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Some applications of p-summing operators
to Banach space theory

: by
HASKELL P. ROSENTHAL (UrbanaChampaign, U.8.A.)

Abstract. Let B be a Banach space. B is said to be p-dominated if every operator
from every C(K)-space to B.is p-absolutely summing. Equivalent formulations are
developed in terms of certain finite dimensional inequalities in B. An exposition is
given of the proof and some consequences of the Theorem: Hvery Banach space either
contains 1,’s or is p-dominated for some 2 < p < co. (This result was first proved for:
quotient spaces of ¢ (K)-spaces by the author and later shown in general by B. Maurey.)
A new class of (finite-dimensional) bases is introduced, generalizing the class of “spread-
ing” or “subsymmetrio” bases. These bases are called wunconditionally-transitive
bases, It is shown that every such basis in a p-dominated space satisfies an upper-
p-function space estimate. This yields some fundamental inequalities of Tzafriri,
used in his result that every space with uncond;ltlonal basis containg uniformly ecomple-
mented 2’s for some pe{l, 2, oo}

Our main objective is to give an exposition of the proof and conse-
quences of the following fundamental result:

THEOREM 1. Let B be an arbitrary Banach space. Then either B con-
tains 128 or there is a 2 <'p < oo so that every operator from every C(K)-
space into B factors through am LP(u)-space.

(Our notation and definitions are standard for the most part, follow-
ing the terminology of [17] and [27]. A Banach space is said to contain
1’5 if there is a 4 so that it containg a A-isomorph of I£ for all n. “Operator”
means “bounded linear operator”; a “C(K)-space” refers to the Banach
space of real-valued continuous functions on some compact Hausdorff
space IC; an L”(u)-space refers to the Banach space of equivalence classes

of pth-power integrable functions defined on some measure-space (X, & u);

IP = I”(u) for u Lebesgue measure on the Lebesgue-measurable subsets
of [0,1]. An operator T: O(K)—B- factors through LP(u) if there are
operators U: C(K)-»LP(u) and V: L?(u)—~B with T = VU.)

It is fairly easy to see that Theorem 1 has the following dual version:
either a given Banach space X is such that X contains uniformly comple-
mented 1L's, orthereis al < g < 2 so that every operator from X to an L*(u)-
space factors through L%(u). For a striking recent application, see [11].
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. Theorem 1 was established in [26] for the case of quotient-spaces B
of O(K)-spaces. It was subsequently realized by Maurey [18] that the
techniques in [26] actually yield the general case. The above-mentioned
special case yields that every reflexive quotient space of a O(K)-space
is isomorphic to a quotient space of an L (u)-space for some 2 < p < oo,
By duality, one obtains the equivalent assertion that every reflexive
subspace of an L'(u)-space is isomorphic to a subspace of an L? (u)-space
for some p > 1. We refer the reader to [26] and also the expository paper
[27] for further applications of Theorem 1 and the more refined version
presented in Section 2 below, to the structure of Banach subspaces of I,
and also to [18], [20], and [21] for applications to the structure of Banach
subspaces of the measurable functions. 'We shall be mainly concerned
here with applications to the structure of general Banach spaces.

We develop our expogition of Theorem 1 in terms of the notion of
p-absolutely summing operators. In Section 1, we define this notion
and summarize some of the elementary results. We also review some of
the structure results of [26] concerning subspaces of I!. We then define

- @ Banach space B to be p-dominated if every operator from every O(K)-
space to B is p-absolutely summing. Theorem 1 is implied by (and implies)

THEOREM 1'. Bvery Banach space either contains 1%s or is p-domin”
ated for some 2 < p < oo.

(We note in passing that the two possibilities of Theorem 1’ and
Theorem 1 are easily seen to be mutually exclusive.)

The remainder of Section 1 is devoted to applications of Theorem 1'.
These mainly are derivations of a number of inequalities discovered
fairly recently. For example, it is shown in Corollary 1.3 that every uncon-
ditional basic sequence in a p-dominated space satisfies a lower-p-estim-
ate, thus yielding a result of Johnson’s [9] ; & stronger result, used recen-
tly by Figiel and Johnson [5], is stated in Proposition 1.4. In Proposition 1.5
we state a dual consequence of Theorem 1’; namely, that every Banach
space B either containg I,’s or has the property that all of the quotient
spaces of B* are p-dominated for some 2<p < co. Consequently we
obtain in Corollary 1.6 that if a Banach space B does not contain I,
then every unconditional basic sequence in B satisfies an upper-g-estimate
for_some 1 <g<2. We then skefich an (unpublished) argument of Figiel
which shows that if B does not contain I1’s, neither does L*(B); this allows
the deduetion in Corollary 1.7 of a result of Pisier [21], exposé N° 7;
if B does not contain I}’s, then B is type ¢ for some 1 < ¢<2 (“type ¢”
is defined in Section 1). The final result of Section 1, Corollary 1.8, gives
& somewhat different proof of the result of Maurey that every cotype-2

Banach space js 2-dominated. (A special case is the fundamental theorem
of Grothendieck [87; Lt is 2-dominated.)
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It thus appears that the inequalities implicit in Theorem 1’ are more
powerful than these various other inequalities; naturally the direct proofs
of these other results are often simpler than the proof of Theorem 1’
itself (though not simpler than their derivation from 1'). In the interests
of economy of thought and power of method, it seems worthwhile to
realize these other inequalities as special cases of the one set of inequa-
lities given by Theorem 1.

We present the proof of Theorem 1’ in Section 2, via the notion
of p-inclusive Banach spaces (defined at the beginning of Section 2).
A stronger result is stated in Theorem 2.1, namely the result of Maurey [18]:
for 2 <p < oo, a Banach space is either p-dominated or p-inclusive, and
these alternatives are mutually exclusive. (It is this theorem which genera-
lizes the main result of [26].) A crucial step in the proof of Theorem 2.1
is a “variation-of-density lemma”. A “motivated” proof is given in [27],
and is consequently not repeated here. Theorem 2.1 also involves an
application of a technique of Giesy [6] to p-inclusive Banach spaces
(stated as Proposition 2.3).

In Section 3, we introduce a generalization of the class of subsym-
metric or “spreading” bages, namely the class of unconditionally transitive
bases. We then use this notion and Theorem 1’ to recover some funda-
mental inequalities of Tzafriri [29], called by us the Teafriri function-
space estimates. These estimates are one of the key steps in his important
result that every infinite dimensional Banach space with unconditional
basgis contains uniformly complemented 2’s for p =1,2, or co. It is a
famous open question as to whether this remains true if the phrase “with
unconditional basis” is deleted. For recent progress, see [11].

