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Abstract. The extension of real-valued a-additive finite finitely additive regula.
real-valued set functions from an algebra of sets to larger o-algebras of sets is givenr
The extensions are then used to obtain results on o(4*, 4) convergence of z-additive
functionals on an algebra A of real-valued funclions on a set X.

Introduction. Let A be a uniformly closed algebra of bounded real-
valued functions on a set X which separates the points of X and contains
the constants. Let X be equipped with the t, topology which is the weakest
topology on X which makes each fed continuous. In [4] the concept

‘ of a-additive set functions on a paving # of subsets of X was introduced
to represent the a-additive functionals in 4% and it was indicated that
the a-additive set functions could he extended to e-additive elements
on a larger paving (this includes the fact that z-additive Baire measures
in C?(X) can be extended to Borel measures on X). We shall establish
this extension process which depends on which definition of outer measure
is chosen. We then employ the extension to questions about weak, o (4%, A),
convergence of elements in A*. We anticipate that working with a paving
and that working with subalgebras of C*(X) will -prove useful in prob-
ability theory, and in this direction we obtain a weakened form of Pro-
chorovs’ theorem. Also for subalgebras A, = A, we give sufficient condi-
tions for weak convergence of r-additive @ in A to be determined by the
elements of A4,. ’

The authors wish to thank the referee for pointing out that our
results in Section 1 should extend to exaustive functions with range
a suitably endowed topological group. He also noted some of the rich
literature on the subject such as done by Drewnowski [2], Sion [6] and
Traynor [7]. The referee is of course correct and the authors intend to
show this and that the weak additivity condition does yield the usual
additivity condition in a different paper.

§ 1. Extension. We refer the reader to [4] for many of the basic
definitions and results; however, we shall indieate here some of the essen-
tial definitions.

A paving on X is a family #° of subsets which contains @, is closed
under finite unions and intersections, and has X = J #". The paving
is full if X ¥ and in this paper all pavings will be assumed to be full.
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Let #(#) he the algebra of subsets of X generated by #7, then
M(w) will denote the set of all finite, finitely additive real-valued set
functions on # which are regular in the sense that for each F'e & there
is @ Wew such that W = F and |m(@)| < ¢ whenever Ge & (%) with
G <F-W.

For an infinite cardinal a, we say that me M (#") is a-additive it
inf{jm|(W;)} = 0 for every collection {We#': iel} which is directed
downward to @ with card I < a. The set of a-additive elements will be
denoted by M, (or M, (%)) and 7 will denote the least cardinal such that
M, = M, when < g. Finally, me M (#") i8 a-singular if there is a family
{Wew: ieI} which is directed downward to @ with cardI < e and such
that |m|(V) = |m|(VnW,) for all Ve# and all iel.

For the extension process to develop adequately it is essential we
choose the proper definition of outer measure; we now give this and remark
that if X = [0, 1], and if m is the Lebesgue measure on the Borel sets %",
then me M (#), and m* agrees with the usual outer measure and the
extension process yields the Lebesgue measure.

DerinrrroN 1.1. et % be a full paving on X and let me M™(%).
For A < X,
ma(A) = int{supm(W*): I = %, I directed downward,
Wel
a and 4 = U{W°: Wel}.

Luvma 1.2. Let W be a paving and lot me M (W), Then m} is an
outer measure on X.
Proof. Tt is clear that m}

G A,, and fix £> 0. For each neN, let I, = % be downward
duee’sed w113h card(l,) < a and such that
A, = U{We: Wel,} my(Ay) + /2% > sup {m(W): Wel,}.

