (m).

Now, by a theorem of Turpin {10] (see also [11]) the strongest
linear topology 7,(m) which induces the original topology on each Xy
is (Hausdorff) complete. Since X’s are bounded in the topology of uniform
convergence, they are bounded in the topology z,(m) as well. We claim .
that

PROPOSITION. (8,(m), 7,(m)), & complete tvs, contains a discrete bounded
copy of On(m) and does not contain any subspace isomorphic to c,(m). Thus
it 1§ a Cy(m)-space which is not an O,(m)-space. -

" Proof. Let us assume the contrary. Then the sets Xj = Xy cy(mm)
cover ¢, (1), By Baire’s Theorem one of them, X3, say, contains a ball B.

M -
Every element of X}, is of the form )’ ¢ xm; lo:) < M, and ¢, (m) = U nB.
i=1 M n=1
Consequently, every mec,(m) would be of the form ZGiXE,;, where ¢;
=1

are now arbitrary. This is impossible since the collection of functions of
such form is not a vector space unless it is at most M-dimensional.

The above examples show that the necessary and sufficient con-
ditions given in Corollary 2 cannot be much improved. Notice, however,
that X = (s;,(m), -r“(m)) is not an F-space. For if it were so, for some
Ne N, Xy would be a neighbourhood, hence absorbent. As above, this
is impossible unless X is finite dimensional.
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Finally in the same line of 1deas, Rolewicz and Ryll-Nardzewski
gave in [8] (see also [7]) an example of an F-space without bmp. This
proves automatically the existence in an F-space of an O-series [B] (even
subseries convergent) which is mot a C-series. Indeed, general results
of Thomas [9] (see also Kalton [2]) on integral extensions of Radon maps
imply in particular that every converging O-series is bounded multiplier
convergernt (of course, one can alse give a relatively simple direct proot
of this fact). In view of the same example, it is as well possible that the
convex hull of a set of finite partial sums (which is a subset of a compact
metrizable set of all partial sums of a subseries convergent series) is not
bounded, ‘

5. The notion of exhaustivity may be investigated when [dealing
with Radon measures (see [2], [3], [9]), or even considering homomor-
phisms on Riesz groups ([2]), as well. In this seetion we are interested mainly
in exhaustivity properties of Radon measures. However, in order to obtain
more symmetry we will place us first in the slightly more general setting
of M-spaces.

We recall that an M-space F' is » Banach lattice with the property:
(M)

frgeF and. fAg =0=[fVgl =11Vl

Let X be a tvs, F an M-space, m an infinite cardinal number.
A linear operator &: F—X is said to be m-evhaustive if:

For any family (fy)vw < F such that f,> 0, f, Afs =0 for y 5 6
1<, card{®(f,): @(f,)¢V}<m for any nelghbourhood V of zero
in X.

A Banach lattice F is said to be m-complete if any family (f,),.r = F
with card]’ < m which has an upper bound, has a supremum in .

Let K be a locally compact Hausdorff space. We denote by O(K)

icm

the space of bounded, continuous, real-valued functions on K with the

supremum norm, by Cy(K) its subspace consisting of functions vanishing
at infinity. :

THrOREM 4 (cf. Theorem 2). Let m, nt be infinite cardinal numbers,
X o tvs. The following are equivalent.

(1) Given any n-complete M-space F, and any bounded lincar operator
D: F—-X, then D is m-exhaustive.

(il) X 3 ¢,(m).

Proof. (i)=(ii). If @ is not m-exhaustive, we find positive ( Fodyer
in F such that: cardl” =m, f, Afy = 0 for y = 4, ;<1 and &(f,)¢V
for some mneighbourhood V of zero in X and yeF Let ¢ = (¢,)ec,(m)

(=c;(I), ¢> 0, |lell < 1. Define ¥(c) = sup e,f, (= sup > o,f, = the
BeH(T) yelt

Hah, 73
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order-sum 0— 3 ¢,f,, where §(I') is ordered by inclusion)(?). As cec,(m)
“yell

and F is n-complete, ¥(c)eF. Extending ¥ on the whole ¢,(m) we get
the linear bounded operator ¥: ¢,(m)->F. Consider OY¥: ¢,(m)-+X
It is bounded linear and

OF (1) = @(f,)¢V.