Our style is largely expository with “minimal background” required
for most of the arguments. A fair amount of attention is given to stating
recent related results. The reader already expert in these matters will
probably find it most beneficial to focus on Section 3 and parts of Section 2.

1. Applications of Theorem 1'. We begin with some elementary
considerations concerning p-summing operators. Let 1 <p < co and X
and Y be Banach spaces. An operator T: X—Y is called p-absolutely
summing (p-a.8.) if for any sequence (w;) in X for which Y |o™(a;)[® < oo
for all #* in X*, one has Y |T#;|’ < co. It is easily seen that this occurs
if and only if there is a 2 < oo 50 that for any finite sequence @, ..., &, in X,

(Z ”Tw]_”p)llp <1 sup (2 Im*(wmp)lm,

the supremum taken over all #* in X* of norm one. The smallest possible 1
satisfying this inequality is called the p-a.s. norm of T'. It is a fairly simple
consequence of the local reflexivity principle (as presented in [10]) that
if T is p-a.5. with p-a.5. norm 2, then also T%* is p-a.s. with p-a.s. norm A.
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Now suppose that X is a subspace of a O(K)-space and T: X—Y is p-a.s.
It is then easily seen, using the Riesz representaiion theorem, that the
p-a.s. norm of 7' is equal to the smallest A so that for all By ooy @, in X,

(Z “ij“:,,)llp< 1 T:II{) (2 ij(k)lp)llp.

A non-trivial equivalence is the following result due to Pietsch (see:

[23] and [15]):

PierscH FAoToRIZATION THEOREM. Let X, Y, C(K), and T be as
above. Then T has p-a.s. norm ot most 2 if and only if there is a probability
Borel measure p on K so that

(1T ga(fm(k)[wu(k))”" for all  weX.
2 : .

It follows immediately that if an operator is p-a.s., then it is q-2.8.
for all ¢ > p. Now suppose that X = O(K), and x and T are as above.
Since the natural map ¢ of C(XK) into L?(u) has dense range, one trivially
obtains the existence of an operator V: IP(u)—~Y with [|[V]|<< A 80 that
T = Vi. Thus every p-summing operator on a ((K)-space factors through
an L?(u)-space. The converse is false for all 2 < P < oo, as we shall see
in Section 2 (this result is due to Schwartz—Kwapien: see [18]). However,
a result of Kwapieii’s ([14], see also [26]) asserts that if an operator on
a 0(K)-space factors through an L?-space (2 < p < o), then it is g-summing
for all p <gq.

The Pietsch Factorization Theorem evidently gives a global result
using only the “data” of the local behavior of an operator, that is, its
behavior on finjte-dimensional subspaces. Or the other hand, the results
just mentioned have considerable content and applicability in the case
where T is defined on a finite-dimensional ¢ (X)-space.

PROPOSITION 1.1. Fiw n & positive integer and suppose . = {1,2,...,n}
i.e.,0(K) = 1. Let Bbe a Banach space and T': C(K)—B a given operator.
Put by = Te, for all 4, 1 < i < n, where 6;(§) = by for all i and j; assume
that b; 5 0 for all 4. ‘

(1) 1T = supl| 3 +b,ll, the supremum taken over all choices of signs --1.
i=1

Let 1 <p < co. The p-a.s. norm of T' is the smallest number A satis-
Tying any of the following four conditions:

(2) g,’”jZm{(j)b,.i[”< Z”li}g;m{(g‘)w Jor any finite sequence x,, -.., m,
n C(K).

(3) 2(; I (5)B;17)12 < z(;‘ )2 for any finite sequence ., ...

J
in B*,

1 Ym
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(4) There ewist positive numbers u,, ..., u, with 3 p;= 1 so that DXEIEN2]
S A D GPw)® for all zeC(K).

(5) There emist positive numbers py, ..., u, with 2u =1 so that
X 0% (b)) (1M < AlIb*|| for all b*eB*, where 1/g+1/p =1.

Sketch of the proof. (We leave the details to the reader; all the
equivalences follow simply from our previous considerations.) (1) and (2)
follow from the definitions. (3) is equivalent to (2) by duality (ef. Prop-
osition 1 of [26]). (2)<>(4) follows from the Pietsch Factorization Theorem.
Finally, (4)<>(5) follows from duality: Let u be the natural measure on
{1, ..., n}induced by wy, ..., s,, and define §: I (u)—B by S(z) = Za()b;
(4) evidently asserts that ||S|I< 4, which is equivalent to [S*|] < 1, where
(L’“(,u))* iy identified with L%u). For fel”(u) and geL®(u), the natural
pairing is given by {f, ¢ = Zf(i)g(i)u;. It follows that for all b* e B,
8*b* (4) = b*(b;)/u;; thus (5) is simply the assertion that |§*] < A.

The next (preliminary) result “summarizes dual-characterizations
of p-summing operators.

PROPOSITION 1.2. Let u be a probability measure on some measurable
space, X a Banach space, 1 < p < o0, 1/p+1]g =1, A <oo, and T: X—I(y)
a given operator. Then the following three statements are equivalent:

1° For any positive integer n and elements z,, ..., o, of X,

J( X wai)?® < a( 3 1wr) ™.

2° I*: L% (u)->B* has g-a.s. norm less than or equal to A
3° There emists o non-negative measurable’ function ¢ with [odp <1
so0 that for all we X, (Tw)(t) = 0 for (almost) all t belonging to {t: ¢(t) = 0}
and
([17are =2 au)" < 2ol

Implications (1)<«-(3) as well as certain generalizations thereof,
were demonstrated by Maurey in [18] using a minimax theorem. Theorem 1
of [26] yields 1.2 under the special case where X is already a subspace
of I*(u) and T is the identity injection. Actually the proof given in [26]
may be adapted almost verbation to obtain the above result. Assuming 2,
the function ¢ is produced by using the Pietsch Factorization Theorem
and identifying L%(u) with a C(K)-space. The measure » which arises
from the Pietsch Factorization Theorem is then shown to be of the form
@du, thanks to the Radon-Nikodym theorem. ]

In the case in which X is already a subspace of I'(u) and T is the
identitiy injection, the smallest A satisfying 3° is denoted by I,(X). As
Pointed out in [24], the condition “I,(X) < co” is not an isomorphic
invariant of X, for 2 < p. However, it is an isomorphic invariant for
P < 2; moreover, if X and Y are isometric subspaces of L*(u), then I,(X)
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= I,(Y). This is because of the fact that there exists a sequence f, f,, ...
in I, isometrically equivalent to the usual basis of I. Congsequently, a sub-
space X of L'(u) satisties 1° of 1.2 for 7' equal to the identity injection

if and only. if
1
S5 fitwra] dw < 2( 3 lai)™

for all @, ...,®, in X. If we fix the f’s to be independent identically
distributed symmetric random variables, stable of exponent p, then the
existence of such a 118 an isomorphic invariant on X, definable regardless
of whether or not X imbeds in L. (A symmetric stable random variable
of exponent p defined on [0,1], is by definition a measurable function f