Let I denote the family of all finite intersections of members of (J {I,: neN}.
Then I is-directed downward with card(l) < c and 4 < J{W°: Wel}.
Hence it follows that

card (I) <

is monotone and non-negative. Let

and

my (A) < sup{m(W°): Wel}
<sup{m(Wiu ... UWa): Wye ULy, 6 =1, ..., m}
<sup{ D (We): Wee U I, i =1, ..., m)

-

i=
0

< D mi(4) +e.

i=1

Since & > 0 was arbitrary, the proof is complete,
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For a <v =z(#), let #, denote the family of all sets W < X for
which there is J <% with card(J)< a and W = (\J. (That is, ¥,
is the family of subsets of X obtained as intersections over subsets of %
of cardinal at most a.) For a = 7, %", will denote the family of all intersec-
tions over subsets of #". It is clear that #, is a paving and that it is full
if and only if % is full.

LeMMa 1.3. Let W be a full paving and let me M*. Then Z(W,) is a sub-
algebra of the m*-Carathéodory measurable sets.

Proof. It is sufficient to show that if W,e %, then W, is Carathé-
odory measurable. Fix e> 0 and 4 < X. We must show that m *(4)
2 mg (ANWo)-Lmy(ANWE). Let I <% be downward directed with
card(I) < a and NI =W,. Let J <% be a downward directed net
withfeard(J) << a, 4 = (J{U% Ued} and m*(4) fe> supm(U“) Since m

is regular, fov each Wel thereis Zy, ¢ % with Z;, = W° and m(Wc) < M{Zyp)+
+e& Now fix W;el. Since the family {U°: Ue J} is upward directed,

sup [m(T°NWy)+m(T OWS)] = supm( U nW,) +supm(TAWE).
Ued UeJ UeJ
Furthermore,
0<< m(( U'n Z,“,,I)—(Uar\Wl)) =m(Win Ziy nU°) <
Hence it follows that,
mi(A)+e>= ‘supm( U%) >

m (W3

—Zyyr, ) e

supm (T°NW;) —i—supm( U"nWC)
TUeJ

= supm(U°NZg,) — e +supm (U OW;)
UeJ

a(A_nZng) —e+supm(U°nWY)
UeJ
> mi(ANTW,) us~]~sUu]§m( Uenwe).

Since Wyl was arbitrary, we thus have that for all WeI,
@  my(4)+2e = mi(ANnd,) Fsupm (UCNWe).
Ued

Let £ = {UUW: UeJ, Wel}. Then K is downward directed, card (K) < «
and AnW§ = U {V°: VeK}. Hence it follows from (1) that,
mi(A)+2e = mi(ANW,) + su‘p m(UNW®) = miy(A OW,) +-mi(ANWE).
II eI
The proof is complete.

Levya 1.4, Let #° be o full paving and let me M. Then for each
FeF (W), m(F) =me(F). Purthermore, the restriction of m' to F ()
belongs to M (W ,). ’

Proof. For me M (%), it is clear from the definition that m(We)
== m (W°) for all We# . Since m, is finitely additive on & (#) by Lemma
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2.7, m(W) = m} (W) for all Wew . That m(F)
follows from Proposition [3, 1.2].

In order to show that M} ol )€ MI(#,), in view of Lemma 1.3,
it is only necessary to show that my is e-additive and ¥ -regular. We
will begin with a-additivity which will be verified in two steps.

(1) Let I = # be downward directed with card (I) < o and W,
Then

m(F) for all Fe F (W)

NI

mt(Wy) = inf m(W).

Wel
my (W) < sup m (). On the other hand, W, = W
(W”) = m(W") Thus, m&(We) =

By definition,

implies that m)(WS) >
and (1) follows.
(2) It I < ¥, is directed downward with W, = (I, then

Mg (Wo)

sup m(We),
Wal

inf mi(W).
el )

Firgt note that Wye #7, since a-a = a. For each Wel, let Iy « %
be downward directed with card(Iy) < a and W = (M Iy-. Let J denote
the family of all finite intersections of the elements of the set |J {Ipp:
Wel}. ThenJ < ¥ is directed downward with card (J) < a and ﬂJ W,.
Hence, by (1), my(W,) érn.fr m(U). Furthermore, if ¢ > 0 is given, theve

€

is Uyed with infm(U)+e> m(U,). Since I is directed downward, there
Ued |
is W,eI with W, < U,. Hence it follows that,
mi(Wy) = infm(U) > m(U,) —e=mi(W,)—e>=

Ued

inf m) (W) —e.
Wel

Since ¢ > 0 was arbitrary, the proof of (2) is complete.
We will now verify that m} is # ,regular on #(#,). The proof will
require three steps.
(3) Let Wye# ,. Then
my (W) = sup{mi(W): Wew, and W <= W}.

