

Correction to "On the hyperbolic metric on Harnack parts", Studia Math. 55 (1976), pp. 97-109

hv

ION SUCIU and ILIE VALUSESCU

In our paper entitled as above, the assertion that Ω is a BW-compact set (see p. 99, line 2) is not valid.

But under some minor modifications, the proof of Arveson's theorem can be obtained without using the BW-topology. For this we have only to change the point (ii) of Lemma 1 (see page 99) as follows:

"For every $b \in B$ and $h, k \in H$ there exists $w \in \mathcal{M}, w \ge 0$, such that $w(\mu) \ge |(\mu(b)h, k)|$ for any $\mu \in \Omega$ ".

Proof. Let $b \in B$ and $h, k \in H$. Since $\operatorname{Re}(\|b\| \cdot e \pm b) = \|b\| \cdot e \pm \operatorname{Re} b$ is positive, it results that $\|b\| \cdot \mu(e) - \operatorname{Re} \mu(b)$ is positive for every $\mu \in \Omega$. Thus for every $g \in H$ we have $|(\mu(b)g, g)| \leq 2 \|b\| (\mu(e)g, g)$. Then using the polarisation formula we obtain

$$\left|\left(\mu(b)h,k\right)\right| \leqslant \frac{\|b\|}{2} \sum_{i=1}^{4} \left(\mu(e)g_i,g_i\right),$$

where $g_1 = h + k$, $g_2 = h - k$, $g_3 = h + ik$, $g_4 = h - ik$.

If we consider the positive diagonal matrix $(a_{ij}) \in S \otimes M_4, a_{ii} = \frac{||b||}{2} e,$ $a_{ij} = 0$ for $i \neq j$, and if we put

$$w(\mu) = \sum_{i,j=1}^{4} (\mu(a_{ij})g_i, g_i), \ \mu \in \Omega,$$

we have $w \in \mathcal{M}$, $w \ge 0$ and

$$|(\mu(b)h, k)| \leq w(\mu)$$
 for every $\mu \in \Omega$.

The proof is finished.

In the proof of Arveson's theorem (Theorem 1, pp. 101-102) we have only to change the text of lines 9-15 with:

I. Suciu and I. Valușescu

"Using a standard extension theorem we can extend L_{φ_0} to a positive functional L_{φ_0} on the linear space.

 $\tilde{\mathcal{M}} = \{f \colon \ \Omega \to C; \text{ there exists } w \in \mathcal{M}, w \geqslant 0, \text{ such that } w(\mu) \geqslant |f(\mu)|; \mu \in \Omega\}.$

By Lemma 1, point (ii), for every $b\,\epsilon B,\,h,\,k\,\epsilon H,$ the function $w_{b;h,k}$ defined as

$$w_{b;h,k}(\mu) = (\mu(b)h, k)$$

belongs to $\tilde{\mathcal{M}}$ ".

Other results of the paper are not influenced.

Received May 29, 1976

(1162)