1
on [0, 1] so that for some non-zero ¢, [¢¥®dz = ¢~” for all real t. For
(1]

the existence and properties of such functions, see most standard texts
on prohability theory or [25].) Following Pisier [24], we say that a Banach
space X is type p-stable if there exists a A <¢. oo such that the above in-
equality holds for all » and @y, ..., ®, in X. It is a fact (cf. [24] or Corol-
lary 2.4 below) that I° is type p-stable for all 1 < p < s < 2. If X is type
p-stable with constant A, then one immediately obtains that 1° of 1.2
- holds for every norm-one operator I': X—>I'(g). This implies that every
operator 8 from a C(K)-space to X* is g-a.s., with g-a.s. norm at most
1812, where 1/p+1/q = 1. In particular, if X is a subspace of L*(u) with
I,(X) < oo, then every operator § from a C(K)-space to X* is g-a.s.
with g-a.s. norm at most ||S||L,(X) (cf. [26]). By duality, one obtaing that
if there i3 a ¢-summing surjective map from a O(K)-space onto a Banach
space B, then every map from any ((K)-space into B is g-summing.
Before passing to conmsequences of Theorem 1/, we note one final conse-
quence of Proposition 1.2 (i.e. of Theorem 1 of [26]) itself: L(1?) = y=]2.
(This identity is valid for real Banach spaces, and is due to Grothendieck
[8]) For complex spaces, Grothendieck obtains that I,(I%) = 2/Vr.
(I am indebted to A. Pelezyriski for bringing this to my attention.)
The identity has also been obtained by Gordon and Lewis [7].) To see
this, it suffices to take a particular subspace X of L' isometric to I2.
Let @1, ®,,... be a sequence of independent standard normal random
variables and let X equal the closed-linear-space of the #’8 in L. Then
if 2i8in X, & # 0, & is also & normal random variable, hence lleal/ ezl
= m; this shows that I,(I1?) < 1/71:/2. To show the reverse inequality,
because of 1° of 1.2 and the facts that (o), = 1 and ], = 1/5/_% for all 4,
it suffices to prove that

1 .
Iimn‘*’f @)+ ... +ai@)fat =1.
n—o 0
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Of course, this is a simple consequence of the strong law of large
numbers. )

Let 2 <p < co. We say that a Banach space B is p-dominated if
every operator from every C(K)-space into B is p-a.s. (From now on,
it is understood that “p-dominated” refers to some 2 << p < o0.) It is
easily seen that if B is p-dominated, then there is an M < oo so that every
operator I' from every C(K)-space into B has p-a.s. norm at most M || T;
if M satisfies this relationship for all such operators T, we say that B is
M-p-dominated. Now as is well-known ([16]), a C(K)-space has the prop-
erty that for each 1> 1 and each of its finite dimensional subspaces
F, there exists an n and a subspace G with ¥ < @ and' G A-isomor-
phic to I’. We then obtain, using Proposition 1.1, that a Banach space
is M-p-dominated if and only if for any n and by, ..., b, in B, the (equiv-
alent) assertions (2)~(5) of 1.1 hold, where one sets A equal to Msup| 3 + byl

&+

‘We use the word “dominated” in this definition because of the inequality
which results from applying (4). This inequality shows that the sum of
a certain series is dominated by an L? function-space estimate. We return
to this observation in Section 3. We note in passing that one of our previous
remarks asserts that Hilbert space is Vr/2-2-dominated and Vx/2 is the
best possible constant. For a discussion of various properties of 2-domin-
ated Banach spaces, see [2]. )

Let 1/p+1/g = 1. It follows easily from the Persson—Pietsch duality
theory [22] that a Banach space B is p-dominated if and only if every
¢-a.8. operator from B into an arbitrary Banach space is 1-a.5. The results
in [18] are usually expressed in this alternate formulation. It should also
be pointed out that a Banach space B is p-dominated if and only if every
operator from every (or from some) infinite dimensional .#_-space to B
is p-a.s. (see [16] for the definition and fundamental properties of £ -
spaces). Moreover, if B* is p-dominated, every operator from B to I}
factors through L4 while if every operator from B to L' factors through L%
then B* is r-dominated for all » > p.

From now on, “u” shall denote a real number greater than or equal
to one. Say that & normalized sequence (b;) in a Banach space is u-uncon-
ditional if for all n, scalars ¢,, ..., ¢, and choices of signs 4+,

| 2 £t <u] Zan|

Now it follows immediately from the definitions that if B is M-p-domin-
ated, then every wu-unconditional sequence (#;) in B satisfies a lower-
Mu-p estimate; i.e., for all scalars ¢y, ...; ¢,

(2 |c1,(p)1/p < Mu’ “2‘ cjw,H .
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To see this, one simply sets b; = gu; for all j; #;(j) = 6, and applies
(2) with

A= Msgp ”Z icjij < JVI/MHZI c,wj“.

Hence we have the following consequence of Theorem 1.

CoRoLLARY 1.3. If a Banach space B does not contain I's, then there
8 6 2<p < oo 50 that every unconditional basic sequence in B satisfies
a lower-p-estimate. '

Of course, a special case of Corollary 1.3 iy that if a Banach space
does not contain ;s and has an unconditional basis, then this basis must
be p-block Besselian for some 2 < p < oco; this result was established
directly by W. Johnson in [9].

Actually, a considerably stronger inequality than the above can be
proved; this stronger inequality is formulated and used in a recent paper
. of Figiel and Johnson [5]; the case p = 2 is discussed in [2].

ProrosirioN 1.4. Let a Banach space B have a u-unconditional basis
Uz, Yg, ... and let B be M-p-dominated. Then for any n and sequence yy, 4y, . ..

vy Yy 0 B,
(3 Iwall)"* < 2w 1> (;‘ Iy ()1F)" ],

where Yy = Dy (iyu; for oll j.
To see this, assume that y; # 0 for any j and put d, = (3 |y, (3))*»
7

for all ¢ (by our remarks preceding 1.3, d; < co for all i). Now set z:(5)
= %(J—) for all ¢ and j. Then Y |z,(j)|” = 1 for all j. Hence the inequality
7 B

of 1.4 follows immediately from (2) upon setbing b, = (3 |y}(4)[")*?u,
7
for all ¢ and 1= Msup|| 3 £ | < Mu| 3. We note also that the results
+

of [2] imply that the converse of 1.4 holds if p = 2; that is, if B has an
unconditional basis and satisfies the conclusion of 1.4, then B iy 2-domin-~
ated.