Let I = # De directed downward with card(I) < a and W, = N 1.
Fix > 0. Since m}(W,) = inf m(U) by (1), there is Uyel with m*(U,)
Uel

= m(Ty) < my (W) -+e. This is equivalent to
ma(We) < mi(T§) e = m(US) +e.

Bince m is #-regular, thereis a We % with W < W and m(US) < m(W) e
Then We#,, W = Wi and my(W§) < m(U) +¢& < m(W) -+ 2s. Since s> 0
“was arbitrary, the proof of (3) is complete.
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(4) Let Wi, Wle"/l”a. Then
me (Wy— = sup{my(W): We#, and W < W,—W}.
Fix > 0. By (3) there is a W,e %", with W, = W and ma(W°)

<m (Wz)—i—e Let W = WinW,. Then We#, and W < W,—
Bince (W, —Wy) —W < W{—W,, it follows that 0 < m:(Wl—Wo)—m:(W)
< my(Wi—W) < e. Since e> 0 was arbitrary, (4) follows.

(8) mq is W -regular on F(¥W,).

This is immediate from (4) and :Proposition [3,1.2]. The proof of
Lemma 1.4 is now complete.

Lmva 1.5. Let #° be a full paving and let md( M, (%)*)*. Then m% = 0.

Proof. By [4;4.4] M (#)* is a band so there is an increasing net
(my) of a-singular elements of M (%) with 0 < m;} m. (Since (m,)is increas-
ing, it is easy to verify that m,(F)}m(F) for all Fe #F(¥).) Fix 6> 0
and take 7, with m(X) < m; (X)+¢. Let I < # be an o-system with

myy (X)), = m, (W) for all Wel. Since 0 << m~— ~my,, it follows that, ror
each FeF (W), 0< m(F)—m, (F) = (m— mio)(F)<(m m; ) (X) <e.
Hence

0 my(X) < sup m(W°) < e+ sup m; (W°) =e.
Wl Wel

Since = > 0 was arbitrary, m}(X) = 0, and s0o m? = 0.
PROPOSITION 1.6. Let # be a full paving, and let me M+(W). Assume

‘that m = my --m, where mye M (W) and mge(M */}")L)'* Then m, restric-

ted to F(W,) belongs to MI (%, and m}
m, =m, on F(W).

Proof. It is easily shown that m}
immediate from Lemmas 1.4 and 1.5.

ProPOSITION 1.7. Tet # be a full paving, and let m e MT (W), Then
there is a unique element pe MT (W) whose resiriction to F (W) is m. In
ﬂwt if e MY (W,) is any element whose restriction to F (W) is m, then

= A

Proof. Let p denote the restrlctlon of m¥ to F(#,. By Proposi-
tion 1.6, pe MI(%,) and p =m on F(¥). Now let ie M+ (#,) and
assume that A =m on F(¥#). Fix We#,. Let I < % be downward
directed with card(I)< e and W = (\I. Then 0 A(W)< < mf AT

= (m,)s. Hence, in particular.

= (my)5+ (m,);. The resultjis now

=inf A(U) = u(W). Since We#, was_arbitrary)ithe % —regul&nty of 4
Uel )
and p guarantee that 0 < A < u. Since M ,(#,) is an ideal, it follows that
Ae MF(w,). Hence A(W) = infA(T) = inf u(U) = u(W). Thus A(W)
Uel Uel

= u(W) for all We# ,. The # ,regularity of 1 and x now imply that
A=

3 — Studia Mathematica LVIIL.1
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Define a map T, from M, (#") into M (#,) as follows. (We continue
to assume that #" is a full paving.) For me M} (¥#), let T,(m) denote
the restriction of m, to &F(#,). Then T',(m)e M} (#",) by Proposition 1.7.
For arbitrary me M, (#), define T,(m) = T, (m*)—T,(m™).