Applying Drewnowski’s Theorem [1] X > ¢,(m).

(ii) = (i). If X o e,(m) it is sufficient to consider the 1dent1ty on ¢,(m)
as X-valued map (which is bounded non-m-exhaustive).

COROLLARY (cf. Corollary after Theorem 1). A. Let K be an m-Stonian
compact Hausdorff space. The following are equivalent.

(i) Bvery bounded linear operator (= Radon measure) @: C(K)—~X
is m-ewhaustive. :

(il) X $ I%®(m).

B. Let K be a locally compact Hausdorff space. The following are equiv-
alent. .

(i) Bovery bounded linear operator (= Radon measure) @: Cy(
28 m-exhaustive. ‘

(i) X  c(m).

Added in proof. 1) The Théoréme as stated in [5] is false. The as-
sumption “If 2(:) is not exhaustive” must be replaced therein by
“If o ({n})+07.

2) In the meantime Drewnowski found an extremely simple, avoiding
the transfinite induction, proof of his theorem. This method may be
applied in our situation as well, see [13].

K)~>X

(%) 'This definition of ¥ must be changed if (and only if) n = ¥,. Noting that
if cp(m) = oy(m) the series 3 ¢,f, is summable in F, in that case we define ¥(c)
yel'

=X eyfy.
yel”
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Anosoy endomorphisms*
by
FELIKS PRZYTYCKI (Warszawa)

Abstract. 'We goneralize notions of Anosov diffeomorphisms and expanding
maps by introducing Anogov endomorphisms. For such an endomorphism f we assume
the existenco of an invariant hyperbolic splitting of Ty, (M) along every f- tm]ecbory
(w5). 'The main result of this paper is a construction of an uncountable family of pair-
wige nonconjugated Anosov endomorphisms contained in a small open subset of
OY(M, M). We construet also an Anosov endomorphism which has an are of unstible
manifolds at some point. We prove some tochnical lemmas in more general situation
of hyperbolic sets or Axiom A.

§ 0. Introduction. Let M bea compact, connected, boundaryless finite-
dimensional C*° manifold.

DerinertonN. A diffeomorphism f: MM is called an Anosov diffeo-
morphism if there is a continuous splitting of the tangent bundle TM
= FP - ¥ which is preserved by the derivative Df and if there are constants
0>0,0<pu<1l and a Riemannian metric (-, -) on TM such that for

n=0,1,... we have
(1) 1Df* ()| < Cp™|oll  for wveE®,
(2) IDf ()= 0 ol for weB™.

For the main properties of Anosov diffeomorphisms see [4], [8].
DEFINITION. A map feO' (M, M) is called ewpanding if there. are
constants ¢ > 0, 0 < u < 1 4nd a Riemannian metric (-, -> on TM such
that for » = 0,1,... Wé have
1Df" (0}
(see, for example, [5], [9]).

= 0u™" |l

In this paper we generalize the above motions as follows:

DurrNirioN. We call a regular map feC'(M, M) an Anosov endomor-
phism it there exist constants > 0, 0 < u < 1 and a Riemannian metric
£+, > on T'M such that for every f-trajectory (m,) (a sequence of points in M

T, M

+oo
= @, .1 for every integer ) there is a splitting of (J T,

o= 00
= PRI = U @I, which is preserved by the derivative .Df
5 e OO

and conditions (1), (2) ave satisfied.

satistying f(x,)

mn.

* This is a part of the author's PhD. thesis written under supervision of
Dr. K. Krzyzewski and Dxr. W. Szlenk.
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