We now give some dual consequences of Theorem 1.

Prorosirion 1.5. 4 Banach space B either contains IL's, or there ewists
an M and a p so that every quotient space of B* is M. -p-dominated.

Proof. Suppose that the second alternative fails to hold and fix n.
The proof of Theorem 1’ given in Section 2 yields that there is an M and
a p so that if a Banach space X fails to be M-p-dominated, then it contains
a 2-isomorph of I7. Of course, such a 2-isomorph is automatically 2-com-
plemented ; thus X has a quotient space 4-isomorphic to 7. Consequently, B*
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has a quotient space 4-isomorphic to I, so B** has a subspace 4-igo-
morphic to I,. Hence by the local reflexivity principle, B contains I1’s.

Now it is an immediate consequence of the remarks directly preced-
ing 1.3 that if a Banach space B is such that every quotient space of B*
is M-p-dominated, then every #-unconditional sequence (@;) in B satisfies
an upper-Mu-g-estimate, where 1/p+1/g = 1; ie., for all » and scalars

Cpy eney Ony
I s < e Sh

We thus obtain the following consequence of 1.5:

CoROLLARY 1.6. If @ Banach space B does not contain 1L’s, then there
s a1l <q<2 so that every unconditional basic sequence in B satisfies an
upper-q-estimate. :

Let 1 < ¢<2andr,r,,... denote the Rademacher functions defined
on [0, 1]. (Of course, 7, 7, ... is just a particular representation of a se-
quence of {1, —1}-valued symmetric independent random variables; we
leave out the Rademacher function r, = 1.) Following Pisier [24], 2 Banach
space B is said to be of type-q if there is a constant K so that for all # and

by, ..., b, in B,
7 25 =" = (|3 reon o< = 3w
& i i %

(The first equality is trivial.) (A remarkable result of Kahane’s [12] asserts
that for all 0 < ¢, 7 < oo, there exist constants K, , so that for any Banach
space B and by, ..., b, in B,

2 rmpffa) <z, (] Sncrs)"

This generalizes the classical Khintchine inequalities which constitute
the above assertion with “for any Banach space B” replaced by “B equal
to the set of scalars”.) ‘

The notion of “type-2” seems to have been first introduced in [2]
as “subquadratic Rademacher average”. It is proved in [2] that if B*
is type-2, then B is 2-dominated. We present a stronger result due to
Maurey in Corollary 1.8.

Our final application of 1.5 is the following result due to Pisier [19],
exposé No. 7:

CoROLLARY 1.7. If a Banach space B does not contain 1.'s, then it is
of type-q for some 1 < ¢ < 2. '

Proof. It is a fact that if B does not contain I}’s, then neither does
L*(B). (We sketch a proof due to Figiel, momentarily.) Consequently,
there is an M and a 1 < ¢<2 so that every 1l-unconditional sequence
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in I*(B) satisfies an upper- M-g-estimate, by 1.6. But if we fix n and let

by, ..., b, be non-zero elements of B, then the sequence rl(t)—ﬁ,
1
vy rn(t)]%‘*”« may be considered as a 1-unconditional sequence in I*(B).

This proves 1.7. The fact is seen as follows: A result of Giesy [6] (discussed
in Section 2) yields that if a Banach space X contains I’s, then it con-
tains A-isomorphs of I for all 1> 1 and all . In turn, the latter condi-
tion is easily seen to be equivalent to the existence for each » and 41> 1
of m elements by,...,b, in B of norm-one so that n < 4} b, for all
choices of signs 4. Now suppose that L*(B) contains a subspace isometric
to 7. Then we could choose vectors @,(¢), ..., #,(¢) in L*(B), each of norm
one, 50 that for all choices of signs 4, n = (] HZ:I:w,;(t)”Zdt)llz But for

each 2, | 3 +a;(1)]| < Jlki(2)]; of course, then (f 3 |l (#)|*dt)"* = n. Conse-
quently, || 3 +a;(t)|| = 3 ke, ()] a.e.; thus this equality must also hold a.e.
for all choices of signs. Since we have that ({3 |le,(2)IP dt)'* =3 ([ llw, (9))**
= n, it follows from the strict convexity of I* that |jw;(¢)[l = [, (3)] a.e.
for all 4. We thus have, after simply picking a ¢ for which the above rela-
tions hold and |j@,(t)[ # 0, that

1 Zxe]  Sledt

;o e ll2 (2)1]

(1)

“2 = uw,(t)n}

@, (¢
for all choices of signs 4-; hence (

n
i.() ) is isometrically equivalent to
o (O Jima
theusual basis of [, . Now thanks to theuniform convexity of I% this argument
goes through in the approximate setting as well. Given &> 0, there
exists & 6> 0 (depending on n only) so that if n— &< (|| 3 & a:(e)| dt)"
for all choices of signs o+ (with each ®; of norm 1), then there
exists a set F of positive measure so that for all teX, |w,(¢)| > 0,
ey ()1l — flra (D] < eliwy (#)]] for all j, and || 3 +a;(t)] = (L—e) 3 llos ()] for
all choices of signs . It follows that |lz; (£)]1 %% O for all j and “Z —Hi;;-%)—«

(3

;((1—3)2—3)7@ for all choices of signs . Given /1>i, then if ¢

n

is sufficiently small, we have that ("l_lg%n_)
i i=1

1.-basis, hence if L2(B) contains I\’s, so does B.
The proof of 1.7 given by Pisier is direct; this enabled him to give
an alternate proof of the result of [26] that reflexive subspaces of I*
imbed in L? for some ¢ > 1 (of course, this also provides another proof
of the fact mentioned above, as well as 1.6). In subsequent joint work,
Maurey and Pisier showed (see [21], exposé No. 8 that for an arbitrary

iz equivalent to the usual
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Banach space B, the set of ¢ < 2 such that B is type g-stable, is an open
interval. This yields an alternate proof of Theorem 8 of [26].

A Banach space B is said to be of cotype-2 if there is a K so that for
all # and y,,...,¥, in B,

(> )< x f |2 0w

where 7y,...,7,,... denote the Rademacher functions. The classical
Khintehine inequalities show that I is cotype-2. Hence the final result
of this section (due to Maurey) generalizes the theorem of Grothendieck
that L* is 2-dominated.