TemoREM 1.8. Let W be a full paving. The map T, is a Banach lattice
isomorphism of M (W) onto a band in M (#,). Lurthermore, for
ueT [ M (W )], Tt () is the restriction of u to F(W).

Proof. It is easy to verify that T, is linear on M (#"). From this

it is immediate that T, is a positive linear tramsformation on M (#).
T T, (M) = 0, then T',(m™) = T, (m™) so that m* = m™ by Proposition 1.7.
Hence if To(m) =0, then it follows that m = 0. Finally, note that if
0 < T,(m), then 0< m since m is the restriction of T',(m) to & ().
- In order to verify that T', is lattice preserving, it is sufficient to show
that |T,(m)| = T,(lm|) for all me M,(#"). Since T, is a positive trans-
formation, |T,(m)| < T'o(|ml). Let m’ denote the restriction of |7, (m)| to
F(¥). Then 0 <m' < |m|. It is immediate from this that m'e M (#).
Since M, (#7) is an ideal, it now follows that m’e M, (#). By Proposi-
tion 1.7, T (m') = [T (m)]. Thus m < m' and —m < m' so that | T (m))
= Tyn’ > T,jm|. Hence |T,(m)| = T (|ml). Moreover, |Ty(m)|| = |T(m)|(X)
= T,(Im|)(X) = Im|(X) = [m| so that T, is norm-preserving.

We will now show that the image of M,(#") under T, is an ideal

in' M,(#,): Since T, is lattice preserving, T, [M (#)] is a Riesz subspace

of M (#,). Now-let Ae M, (W ) satisty 0 < 1< T,(m) for some me M (¥).
Let m’ be the restriction of A to # (%), Then 0 < m’ < m so that ' < MWy

since M, (#") is an ideal. But then T.(m') = A by Proposition 1.7. Hence

AT [ M, (%]

Finally, in order to demonstrate that T,[M (#)]is a band, let ( T,,(mi))
be an upward directed net in (TQ[M,,("///')])T* with T',(m;)4 we M (W,).
Let m denote the restriction of u to & (#). Since my(X) = T (m;)(X) 4
t u(X) =m(X), if &> 0 is fixed, there is an % with m(X) < my (X)+e.
Thus m (F) < my,(F) + ¢ for all Few. It now follows immediately that m.
is W-regular so that me M(#). Since my(F) m(F) for all FeF (%) and
since (m,;) is directed upward, m;}me I (#'). Bince M (#) is a band,
me M (%). Finally, by Proposition 1.7 y Lo(m) == u. The proot iy complete.

The map T, is not onto M,(#,) in general as the following example
shows.

Exaners. Let X = [0, 1]. Define W, = [0, 1) and W, = [1—1/n,1]
for neN. Let # be the smallest: paving on X containing {W;: ¢ = 0,1,...}.
(Thus W = {X, W,, B}u {W,: ne N} {WynW,: neN}.) Note that #°
is a full paving. R

For Fe & (#,) (0 =4y), define A(F) =1 it L1eF and A(F) = 0
it 1¢F. Then Ae M (#,) as is easily seen. If m denotes the restriction
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of Ato F(#'), then m¢ M (#") since m is not % -regular. (Indeed, m (WS) = 1,
but sup{m(W): We# and W < Wi} =0.)

The following gives a simple condition on %" which guarantees that T',
is onto M (# ). (Note that the family & of all zero sets on a topological
space satisfies the condition, and this accounts for the fact that every
Baire measure on a topological space is Z-regular.) ’

TreoREM 1.9. Let % be a full paving. Assume that if Woe %, then
there is a sequence (W) in % with W§ = \J W,. Then for every infinite
" n=1
cardinal a, T, maps M, (#°) onto M (W ,).

Proof. Let ue MF (#,) and let m denote the restriction of u to & (#).
Then m is a non-negative, finite, finitely-additive function on & (#).
All that need be verified is that m is # -regular. Hence let Wy =% and
choose an increasing sequence (W,) in # with Wi = |J{W,: neN}.
Since p is a-additive, m(W§) = limm(W,) < sup{m(W): We¥ and
W < Wi}, By Proposition [4;1.4(3)], it follows that m is # -regular.

§ 2. Applications of the extension. In this section, we wish to apply
the extension theorems to obtain certain results on weak convergence
in A* where A is a uniformly closed algebra of bounded real-valued func-
tions on X which separates the points of X and contains the constants.
‘We.shall denote the paving of zero sets of A by & (4). It # is a full paving
on X, then a standard representation of A* is an isometric isomorphism T
of A* onto M (%) such that I(W) = inf{p(f): fed, xm <[} for all We ¥

Limnvwa 2.1, Let Ay, A, be algebras on X with 4, < A, and let 7,4 = T4,-
Let Wy, Wy be two full pavings of closed sets in X which are bases for the 7,
closed sets. Let pe(AY)E. If M (W) represents A}, i = 1,2, and me MT (#,)
represents ¢ while ue M} (W,) represents g|4,, then Tom = T, p. :

Proof. Since #7; and # ', are bases for the closed sets for same top-
ology, (#71), = (#",), is the family of all closed sets for the topology. By
Theorem 1.8, it is sufficient to prove that m(W) = T, u(W) for all We #;:
Hence fix" Wye %", and &> 0. Choose foed, with yp, <fo and m(W,)
> ¢(fo) —e. Then s+m(Wo) > ¢(fo) = [ fodTopp = T p(Wy). Thus T u(Wo)
< m(Wy) for all Wye #,. x

Since 7", is base for the closed sets, #°y < (#7,),. Hence, since T, u
is r-additive, there is Wye %, with W, © W, and T,u(W,) +&> u(W,),
Furthermore, there is fyed, with ym <f; and ¢(fi) < u(W,)+e. Hence,
T.u(Wy) > u(Wy) —e > o(f)) "523 = Xf fidT,m — 2e > T ,m(W,) — 2¢

= T,m(W,)—2¢. Since & > 0 was arbitrary, T, u(W,) = T .m(W,y) = m(W,}
for all Wye #°;. The proof is complete.

We note that ¥ is a normal base if #° is paving of closed sets on X
which is a hase for the closed sets of X and satisfies:
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(i) If @ is a closed set in X and if #<G’, then there are W,, Wyew"

with W,nW, =0 and #e W,,G < W,.

(i) I Wy, Wyew with W,nW, =@, then there are V,, V,e¥
with ViUV, =X and W; < V{for ¢ =1, 2.

We remark that & normal base #” gives rise to a compactitication X,
and if this compactification is X, (the compactification such that every
element feA can be extended to C(X,) and every elementi of O(X,)
is such an extension), then M (#") represents 4* by [4;3.12].

TerOREM 2.2. Lot Ay, A, be algebras on X with A, < A, and Ty =Ty
and let W'y and #, be normal bases with X, the # ;compactification for
J=1,2. Let (p;) be a net in (A})*, let pe(A})T and assume that 2 (f)~>o(f)
Jor all fed,. Then o,(f)>o(f) for all feA, if either of the following two
conditions hold.