Since B* of type 2 implies B is of type 2, it also generalizes the result
of [2] mentioned before 1.7. Our proof of this result is somewhat different
than Maurey’s. °

CorOLLARY 1.8 (Maurey [18]). Hvery cotype-2 Banach space B is
2-dominated. )

Proof. Since B is of cotype-2, it follows that B does not contain s
hence by Theorem 1 there is a 2 < p < co 80 that B is p-dominated. Now
let K be chosen as in the definition of cotype-2. To complete the proof,
it suifices to show that there is a constant 4 so that for every operator T
from & ¢(K)-space into B such that T has p-a.s. norm-one, T has 2-a.s.
norm at most 4. We shall show that 4 can be taken equal to K-K,,,
where K, is the constant arising in the classical Khintchine inequalities
(i.e., the constant defined following 1.6 for the scalars-case). Since it suffices
to consider only C(8)-spaces for § finite, by (2) of 1.1 it suffices to prove
that given n and non-zero by, ..., b, in B satisfying

(a) Z “ ;wf(j)bjiyﬂ < 12}2“12 le: (51
for all m and @, ..., ®, in I3, then
2l Yatin]f <4 s Foiirt

for all m and @, ..., @, in I5.

So, fix non-zero by, ..., b, in B satisfying (a). Then choose u,, ..., u,
as in (4) of 1.1, satisfying the inequality of (4) (for 1 = 1); then fix m
and @, ..., ®, in I%r. We then have

(S Ya@p) <x[| Zgr.;(t)wi(j)bj”dt

(since B is cotype-2)

dt,

()

<E [( ] Xravoi) ] ) at
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. (by applying (4) for each fixed ¢, where @(j) = Y r:(8)#;(j))

S

SEE o ( 3w ( o))

)

(by Hélder’s inequality)

(by Khintchine’s inequalities) ;
< KK, sup () lay()F)"
i

1<i<n
(since } p;=1 and u; > 0 for all j). Thus (b) holds, completing the proof.
(For further properties of spaces of cotype-2, see [18]).

2. p-dominated and p-inclusive Banach spaces. A fundamental dichotomy.
Let n be a positive integer, 1> 1, and 1 <9 <2 or 2 < p < oo be given.
We say that & Banach space is n-A-p-inclusive if it contains » norm-1 el-
ements by, ..., b, so that for all scalars ¢, ..., ¢,,

(6) | Y e <a(Y )" it 2<p< o

o (<] S

We say that a Banach space is p-inclusive if there is a A > 1 so that
it is n-A-p-inclusive for all positive integers n. We have left out the case
P =2, since the famous Dvoretzky theorem [3] asserts that every in-
finite-dimensional Banach space contains A-isomorphs of 12 for -all n
and 4> 1; hence we cannot use the p =2 case as a distinguishing iso-
morphic invariant. Of course, a Banach space is 1-inclusive if and only if it
contains /;’s. We shall see below that if a Banach space is p-inclusive,
then it is in fact n-A-p-inclusive for all # and A > 1. This implies that a Ba-
nach space is oo-inclusive if and only if it contains I2s. (Indeed, suppose
1< 2 <2 and the norm:one €lements by, ..., b, in B satisty (6) for p = oo
and all scalars ¢y, ..., ¢,. Then for any " in B*, I'|b*(b,)| < Ab*|. Now
for each ¢ let by in B* be such that [bf| =1 = b}(b,). Then 3 b} (b))

s

it 1<y <.

4
< A—1. Fix ¢ and suppose ¢4, ..., ¢, are given scalars with ;] == sup el

‘ , i
Then [bj(Y ¢;b;)|> le(2—2), consequently the span of {b,,...,b,} i

23 -isomorphic to I;°.) Tt also implies that, it a Banach space is ¢-

inclnsive for all ¢ with 2 <g¢ <p < oo (resp. 1< p < ¢ <2), then it is

n n
p-inclusive. To see this, note that for n and p fixed, lim (3 le] 9t = (3 le; [2)e
a-p =1

=1 %

for p < oo (resp. = sup ¢ forzi = co) uniformly over the set of ¢,, ceey Gy 4
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with sup [¢;] < 1. Phrased another way, the set of p such that a Banach
space is p-inclusive forms a closed subinterval of [1,2) or of (2, co].
We shall also see that if a Banach space is p-inclusive for some 2 <P < oo,
then its dual is g-inclusive, where 1/g+1/p = 1. The converse is trivially
false, for L' is not p-inclusive for any 2 <p < oo, yot I® is g-inclusive
for all q.

Maurey’s generalization of the main result of [26] may now be
phraged as follows:

TrmorEM 2.1. Let 2 <p < oo and B be an arbitrary Banach space.
Then B is p-dominated or p-inclusive. These alternatives are mutually exclu-
sive.

Theorem 1" follows immediately from Theorem 2.1 and our above
remarks. Indeed, if a space is not p-dominated for any p << oo, it is p-inclu-
sive for all p < oo, hence also co-inclusive; thus the space contains I5’s.
It also follows (as pointed out in [18]) that the set of p > 2 for which
a Banach space is p-dominated, forms an open subinterval of (2, o),
simply because the set of p > 2 satisfying the other alternative is of the
form (2,r], if non-empty.

‘We pass now to the proof of Theorem 2.1. The first assertion follows
immediately from the following quantitative result:

THEOREM 2.2. Let 2 < g < o0, n @ positive integer, and 1> 1 be given.
Then there ewists an M so that if o Banach space B 4s not M-g-dominated,
it 18 m-A-g-inclusive.

Proof. Let M be large, the correct size to be decided later. Assuming B
is not M-g-dominated, there exists a finite set X and an operator S:
O(K)-+B of norm one so that N > M, where N equals the g-a.s. norm
of 8. Bince K is finite, N < co. By the Pietsch Factorization Theorem,
there exists a probability measure u on K so that setting X = B* and
regarding T = §* as having its range in I*(u), then T is a norm-one
operator with the following properties:

(8) N = sup|Tal,, ;

' llll< ‘(W

(9) N < sup|Tall ,
flale1 (pde)

for all positive u-probability densities ¢, where 1/p+1/q = 1.

(See () of 1.1 which leads to 3 of Proposition 1.2 in this setting.)
At this point, we shall simply regard u as a probability measure on some
measurable space (R, .9).