1) #y ¥,

(2) gie(ADT for all 4. ‘

Proof. First assume that %', < #7,. (That is, condition (1) holds.)
Let m;, me M*(#,) represent g, and g, respectively, and let u,, pe M (W)
represent the restrictions of ¢; and ¢ to A;. By Proposition [4; 4.8]
me M (%1) and pe M (#,). Fix Woe # and & > 0. Since #7, is 4 normal
base, there is a Wye %, with W, = W, and u(W,) < T.u(W,)+s For
all i, my(Wy) = inf{p(f): fed,, 2w, < fr <inf{pi(f): fed,, Iw, < I}
= p(Wy). Using this together with Theorem [4;3.13] and Lemma 2.1
we obtain that,

limsupm;(W,) < imsupm, (W) < Hmsup p,(Wy)
S (W) <T.u(Wo)+e = m(W,) +e.

The -esult is now an immediate consequence of theorem [4;6.3].
Now assume that condition (2) holds. Again let my, me MF(¥#,)

represent ; and ¢ and let u;, ue M (#",) represent the restrictions of @

and ¢ to 4,. By Lemma 2.1, T,u;, = T.m and T.p =T.m. Fix Wye¥

and ¢> 0. Choose W,e %", such that W, < W, and 0 < u(Wy) —m(W,)

=T u(W,—W,) < & Then by theorem [4; 6.3] and Lemma 2.1
lim supm, (W) = lim sup T, p,(W,) < lim Sup u (Wy) < p(Wy) = m(Wo) + e.

The result follows by another application of theorem [4; 6.3].

COROLLARY 2.3, Let X be a compact Hausdorff space, (m;) a net of
Borel measures on X and W a base Jor the closed sets in X. Then (m;) con-
verges weakly to a Borel measure m if and only if my(X)—>m(X) and
Emsupm,(W) < m(W) for all Wew. «

We remark that in [3; appendix(d)] we showed that M,(#") is not
weakly sequentially complete even when % is a normal bage. (It is well
known that if 4 = (°(X), then M,(2Z) is weakly sequentially complete.
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See [8].) Thus we state the following

ProBLEM. Let (¢,) be a sequence in AY and assume that @@ in
the (4% A)-sense. Does it necessarily follow that @edt? If not, what
conditions on the algebra will guarantee that this is 50?

LEvma 2.4, Let A be an algebra on X, ‘and let C° denote the algebra
of bounded, real-valued v 4-continuous functions on X. Then the Jollowimg hold:

(1) Let #° be a normal base for v, with X 4 the W -compactification.
Then there is o unique Riesz space isomorphism T of M (%) into M. (Z(Ch)
which is a homeomorphism for the weak topologies.

(2) Let W = Z(A), then the restriction map § of M (Z(CY) to #(2(4))
is o Riesz space isomorphism of M. (% (C%)) onto M, (Z (A)) which is a homeo-
morphism for the weak topologies. .

(1). The uniqueness is immediate from the fact that L(X) is weakly
dense in M. (#°) by Proposition [4 ; 6.4]. Since # is a normal base, ¥,
= (Z(0")), = #, the family of all v,-closed sets. Let T, be the map T,
of M (%) into M,(#) of Theorem 1.8, and let T, be the corresponding
map of M.(Z(C%) onto M,(#). Let T =T;'oT,. Then T is @ Riesz
space isomorphism which keeps L(X) pointwise fixed. Tt is clear that 7
is continuous for the weak topologies. Let (my) be @ net in M} (#) and
me M (#). Assume that m,->m weakly. We must show that Tm;—~Tm.

Hence fix Z,e2(C°) and &> 0. Take W,e# with Z, W, and
m(W,) < T'ym(Z,)+¢ Then by theorem [4;6.3]

Limsup T'my(Z,) = Lmsup Ty m,(Z,) < imsup Zym, (W,)
' < limsupmy (W) < m(W,) = Tym(W,)
< Tim(Z,) +¢ = Tm(Zy) +s.

It now follows by theorem [4; 6.1] that Tm,~>Tm weakly. The proof
of (2) is similar to that of (1) except that we use [4; 6.1] in place of [4; 6.3].
See also [1, p.12] and [8].

Using Lemma 2.4, we can now obtain several facts about weak com-
Dactness as consequences of results which are known'in C%(X)*, (See [5].)