Now let 0 < § < 1 be & number close to 1, depending on #, p and A.
(One can define ¢ by A = (1—n'?2(1— 6%)"%)"%) We then have

3 — Studia Mathamaricn TXUTTT 1
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Lemma 2.3. If M is large enough, there ewist a4, ..., @, in X of norm-
one and disjoint measurable sets. By, ..., B, so that

o< [1Zapap)”  for all i.
By

This result is stated and proved in Section 3 of [27], it is called there
a “variation-of-density lemma”. (See also the proof of the Sublemma,
p. 362 of [26].) We deduce 2.2 as follows: the vectors (i, T'w;)7., span
a subspace.of LP(u) isometric to 12, which is the range of a contractive
projection. It follows by a standard perturbation argument that the
span, of the vectors (T;)i, almost has these properties. (Only the closeness
of the Ta;’s to the usual I2-basis was used in [26]; the use of the existence
of a nice projection onto their span is due to Maurey.) Precisely, one
may let 7 be the canonical isometry from the linear span of the yp Tw/'s
onto Ij such that (yg,Tw;) = |z, L0llzee; for all 4, where (e, ...,q,)
is the usual IZ-basis. Let P be the canonical contractive projection from
I?(p) onto the linear span of the xm,To’s and let Q: ©—I¥ be such that
QP (Tw;) = ¢; for all 4. It can then be shown that [|Q| << AN, where §
is defined as above; consequently the map U = @< PT from X to 12 has
the property that [[U]| <A and Uz, = e; for all . Returning to our ori-
ginal setting, the map U is also weak*-continuous; that is, there is an
operator ¥: 12—B so that U = V* Then [[V||< 1 too; the fact thab
lof =1 and V*w, = e, implies that |[Ve, > 1 for all 4, where (&, ..., &,)
is the usual basis for IZ. Tt follows that putting b; = V'&,/|V ] for all i,

then
| o < 2 S < 1 g

for all scalars ¢y, ..., ¢,, thus completing the proof of 2.2.

To prove the second assertion of Theorem 2.1 we shall use the follow- . ‘

ing consequence of a result of Giesy: [6]:

PrOPOSITION 2.3. If a Banach space is p-inclusive, then it s n-A-p-
inclusive for all 4 > 1 and all positive miegers n.

Proof. It is obviously enough to show that for a fixed 4> 1 and
> fixed positive integer n, it B is n*-j-p-inclusive, then B is -V A-p-inclhu-
sive. Let 2 < p < o0 and (%)= Do norm-one elements in B so that

" | ”2 %'“ifu <4 (gj: |omv)1/1’

for all sealars (c;)7;_, (we define (X leyl?)» = sup leg] when p = oo).
i i,

g i
al S VA(S ley?)2 for all scalars ey, ..., 0,

If there is an ¢ so that 13 ¢
we are done. If not, we may choose for each 4 2 norm-one element b, in
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the span of (uy;)i.; so that
. n YI;‘ 1/ 1
(11) b — Zbﬁuﬁ with ( h) |bij;1’) "< o

J=1 i

But then for any secalars ¢, ..., ¢,,

“Z 0:by| = “; cibij'uij
<H (e Swar” vy a0
¢ 7

< T%Fﬂ Sle]” vy aw,

which proves the result for p > 2. The proof for 1 < p < 2 is almost the

some and shall be omitted. i

Now suppose that B is p-inclusive for some 2 < p < oo, let 1/p+

+1/g =1, and fix » a positive integer and A > 1. It follows from 2.3

that there exist elements by,...,b, in B so that suplel <||3e;b,|
i i

< A( Y lo* tor all scalars ¢y, ..., 6,. To see this, let § > 1and let 2y, ..., @,
[

be norm-one elements in B so that || e;s;] < B(> le,?)"? for all scalars
€1y +-ny 6y Then (Y [a* ()92 < Bla*|| for all "< B* Fix ¢ and choose @}
so that af(@;) =1 = || Then

Dt ()] < (87— 1)t

J#
Assume theit (82— 1)¥4nMP? < 1, Tt follows that for any scalars ¢, ..., 6,

“2 ojmj” > sup Jg;| (L— (B2—1)¥eni7).

I we pub by = (1—(2—1)"2n¥?)~"y; for all j, then d,,...,b, have the

desired properties provided A (1L -—(B2—1)"n*#)~* < A.

In turn, the emistence of such b's and the Hahn—Banach theorem show
that there exist an operator T: B*—=12 with |T] < 1 and norm-one elements
by, ..., by in B* so that Tb; = e; for all i, where (e, ..., €,) is the standard
basis of 1.

We are finally prepared to follow the argument given by Maurey
in [18] to complete the proof of Theorem 2.1. Suppose B is also M-p-
dominated for some M < oco. Let fy,fs, ... be identically distributed
symmetric independent random variables, stable of exponent g, so that
Ifilly = 1. Thus the sequence (f;) is isometrically equivalent in the L*-
norm to the usual 1%basis. Fix n. Then we may choose an operator T':
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B*—I' with range contained in [fy, ..., f,] so that |7 < 2, and so that
there are norm-one elements @, ..., #, in B* with Ta, = f; for all {. Since B
is assumed to be M-p-dominated, so is B** by the local reflexivity prin-
ciple. Hence T™ is p-a.5. with p-a.s: norm at most 2 M. Now Proposition 1.2

yields that
13 s < 231 o™

for all scalars ¢y,...,6,. We then obtain that for any sequence (¢)2,
with Ylgl? < oo, > 6;|?1f;|? < oo almost everywhere. But this is false
by a result of Schwartz [28] (see also Lemma 3 of [26]). This contradic-
tion completes the proof of Theorem 2.1.

Fix 1 < p < 2. A special case of Theorem 2.1 is the result of [24] that
if X is a subspace of I', then I,(X) = oo if and only if X is p-inclusive.
It is possible to deduce this fact without using the special properties of
stable random variables. Indeed, these properties are used only to prove
the “if” assertion. Suppose I,(#) % oo yet X were p-inclusive. Then there
would exist a subspace ¥ of L?, with the p and 1-norms equivalent on ¥,
50 that Y is isomorphic to X. But then ¥ would also be p-inclusive. Tt
therefore follows by Proposition 2.3 that for all n and A > 1, there exist
norm-one elements by, ..., b, in Y satistying (7) for all scalars ¢,, ..., ¢,.

A truncation lemma of P. Enflo and the author (Liemma 2.1 of [4]) now .

vields that fixing 0 < 8 <1/4 and % a large number, then if » iy suffi-

ik
ciently large (e.g. so that n'/?-12 > _1_——6—1-)’ there must exist an 4 so

that g b;?)"? > 5, where E = {: [b,(w)| > k}. Since & can be taken

arbitrarily close to 1, it easily follows that the p and 1-norms on Y are
not equivalent, a contradiction. ,

We wish to comclude this section with a dual éonsequence of
Theorem 2.1. Fix 2 <p < oo, let 1/p-+1/g =1, and let X be a Banach
space. It follows easily from the remarks following the proof of 2.3 that
if X* is p-inclusive, then X** is g-inclusive. In fact, it follows from the,
local reflexivity principle that if some quotient-space of X* i p-inclusive,
then X itself is g-inclusive. On the other hand, if X is g-inclugive, then X*
has a p-inclusive quotient space. Indeed, a standard argument shows
that if X is g-inclusive, then every subspace of X of finitie codimension
is also g-inclusive. The usual argument for producing finite-dimensional

decompositions (f.d.d.’s) (as defined in [10]), and Proposition” 2.3 then -

show that there is a subspace ¥ of B having a f.d.d. (¥,)2., so that for
each n, ¥, is n-dimensional with a normalized basis b7, ..., by satistying
(Xled? e < 2| 30,07l for all scalars ey ..., ¢,. Thus there is a A so that
each Y, is A-complemented in ¥, so Y* is p-inclusive. Theorem 2.1 then
immediately gives:

icm
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COROLLARY 2.4. Let p and g be as above and let B be an arbitrary Banach
space. Then either B is g-inclusive or every quotient space of B* is p-dominated.
These alternatives are mutually exclusive.

A recent result of Maurey and Pisier [21], Bxposé No. 8, asserts that
if r <2 is such that r —sup{s: B is of type-s}, then B is r-inclusive.
Suppose p and ¢ are as above and every quotient space of B* is p-domin-
ated. Then (as pointed out to me by the above authors), B is of type ¢;
otherwise the Maurey-Pisier result yields that there is an 7 < ¢ so that B
is r-inclusive; but then of course B is also g-inclusive, contradicting 2.4.
On the other hand, results of Pisier ([24]; see also [21], Exposé No. 3)
show that if B is type-¢, then B is of type ¢'-stable for all ¢’ < g, whence
every quotient space of B* is p’-dominated for all p’ > p. This cannot
be improved to B* itself being p-dominated, for L7 is of type-q but (L%)*
= L? is not p-dominated, being p-inclusive.

3. Unconditionally transitive bases and the Tzafriri function-space
estimates. It is an open question if every Banach space of infinite dimen-
sion contains uniformly complemented #2’s for p = 1, 2, or oc. L. Tzafriri
proved in [29] that this is indeed the case for Banach spaces B with uncon-
ditional bases. Suppose B is such a space. One of the key steps of his
proof is to show the following: Suppose neither B nor B* containg I2’s
(which is the same, in general, as saying that B does not eontain uniformly
complemented I7’s or I%’s). Then there exist a 2 <p < oo and a con-
stant I so that for all n, there exist n terms b, ..., b, of the basis so that

%(Zﬂ/lbci[q)ua < (Hﬂzz':ozjz]”) < K(Zifilp )llp

for all scalars ¢, ..., ¢, (where 1/p +1/g = 1). Inequalities (12) are called
Sfunction-space estimates because they mean that the norm on the span
of the b;’s is between the L? and L®-norms, L? and L? being thought of

(12)

“as function spaces as opposed to the sequence spaces I? and 1”. Indeed,

. i—1 4
let By, ..., B, be the disjoint open intervals defined by B; = (1 P 7)

for all ¢ and let T be the map from the span of the b,’s into the simple
functions on [0, 1] defined by T(3 ¢;b) = L3¢, %z, forall sealars ¢y, ..., 6,,

n
where L = || }) bl Then inequalities (12) assert precisely that
=

1 .
7 Ml < loll < KI[T_pr

for all # in the span of the b;’s. _
Tzafriri then econcludes his argument as follows: suppose n = 2™.
The span R,, of the first m Rademacher functions 7y, ..., 7,_, is a sub-
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space of the range of T. Now the Khintchine inequalities yield that there
is a constant K, depending only on p so that R,, is K,-complemented
in I and [rl, < K, |, for all reR,,. It then follows that T'~'(R,) is
K, E*complemented in [b;, ..., b,] and K} K*-isomorphic to &, ([by, ..., b,]
denotes the linear span of b,,...,0,). Since there is a u independent
of n 80 that [by, ..., b,] is u-complemented in B, it follows finally that B
contains uniformly complemented 7’s. (Johnson and Tzafriri [11] have
1ecently considerably extended this result, by applying among others
the techniques and results we have presented. in the first two sections.
They prove that if a Banach lattice does not contain I)’s, then every
infinite-dimensional subspace of the lattice comtains uniformly comple-
wented B’s or 12%s.)

We shall show that a rather large class of finite unconditional bases
satisty these function space estimates.

DmrNiTIoNs. Fix # a positive integer and let (by, ..., b,) be a norma-
lized basis in an n-dimensional Banach space B. We say that the basis
i§ 1-U.-Tran. (for isometrically unconditionally tramsitive) it it is l-uncon-
ditional and possesses a transitive group of permutations which extend
10 isometries of the space. That is, there exists a group 2 of permutations
of {1,...,n} so that for all 1<4, j<n there is a 0eP with o(¢) =j,
so that for each o<9, the linear operatior g, on B defined by g,(b;) = by
for all 4, is an isometry on B. In other words, for all choices of signs -+,
all 0e2, and all scalars ¢y, ..., ¢,

n
(13) ”‘ZI' E 0 bop| = ”2 104+
=
We put @ = {g,: 6e2}. Now let 1 < 4; a normalized basis (by, ..., d,)

in B is said to be A-U.-Tran. if it is A-equivalent to a 1-U.-Tran. basis
(b5, ..., b,) in some B'; ie., if the map T: B-~B' so that Th; = b} for
all 4 satisfies |T|||T7Y < 2.

Hence are some examples of such phenomena. Let v 2= 1; say that
a normalized basis iy r-stationary (resp. z-spreading) if for all sea.lars Gy,

I
s Ca and all k witf 1Lk, || Yc-biﬂ < r][}j‘a-bwu for all j < n—Fk
(resp. || 20 b < 1:”201 by,|| for all My, < My < . n). (Bvidently

a - spreadlng basm is automatically z-stationary.) Then every z-station-
ary w-unconditional basis is 2wuz-U.-Tran. Indeed, for a r-stationary
w-unconditional basis (by, ...; by,), let 2 be the transitive group of permuta-
tions, 9 = {0y, ..., 6,}, 50 that for each i, 1 < ¢ < n, oy shifts 1, ..., n —4+
+1t04,i41, ..., nandn—i4+2,...,nt0l,...,i—1;1ie., o]) ——j—|~@—

for 1<jg<n—i+1 and o;(§) =j+i—n—1 f01 n—z—l—l <j<n. Now

- < mk
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define a new norm {||-[]| on B by || Je;byf| = sup || 3 debye) for all
: +ge? )

scalars ¢4, ...y 6,. Then (by, ..., b,) forms a 1-U.-Tran. basis for B endowed

with |]|-}ll, and it is not difficult to see that the two norms are 2ur-equiv-
alent. It gseems likely that there exist U.-Tran. bases which are not
stationary; precisely,

CoNJECTURE. For every v > 1 there exists o 1-U.-Tram. basis which
has no T-stationary permulation.