TEEOREM 2.5. Let A be an algebra on X and assume that (X, 1) is
metrizable as a separable metric space. Then a set B < (A%)* is relatively
weakly compact if and only if it is relatively weakly sequentially compact.

Prodi. Let B’ « M (Z(A)) be the set of measures which represent
the elements of B according to theorem [4; 4.8]. By (1) in Lemma 2.4, B
is relatively weakly compact if and only if S[B'] is relatively weakly
compact in M} (2 (C). But by theorem 27 of [5, p. 76], S[B'] is rela-
tively weakly compact if and only if S[B’] is relatively weakly sequen-
tially compact. Again by Lemma 2.4, this is equivalent to B’ being weakly
sequentially compaect. The proof is complete.
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TumormM 2.6. Let A be an algebra on X, and let B < (A;‘)"" If Bis
velatively wealkly countably compact in (A¥*; then B is relatively weakly
compact in (AN ' .

Proof. Tt is enough to prove the theorem in the specml. case,
A = (*(X). The general result then follows from Lenmmf 2.4 as in the
proof of Theorem. 2.5 above. But it 4 = ¥, 171.161.1 M%) 1s c(?mplete for
the Mackey topology m(M,(Z), C"). (Indeed, it is shown in [3] tha,t'M.,
is complete for a topology ¢ for which the dual of JV{ . 18 O He.nc:-_s it iy
complete for the Mackey topology.) It then follows from Eberlein’s th(?-
orem that if B = M,(Z) is relatively weakly countably compact, then it
is relativély weakly compact. The proof is complete.

. Remark. We have shown above that any relatively weakly sequen-
tially compaict subset of M, ,,(;‘)f (O")) is necessarily relatively We.akly compact.

We note from [4] that for a paving #, a set § < X is # -compact
_if for every filter % < # with SN U 5@ for all Ue%, then ({8 T:
Ue %} ; a. »

DerrNreroN 2.7. Let % be a paving on X. A set B = M (#) is tight
if sup{|m|j: meB} < oo and if for every &> 0, there isx.a % -compact set
W,e# , such that |m|(W) < ¢ for all We# with WnW, = @ and all meB.

. It is clear that the mapping S of Lemma 2.4 preserves tight sets.
Hence using Lenima 2.4 and Theorem 31 of [8, p. 66], we obtain the follow-
ing weakened version of Prochorov’s theorem.

TeEOREM 2.8. Let A be an dalgebra and assume that (X, 7,) 8 locally
compact or that (X, v,) is metrizable with a complete mfetrfi_c. Then
Bc Mi(Z (A)) is relatively o(A*, A)-compact if and only if it is tight. ‘

We conclude this paper with a last application to obtain a generali-
zation of a known result (see for example [5;5.1(d)]). We denote the set
of tight elements of M(#") by M (#).

THEOREM 2.9. Let ¥ be a normal base with compactification X, or
let W = Z(A) for A an algebra on X. If me M, (W), then there is a unique
compact vegular Borel measure p on X such that p|F (W) =m and pt, u~
e M (W)

Proof. We note that the hypothesis implies the 7 ,-compact sets
are W -compact and conversely. By [4;5.6] me M,(#") is in M (¥).
Therefore there exist unique p*, u~ e M (#,) such that uH|F(#) = m™
and p~|F (¥) = m~ by 1.7. 8ince #” is a base for the v, closed setsof X, #",
is the paving of all cloged sets so that u*, y~ are Borel measures on X.

Finally, since m is tight, for any & > 0 there is a ¥ -compact set W,
such that |m[{W) < ¢ it WnW, = @. Since W, is v ,-compact and # is
a bagis for the 74 closed sets, it follows that for any closed set ¥ with Fn'W,
= @, there is a We# .such that F <« W and WnW, = @. Consequently,
[al(P) < [u] (W) = [m[(W) < & so that |u| is compact regular.
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