(P. Wojtaszezyk has recently shown that for every = > 1 there exists
a 1-stationary 1-unconditional basis which is not z-spreading.)

In order to develop inequalities (12) for suitable U.-Tran. bases,
we first need the following basic fact.

LemMA 3.1. Let (by, ..., b,) be a 1-U.-Tran.
functionals by, ..., by. Then

n
| 2

Proof. We have that || 3b;]| = sup| 3] (@)|, the supremum taken
over all # = 20 b; of norm one. But fix such an #; then |35} (@) = |3 e
> le|b;. Since the basis is 1-uncon-

basis with biorthogonal

ditional, |ljo|| =1 also. We thus have that |3} =sup TSabd 22;6 T

the supremum over all choices of ¢’s with >e¢,;> 0 and ¢; >0 for all .

. But then by homogeneity we may restrict our attention to ¢;’s with >¢; = 1

and ¢; > 0 for all 4. Now let ¢ denote the convex hull of the b;’s; C is of
course closed and we have shown that || 35}]| ™" = inf |jz]. Naturally, this
zeC

infimum is achieved for some zeC. Let G and 2 be ehosen as in the defin-
ition of a 1-U.-Tran. basis. Now since the set {b,...,b,} is invariant
under the action of @&, so is C.

Thus, letting & equal the number of elements in G we have that

Y = 2 g(2) also belongs to @, being a convex combination of elements
gs@

of 0, and, moreover, |lyll = || X?;||”". But we also have that g( Y=y

for all ge@, since @ is transitive; this implies that y = — th which

t=1

proves 3.1. (Of course, the last part of the argument is just a very el-
ementary version of the Kakutani fixed-point theorem.)
We are now prepared for the main result of this section.

PROPOSITION 3.2. Let 2<<p < oo, Ifp+1fg =1, 1, M >1, n a posi-.
tive integer, and (by., .., b,) a A-U.-Tran. basis for the Banach space B. Then
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if B is M-p-dominated,

1 Ylel XA e e
4 T sl < 20

for all scalars ¢y,...,0¢,.
" If B* is M-p-dominated,

1 (Zlel™\ _ || Sosb]
(14) W( P ) < szzll Sfor all scalars ¢, ..., ¢,.

Consequently, if both B and B* are M-p-dominated, then the basis
(byy ...y by) satisfies the Trafriri function-space-estimates (12) for K = J* M.

Remark. Inequalities (13) also yield that for n = 2™, the Radema-
cher functions over the basis span a f-isomorph of 2, where B depends
only on M, P, and A

Proof of 3.2. It is easily seen that the general case follows from
the 4 = 1-case, so we assume 1 = 1. (The A% term ariges because one first
requires the evident fact that if B is A-isomorphic to B’ and B is M-p-
dominated, then B’ is AM-p-dominated.) Now (14) follows from (13) and
Lemma 3.1. Indeed, once (13) is established we obviously have that
(BY, ..., b3) is & 1-U.-Tran. basis for B* where b}, ..., b} are the biortho-
gonal functionals to b, ..., b,. Thus

| Xabi] 3 legl”
o] <u(=]

But then taking the adjoint of the natural map from ¥ into B*, we have

“that for all such scalars,

g M Tk T
(o) < 3] Dor] | Dewn
(14) follows immediately upon applying the equality of Lemma 3.1.
The first inequality in (13) also follows directly from Lemma 3.1 and
the fact that by, ..., b, is L-unconditional. It remains to prove the second
inequality in (13). Since || ¥'d,]| = || 3 =-b,|| for all choices of =, it follows
from inequality (4) of Section 1 and the definition of “M-p-dominated”

that there exist positive numbers uy, ..., u, with D u; =1 go that

< M| 3. 31ear )
or all scalars ¢, ..., ¢,.

Now let 2 be as in the definition of a 1-U.-Tran. basis, fix the scalars
€1y ey Oy ANA leb 0eD. Then || Dby = || 3o;byy|| = | 3e~149b;]| and

Up
) for all sealars  ¢,...,0,.

.

(15) ~ | 3ot
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21l s = lel? #otsy > the first equality holding by the definition of @ H
the second two equalities are trivial. These facts and (15) yield

| 3]

Finally, letting % equal the number of elements of 2, we have that

: n
. 1
<< 21 ICAP(%Z ,uu(i))-
=

L1327

n
i=1

(16) o< D6 gy, where 4 = I(Zcibi]

1

. . - 1 1
Since 2 is transitive, we have that for all 4, " UZ"@ Hory = & 29 Moy = "
€. ¢,

12 . .
Thus; ¢ < w D'le;?; since ¢y, ..., ¢, are arbitrary scalars (13) is proved. m
4=1

‘We wish to make some final comments concerning Tzafriri’s results.
Suppose that (u,);2; is a normalized unconditional basis for a space B,
so that neither B nor B* contains I2’s. Then by Theorem 1', there exists
a 2 <p<oco so that both B and B* are p-dominated. Because of
the unconditionality of the basis, we have that there is a constant M
so that for any » and » terms of the basis by, ..., by, both [by, ..., b,]and
[b1; --+, b,]* are M-p-dorninated. Now as pointed out by Tzafriri, Ramsey’s
theorem implies that there is a v so that for all n, there are n terms of
the basis by,...,b, so that (by,...,d,) is »-spreading. But then there
is & 4 so that for all such by, ..., by, (by, ..., b,) is -U.-Tran. Consequently,
Proposition 3.2 and the Khintchine inequalities yield a nicely com-
plemented I, (where m~ logn) inside [by, ..., b,], which is in turn nicely
complemented in the whole space due to the unconditionality of the basis.

The relevance of Ramsey’s theorem to Banach space theory was
originally discovered by Brunel and Sucheston (see [1]). As noted in [29],
their arguments together with Tzafriri’s results provide a combinatorial-
analytical proof that every infinite-dimensional Banach space contains 2’s
uniformly. A recent remarkable discovery of Krivine [13] implies thai
if a Banach space contains #’s uniformly (for some 1 < p < o), that is,
if there is a X so that it contains a K-isomorph of 12 for all #, then it con-
taing a A-isomorph of 1 for all A >1 and n. Since Krivine’s arguments
are also combinatorial-analytical, an alternate proof of Dvoretzky’s the-
orem is now available. As pointed out to me by B. Maurey, recent results
due jointly to himself and Pisier [19], together with Krivine’s discovery,
yield the following : Let B be a given Banach space, and let p = sup{g > 2: |
B is g-inclusive} or p = inf{g<<2: B is g-inclusive}. Then B contains
a A-isomorph of 12 for all A > 1 and n.
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